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ABSTRACT

We study the problem of the Monte Carlo estimation of the right tail of the distributiothe sum of
correlated log-normal random variables. While a number of theoreticdibjiesft estimators have been
proposed for this setting, using a few numerical examples we illustrate ttsat plublished proposals may
not always be useful in practical simulations. In other words, we shattie established theoretical
efficiency of these estimators does not necessarily convert into Momte €stimators with low variance.
As a remedy to this defect, we propose a new estimator for this setting. We diaterthat, not only is
our novel estimator theoretically efficient, but, more importantly, its practicébpaance is significantly
better than that of its competitors.

1 INTRODUCTION

Consider the following setting. Lef € R%*¢ be a positive definite covariance matrix. L8t~ N(v, ¥)
be a normally distributedvector in R? with mean» under probability measur. Then, we wish to
estimate accurately

£(y) = P(exp(Y1) + -+ + exp(Yy) > 7), (1)

wherey may be arbitrarily large, making a smallrare-eventprobability.

Such a setting arises, for example, in computing the probability of a largertmssa portfolio with
asset prices, saX = exp(Y'), driven by the Black-Scholes geometric Brownian motion model (see, for
example, Kroese et al. 20D)1and the references therein).

One of the challenges in estimatifigoertains to the heavy-tailed behavioréf) as~y 1 co, namely:

def

d
0(7) 22 Lasymp = ZP (Vi > Iny) =Y ®((Iny — vg)/o%), 2
k=1 k=1

where 07 = Y4, and ®(-) = 1 — &(-) denotes the tail of the standard normal distribution, see
(Asmussen and Rojas-Nandayapa 2008 here is significant literature on efficient heavy-tailed prob-
ability estimation of sums of independent increments, see, for examfenussen and Kroese 2006
Asmussen and Kortschak 202¥guyen and Robert 201@rtobelli et al. 201§ and a few proposals deal-
ing with sums of dependent heavy-tailed incremeAsnfussen et al. 20)1

The purpose of this article is to show that the existing proposals for estima)icgri be unreliable in
some simple examples of applied interest. More precisely, while the existing essmatik satisfactory

'We denote the multivariate normal density @s(- — v).

’The notation f(z) ~ g(z) asz — a stands forlim,_, f(z)/g(z) = 1. Similarly, we definef(z) = O(g(x))
limgq | f(2)/g(x)| < const. < oo} f(z) = o(g(x)) & limz—a f(z)/g(x) = 0; also, f(z) = O(g(z)) < f(z)
O(g(x)) andg(z) = O(f(x)).
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when X in (1) is diagonal (that is, when the log-normal factoXs are independent), these estimators
exhibit very high variance in cases in whighinduces positive correlation amongst the log-normal factors.
Unfortunately, dependence structures which induce strong positivel&tion are precisely the cases of
practical interest — financial and insurance risk is typically underestinvatednodels that fail to account
for the co-dependence of market disturbances, which in turn may eacascading mode of defaults or
downside movements.

As a remedy to this defect of existing estimators, we propose a novel expalty tilted estimator
for (1), which is logarithmically efficient, but, more importantly, enjoys superior ficatperformance to
alternative estimators. Interestingly, in the iid case, our estimator looks similatitator (1.3) proposed
in (Asmussen and Kroese 2006vhich was found by the authors to be second best to the celebrated
Asmussen-Kroeseonditional estimator.

The rest of the paper is organized as follows. In SeQ@iwe review thamportance sampling vanishing
error (ISVE) estimator proposed idémussen et al. 20},land show numerically how in some cases it may
yield highly inaccurate and biased estimates. We give some intuitive explam&iiaihe poor performance
of the estimator. Next, in Sectidhwe describe our novel estimator and its theoretical properties. This is
followed by a numerical example, demonstrating the superior performdnte @stimator, and, finally,
we draw some conclusions.

2 Two Theoretically Efficient Estimators

The first estimator proposed iAgmussen et al. 20)1s thevariance boostedstimator defined as follows.

Let Py be a probability measure under whidh ~ N(v, /(1 — 6)) for somef € [0,1). Thus, by
taking ad close to unity, the variance &f can be boosted sufficiently to induce the evgsit> ~}, where
S =exp(Y1) + -+ +exp(Yy). Then, the variance boosted estimator:

R _ exp(—G(Y—V)TE_l(Y_V)/Q)

69(7) (1 _ G)d/2 ]I{S > ’7}7 Y ~ Py (3)

is simply the result of usinffy as an importance sampling measure. The asymptotically optimal choice of
0 is
o2

Hzl—m—i-o(ln_

It is then not difficult to show,Asmussen et al. 20} 1that with this choice ob

'), 1o 4

Eg 2
—5" = 6([lny] 2y
In other words, X
limn nf V20 (l0) _ o
v In 4(7y)

which is the definition of dogarithmically efficientestimator. The efficiency label arises from the fact that
the relative errorVar(¢y)/¢?, of the crude Monte Carlo estimator,

lo=T{S >~}, Y ~P,

is of the order

1) =0 (exp ((111(;3;1,)2) 1n77_y> 7

whereo = maxy o, andv = max{v; : o, = o}. Thus, while the error of,, grows exponentially, the
error of /9 grows only polynomially.
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Consider an simple example in which all log-normals are iid With= I x 0.25%, v = 0, and we
haved = 30. Tablel1 shows the estimated values félry) for different values ofy using three different

estimators: the variance boostég the Asmussen-Kroese estimatésussen and Kroese 2006
éAK =dd (%ln [(’y — Zj<d X;)Vmaxjq XjD , InX ~ N(0,0'2I);

and our proposed estimatbin Section3. The data was populated using= 107 independent replications
of each estimator. The difference in the CPU run times for all methods wadigibtg (all between 7 to
10 seconds), and hence not reported here. The conclusion froradhiks in the table is that the variance
boosted estimatory, is not useful due to its high variability.

Table 1: Comparative performance of the variance-boosted and Aemiseese estimators. The proposed
estimator/ is given in column two and described in Secti@n

relative error %

v | ¢ | RE() [ RE({ak) | RE(fp)
30| 0.742 | 0.199| 0.0321 | 0.314
33| 0.0797 | 0.26 0.0871 3.67
36 | 0.00052| 0.403 0.684 39.8
39 | 2.94e-07| 0.725 17.9 51.9
42 | 2.29e-11| 1.45 54.6 99.9
45| 3.92e-16| 2.57 64.4 97.8

48 | 1.93e-21| 4.44 31.7 97
51| 3.98e-27| 7.85 25.2 81.5
54 | 8.58e-33| 3.22 15.3 100

57 | 3.44e-36| 0.418 13.3 69.8
60 | 4.26e-39| 0.203 5.21 99.7

63 | 1.06e-41| 0.18 2.92 99
66 | 4.38e-44| 0.162 1.58 64.8
69 | 2.75e-46| 0.16 1.09 100

72 | 2.42e-48| 0.155 0.686 98.3
75| 2.83e-50| 0.153 0.498 72.1
78 | 4.24e-52| 0.151 0.414 95.7
81| 7.87e-54| 0.15 0.287 99.3
84 | 1.78e-55| 0.15 0.26 100
87 | 4.74e-57| 0.15 0.251 90.5
90 | 1.48e-58| 0.15 0.189 100

It is important to note that while the authors &gmussen et al. 20)Iselect the variance-minimal
value of @ heuristically using the so-callecfoss-entropymethod, an exhaustive search shows that there
is no value ford that yields reasonably low variance. For example, Figushows the estimated relative
error of /4 as a function of for v = 45 and all other parameters being the same as in Thblée figure
suggests that even if we knew the true variance-minimigingobviating the need for approximating it),
the estimator will still not be useful.
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Figure 1: The estimated relative errorfgfas a function of) using10” replications. The smallest estimated
relative error wa3%, corresponding t@ = 0.71. Where the estimate @f45) is 0, the relative error is
recorded as unity (100%).

2.1 A Vanishing Relative Error Estimator

Recognizing the deficiency of the variance boosted estimasm(ssen et al. 20)bropose the superior
ISVE estimator. LetX = exp(Y') and denoteV/ = max; X;. The main idea of the ISVE estimator is to
split (1) into two parts:

C=P(M >~)+P(S >~ M<~),
and estimate; = P(M > ~) and/¢, = P(S > v, M < ~) separately using two different importance
sampling schemes. In particuldy, is estimated via

5 gasymp('}/)
El - d )
> op—1 Xk > 7}

Xwg(w), (5)

whereg is the mixture density:

aef O (x —v) >i_ Hag > 7}
g(x) =
gasymp(w)
and the residual probabilityp, is estimated via a variance boosted estimator:
exp(—0(Y —v)TY"HY —v)/2)
(1 —6)d/2

)

lap(y) = I{S > ~v, M < ~}, Y ~ Py, (6)

wheref = 1 — In~?(v). With this setup the ISVE estimator fgvy = /1 + /> and it enjoys the vanishing
relative error propertyAsmussen et al. 20]1

Var(@ISVE)
()
Before we proceed to illustrate the practical performance of the ISVE dstimee note that there are two
issues that may indicate problematic performance.
First, using the sample variance wfindependent replications o5) is not a robust estimator of the
true variance of; in the following sense.

10, 7T oo
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Proposition 1 (Inefficiency of Sample Variance) Let? be the sample variance basedoimdependent
replications of §) . Then,
2
lim inf w =
YToo Varz(ﬁl)

where the rate of growth to infinity can be as high as exponentiati() exp(cs In?(~)) for some positive
constants:;; andcs.

Proof.  The proof is a straightforward adaptation of the proof of Proposition Bitdv et al. 2015
where the same statement holds for the estimator of the maximum of correlatssid@aandom variables,
namely,P(max; ¥; > v) with Y ~ N(v, X). Since the maximum of log-normal random variablesy/,
can be linked to the maximum af multivariate normal variables:

P(M > ~) = P(maxexp(Y;) > v) = P(max Y; > In~),

the only necessary notational change in the proofButév et al. 2015Proposition 2) is to replace all
instances ofy with In(y). O

The practical consequence of the result above is that the relativecrép is underestimated during
simulation, and frequently reported as being zero.

Second, we already know that the variance boosted estin@tés (inreliable for estimating, and
that there is no value faf that will render it a useful estimator. Upon examination @f e see that it
only differs from @) with the addition of the constrain/ < ~, and in the different choice df. Thus,
given that 8) is a bad estimator of for any 6, we should not be surprised to find th&) {s also a poor
estimator off5. Indeed, the same numerical example again demonstrates that there isdneafyaoford
that can make the relative error &)(small enough. The behavior of the relative erroﬁ@& as a function
of 4 is qualitatively the same as that on Figure

2.2 Quality of Asymptotic Approximation

One of the arguments in favor of the ISVE estimator is that, whilmay be a noisy estimator, it is a very
small second order residual term, and will not affect noticeably the higlracy of the leading order term
1.

Unfortunately, more often than not, the leading contribution ternd ef ¢; + /5 is not /1, but the
residualls. This may appear to contradict the fact that asymptotically ¢;, but it makes sense when
one takes into account that, in the presence of a positive correldtioar equivalentl9 the Lasymp, Can
be an extremely poor approximation o

For example, consider the case with= 0 and ¥ = p11' + (1 — p)I for p € [0,1), then
(Kortschak and Hashorva 20jLldhow that

E(’Y) - gasymp (’Y) - 5(7) - da(hl ’Y)

= d(d— 1)exp(1 - )/ n0)g

P(Iny)

Figure 2.2 shows a logarithmic plot of (p) — the relative asymptotic deviation éffrom £,gymp,

\_/

é;/w ~r(p) def (d—1)exp((1— )/2) (
asymp

3NO'[e that[“% < 01 < Easymp
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with d = 100, as function ofp for three different values ofasymp(v) € {107°,1071°,1074°}. What we
can gather from the plot is that for largethe relative deviation of from the asymptotic approximation
Casymp 1S Of order10® even for the most extreme of rare-events, for which we would havecesgbehe

asymptotic approximation to be accurate.

Monte Carlo simulations actually show that the situation can be even worse, fiakexample, the
instances in Tabl@.2, whered = 10 andv = 0,% = 0.25%2 x (0.9 x 117 4 (1 — 0.9) x I). The table
shows the asymptotic valug,,, for different~ (second column), together with its relative deviation
from the true/ (last column). The table also displagsvith its approximate 95% confidence interval based
onn = 10° independent replications of our method, described in the next section.

Figure 2: Asymptotic estimate of the relative deviation/dfom ¢;.
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Table 2: lllustration of the inaccuracy of the asymptotic approximation for madelesalues of (). The
asymptotic approximatiof,sym, becomes useful only for probabilities smaller than akidut?33.

v Casymp 95% ClI for ¢ (€ = Lasymp) /Lasymp
15 | 1.2113...x 10726 0.012 4 0.001 1.0 x 10?4
20 | 2.1830...x 10732 | (5.80 £0.013) x 10~° 2.66 x 1027
40 | 1.4175...x 107 | (6.33 £0.016) x 10717 4.5 x 1033
60 | 1.3872...x 1077 | (1.10£0.017) x 10~23 8 x 10%
100 | 4.4834...x 107 | (8.044.018) x 10738 1.8 x 1037
500 | 1.0481...x 107135 | (3.39 £.02) x 10710 3.2 x 10%0
1000 | 2.3594 ... x 107157 | (6.94 +.02) x 10714 3 x 10%
1500 | 2.0634 ... x 107187 | (4.04 £ .03) x 10~ 2 x 106
2500 | 2.6294... x 107214 | (2.94 4+ .04) x 10727 1.1 x 107
3500 | 5.1912...x 107233 | (5.454.04) x 107233 0.05
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The message from Tab®2 is clear: the asymptotic approximation is useless for moderate values of
~ (deviating from the true value daf by as much ag0%7), and only becomes useful for extremely small
probabilities (smaller thah0~233). It is interesting that the relative deviation becomes much bigger before
finally improving for extremely small probabilities.

3 Exponentially Tilted Estimator

In this section we introduce a novel estimator based on the method of exj@bridtimg. To this end,
we first definepy(v) def P(Y > In(y/d)) andp(y) = >, px(vy). Recall thatX; = exp(Y}), then our
proposed unbiased estimator is:
- {K =k}
Oy = 41— —
() pr/p
where ;. is the solution to

exp(pi/ (20%) — k(Y — vi) /oR){S > 7, Xy = M},

pj = argmin,, {/;—% +Ind (M)} (7)

[
and the vectof K, Yy, Y ) is simulated sequentially from the joint pdf:
(K7 Yk: Y*k) ~ g(k7y) = pk(ﬁaﬁ(yk — Vi — Mk)(bZ(y - V’yk)

Implementation of one replication of the estimator is summarized in the following algorith

Algorithm 1 : Estimator of/(~)
Require: v, 3, v
{0
Simulate K from the distributionP(K = k) = pi(v)/p(v) and setk + K
Solve (7) to deliver
SimulateYy, ~ N(v + i}, 07) and setyy < Yy
Simulate the Gaussian vectdf_j, = (Y1,...,Yi 1, Yii1,...,Ya)| ~ és(y — vlyk), givenYs, = yp,
X <+ (exp(Y1),...,exp(Yy)) " andS < X1 + - + Xg4
if S > y anka = max; X; then
0 p/prexp((1})?/(207) — i (Y — i) /0})
return ¢

The next result ensures that the estimator, just like its competitors, is nafibhstespect toy.

Theorem 1(Logarithmic Efficiency) Withthe choicé], the estimatofis both unbiased and logarithmically
efficient, that is,

whereE, andVar, denote expectation under the importance sampling degsity

Proof.  First, recall that B
((y) =0 (®((Iny —v)/0)),  ~7Too,
whereo = maxy o, andv = max{yy : o, = o}. Second, note that the estimator is unbiased, because

Egl(7) = Egpm exp(pi/(207) — (Ve — v) /o) I{S > v, exp(Vy) = M}
k

= P(S>v,Xp=M)=P(S > 1)
k
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The second moment of the importance sampling estimator is then bounded fowm abfollows:

E,(7) = ¥, fEexp(uz/<2a,%> — (Vi — ) [oR){S > 7, exp(Yy) = M}

= p(7) T SRLDp, (S > 4, X = M),

where undef?,,, we haveY;, = In(Xj) ~ N(v; — ux, 07). Hence, using the fact that
P (S > 7, Xp = M) <P, (Xy > v/d) = P(Yy — . > In(vy/d))

we obtain withyy, = pj in (7):

EoP*(7) = p(7) X0y, SR L (5 > o, X = M)
< ply) 3, g (deZVH“Z)
(for any e # i) < p(7) 3o, “2L kw/)gk)q’ (ln(v/d)a_kykw)
(substitutepy, = In(y/d) — v # pg) < p(y) X4 eXP((lﬂHp/j()v)Vk) 170 F (an(v/adk)w)

Next, we sett;, = (In(y/d) — vx)/or as shorthand notation, and use the facts: fig% = O(x) for

f In(y/a)—v

x 1 oo; and second, with = “, p(y) = © (P (t)). Using these, we have

IEgé2 (v)

IN

P(0) Xy S2DF (21)

(@ (1) 53 520 (2r

(C]
O (B(1)) Ly exp(t)0 (434 )
O (T (1)) 32,0 (6(t)) = © (B (1) &(1))

Therefore, using the fact th %’EX) — 1 asx 1 oo for any constant, standard calculus shows that

L ER() L () +lelt)

vtoo  Inf vtoo  In® ((Iny —v)/o)

This concludes the proof. O

4 A Numerical Example

All the estimators discussed in this article are asymptotically efficient. Yet, the noahexperiments
suggest that some of them are not always useful in practice. Corestlerating/(~) with » = 0 and

¥ =0.252x (px 117 + (1 — p) x 1) for p = 0.9,d = 30 and different values of.. Table3 gives the
results using: = 10° replications. Thevork normalized relative varianaef / is defined as x Var(f)/¢2,
where 7 is the total CPU time needed to delivér For the ISVE estimator we attempted to optimize
the performance of the estimator by manually selecting the best pos$silideir choice for this tuning
parameter is thus given in brackets in the third column.
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Table 3: Comparative performance of the ISVE and exponentially tilted estisnaith p = 0.9, d = 30.

relative error % | work normalized relative variance

v / lisvE RE(¢) | RE(f1svg) | WNRV(Y) WNRV (/1svE)

40 0.116 0.114 ¢ = 0.5) 0.63 2.0 0.00032 0.00080

100| 2.17x1077 | 1.18 x 1077 (# =0.6) | 0.98 40 0.00061 0.31

150 | 6.83 x 10712 | 575 x 10713 (9 =0.75) | 1.1 84 0.00093 1.12

200 | 7.75 x 10716 | 2.09 x 10717 (8 = 0.8) 1.2 95 0.0010 1.22

400 | 6.57 x 1072% | 3.08 x 1073 (9 = 0.9) 1.4 80 0.0011 1.34

103 | 1.61 x 1074 | 1.21 x 1078 (9 =0.95) | 1.7 100 0.002 2.02

10 | 3.60 x 107132 | 1.80 x 1072%* (9 =?) 2.1 - 0.0024 -

A number of conclusions can be drawn from the table.

First, the ISVE estimator does not have acceptably low variance for botth snj@hen the event is
not rare) and for large (when the event is rare).

Second, as with Figurg, any attempt to optimize with respectdas fruitless, because there appears
to be no value fof € [0, 1) that yields low variance.

Third, in the last row of the table, it was not possible to induce the eygnt ~, M < v} no matter
what the value of). In other words{S >, M < ~} remains a rare-event for all values #&fc [0, 1),
and with very high probabilityisyi = ¢4 + ¢5 = /1. Thus, despite the vanishing relative error property
of the ISVE estimator, its performance deteriorates dmcomes smaller and smaller to the point that it
does not deliver meaningful estimates.

Of course, ify is large enough, then we know from theory that/r must ultimately yield a meaningful
result. However, in our casg has to be so large and the rare event so rare, that it is not possiblego stor
the relevant numbers in computer memory due to numerical over- and fiondassues. This is because
the asymptotic approximatior2)is, at least in this particular case, not useful for small to moderately large

v.

5 Conclusions

We have presented a new exponentially tilted estimatofor the estimation of the tail of the sum of
dependent log-normal variablel ( The proposed estimator is shown to be, not only asymptotically optimal,
but also useful in practical simulations. One of the observations we eanfdom a number of numerical
experiments is that sometimes an estimator with a vanishing relative error fyropay not necessarily
exhibit low variance in practical simulations.

As future work, we propose to show that the growth of the relative esfaf can be shown to be
as small asO(In~). Further, one would like to show that the estimafoenjoys the bounded normal
approximation Tuffin 1999. In other words, we would like to show that the sample standard deviation
of an ensemble of is a robust estimator of the true error ffand inefficiencies like the one defined in
Propositionl do not hold for the estimatdf.
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