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ABSTRACT

In emergency call centers (for police, firemen, ambulances) a single event can sometimes trigger many
incoming calls in a short period of time. Several people may call to report the same fire or the same accident,
for example. Such a sudden burst of incoming traffic can have a significant impact on the responsiveness of
the call center for other events in the same period of time. We examine data from the SOS Alarm center in
Sweden. We also build a stochastic model for the bursts. We show how to estimate the model parameters
for each burst by maximum likelihood, how to model the multivariate distribution of those parameters
using copulas, and how to simulate the burst process from this model. In our model, certain events trigger
an arrival process of calls with a random time-varying rate over a finite period of time of random length.

1 INTRODUCTION

Emergency call centers receive phone calls for various types of urgent situations such as medical emergencies,
fires, accidents, rescue, terrorist acts, etc. In North America (Canada, USA, and recently Mexico) calling
911 will connect you to an emergency dispatch office, also called a public-safety answering point, in which
operators can organize and dispatch the appropriate responses such as ambulances, firefighters, police,
rescue resources, etc. In Europe and many other countries, 112 is the corresponding calling number. Our
analysis in this paper is based on data from SOS-Alarm, which handles the 112 number in Sweden.

Managing an emergency call center involves deciding (among other things) what goals or constraints
we want to impose on the quality of service, how to route calls and assign priorities, how many operators
(general or specialized) to have in the center in each period (e.g, half-hour) of each day (this is called
staffing), and what would be the work schedule of each available operator, e.g., over a given week (this is
scheduling). The staffing and scheduling decisions must be made under various constraints on the work
schedules of operators, based on union agreements for example, on the number of operators that can be
available, the tasks for which they have been trained, etc. The staffing and scheduling problems are usually
formulated as stochastic optimization problems in which the objective is to minimize the operating costs,
under constraints on the quality of service which are defined as probabilities or mathematical expectations.
For example, one can impose the constraint that the average (expected) waiting time of calls must be less
than s¢ seconds, that the fraction of calls answered within less than s; seconds must be at least 95%, etc.
These constraints are often imposed separately within given time periods (e.g., each day, each hour, etc.)
and sometimes separately for different call types. For further details, see for example Aksin et al. (2007),
Cezik and L’Ecuyer (2008), Avramidis et al. (2010), Koole (2013), Ta et al. (2016). At the SOS Alarm
Emergency call center, it is requested that 99% of the calls are answered within 30 seconds and that the
average waiting time is less that 8 seconds.

To solve such a problem, one needs a reasonably realistic model of how things happen in the call
center. Erlang formulas have been used for a long time for staffing call centers. These formulas are
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based on the simplifying assumptions that all calls have the same exponential service-time (or duration)
distribution, and that calls arrive according to a Poisson process with a known constant arrival rate. But
these assumptions are unrealistic. In particular, in typical emergency call centers (and other call centers
as well), the arrival rate is time-dependent and is itself random (Avramidis et al. 2004; Channouf and
L’Ecuyer 2012; Ibrahim et al. 2012; Ibrahim et al. 2016b; Oreshkin et al. 2016). The service times are also
not exponential and their distribution may depend on the server, on time, and on other factors (Avramidis
and L’Ecuyer 2005; Brown et al. 2005; Ibrahim et al. 2016a). For realistic call center models, there is no
reliable approximation formula for the measures of performance or quality of service, and one must rely
on simulation (Pichitlamken et al. 2003). Simulation-based stochastic optimization algorithms have been
proposed and experimented for call centers; see for example Atlason et al. (2004), Cezik and L’Ecuyer
(2008), Avramidis et al. (2009), Avramidis et al. (2010), Chan et al. (2016), Ta et al. (2016). On the other
hand, building a realistic stochastic model of the call center is not always easy.

In this paper, we focus on the modeling of one particular aspect of the arrival process in emergency
call centers that has been neglected in the past: the presence of arrival bursts triggered by a single event.
For example suppose that a large fire or accident occurs in a city or along a highway. Within a few
minutes, several people may call the 112 number to report the same incident. In some cases, a single
event may trigger over 40 calls in less than 2 minutes, for instance. During a burst, the arrival rate of calls
increases momentarily, possibly by a very large factor. This can overload the call center capacity and, as a
result, urgent calls for unrelated events could be lost or may have to wait too long, potentially with serious
consequences. It is important to understand how these bursts occur and to develop realistic models of the
arrival rate process within a burst. We do this based on data from the SOS Alarm call centers in Sweden.
One important difficulty in modeling a time-dependent and stochastic arrival-rate process like this one is
that the arrival rate itself cannot be observed, only the arrival times can be observed. This complicates
significantly the estimation of model parameters (Ibrahim et al. 2012; Oreshkin et al. 2016). We explain
how to handle this for our models.

The rest of the paper is organized as follows. In Section 2, we describe the data we have on the
bursts, and we provide some examples and summary information. In Section 3, we define a model that
we developed, based on the observed data, and we show how the bursts can be simulated once the model
parameters have been estimated. In our model, a burst has a random length, during which the arrival rate
is an exponential function with random initial value and whose exponent is also random and can be either
negative (the rate decreases), positive (the rate increases exponentially), or zero (the rate is constant). With
this type of exponential rate function, the arrivals can be simulated by inversion, via a change of variable
that transforms a standard Poisson process (with rate 1) to a Poisson process with the desired exponential
rate. The starting point, length, initial rate, and exponent, are random variables and our goal is to estimate
their joint distribution from a given parameterized class of distributions. In Section 4, we explain how these
parameters can be estimated by maximizing the log-likelihood of the data for our model. We illustrate
this numerically in Section 5. Our proposed model is not perfect. We mention possible improvements and
extensions in the conclusion at the end of the paper.

2 THE AVAILABLE DATA

Our study is based on detailed data from the Swedish 112 emergency call center, which is managed by a
semi-private company named SOS Alarm Sverige AB. The SOS Alarm call center works as a single virtual
center which serves all of Sweden, although the operators (or agents) are physically in several different
locations. The main one is an underground bunker in Stockholm. There are some locations with a small
number of operators, e.g., in Northern Sweden. Calls are handled preferably by operators at the closest
location, but if no operator is available there, the call can be taken at another location.

The center handles about 60,000 calls per week (i.e., 6 calls per minute) on average. The available
data contains call-by-call information that includes (among other things) the arrival time of each call, its
waiting time, its area of origin, its duration, and, very importantly for us, the event number to which this
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Figure 1: Impact of a large burst of about 10 minutes on the cumulative arrival count process over about
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Figure 2: The cumulative arrivals for two bursts of different lengths; one with a decreasing arrival rate
(left) and one with an increasing arrival rate (right).

call is associated. With this information, we can identify all the calls related to the same event, i.e., the
calls that belong to a given burst. This last information is sometimes unavailable in emergency call centers;
then it is much more difficult to identify the bursts in the data and to estimate model parameters.

For our data analysis in this paper, we consider only the calls related to “rescue” operations in a wide
sense. i.e, those calls that request emergency response and action by the police, fire department, or an
ambulance, for example. This covers event types such as accidents, aggressions or attacks, fires, etc., that
are likely to produce significant bursts.

We used data collected from January 1 to June 30, 2016. There was approximately three million calls
overall during that period. From this data set, we extracted all the rescue events that generated at least 5
calls. There was 984 such events. The average number of calls per burst was 6.7 and the average duration
of bursts was 591.6 seconds. Among those, we found 155 bursts of 15 calls or more, with an average burst
size of 23.7 calls.

Figure 1 illustrates the impact of a burst of about 10 minutes on the cumulative number of arrival as
a function of time. The burst causes the larger slope from about 3700 to 4300 seconds (a period of 10
minutes). It has a visible impact on the arrival process. Figure 2 shows the cumulative rate for two bursts,
one with a decreasing arrival rate (on the left) and one with an increasing arrival rate (on the right).
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3 MODELING AND SIMULATING A BURST
3.1 The Model

Based on what we have observed in the data, we designed the following model. When an event occurs that
triggers a burst of calls, we assume that the calls related to the event, and which constitute the burst, arrive
according to a non-homogeneous Poisson process with a certain arrival rate, after the time of the event.
Note that the time of the triggering event is not observed, only the arrival times of the calls are observed.
For this reason, we find it convenient to start our time clock when the first call of the burst arrives. This
is time t = 77 = 0 in our model of a burst. One alternative way of modeling could be to assume that the
burst starts at the time when the event occurs, say time 7p, and try to estimate 7y for each burst. We do
not take this more complicated path here.

After the first call which arrives at time T, = 0, additional calls related to the same event arrive at rate
A(t) at time 7, t > 0, and the (random) rate function A is assumed to have the form

Alt) =

Ae B for0<t<C,
0 elsewhere,

where A >0, B€ R, C > 0, and the vector (A,B,C) has some joint continuous distribution over Q =
[0,00) x R x [0,00) C R3. The burst has intensity parameter A, exponential rate with exponent B, and
duration C. Its arrival rate A(z) for ¢ € [0,C] is constant if B =0, decreasing if B > 0, and increasing if
B < 0. Note that none of the parameters A, B, and C is observed in the data.

In a simulation model, once (A,B,C) are known, the arrival times of calls from the burst can be
generated using inversion and an appropriate transformation from a standard Poisson process, as we will
explain. The cumulative rate of the Poisson process from time 0 to time ¢ is

alt) = /Ot?L(s)ds:I;(l—etB), 0<r<C.

Its inverse can be found by writing a(f) = x and expressing ¢ as a function of x, using the above expression.

This gives

_log(1—Bx/A)
B

For B = 0, these expressions for a(t) and a~'(x) are indeterminate, and using them for B near 0 will lead to
numerical instabilities, but we can compute a stable approximation around 0 by expanding the exponential
and the log in Taylor series and dividing each term by B. For a(t), using 1 —e ¢ =¢—¢2/2+€3/6—---,

we get
tB  (tB)?
=At(1—— —...
a(t) t( 5 + G >

t=al(x)= for B # 0.

when B is close to 0. For a~!(x), using —log(1 —¢) = € +¢&2/2+¢€3/3+---, so when B is very close to 0,
_1( )_x 1+Bx+82x2+
a (x)= ATz T )
In each case, we can truncate the series to a finite number of terms to obtain an accurate approximation,
and the first term gives the exact value when B = 0.
3.2 Simulating the Arrivals

It is known that if we simulate the arrival times X;,X>,X3,... of a standard Poisson process, with constant
rate equal to 1, and we set T; = a! (X j) for j > 1, then the T are the arrival times for a Poisson process
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with cumulative rate function a. See for example Cinlar (1975), Chapter 4, Section 7. Generating the X;
is easy: We put X = 0 and the interarrival times X; —X;_; are independent exponential random variables
with mean 1, for j > 1. This gives Algorithm 1 to generate the arrival times 7T; and their number N. In
this algorithm, Expon(1) denotes an exponential random variable with mean 1. When |B| < &g, we use the
series to approximate a~ ' (X ;) instead of the direct formula. We add terms of this series until the last term
is smaller than &. At the end, we return the arrival times that are smaller than C.

Algorithm 1 : Generating the arrivals of a burst with exponential rate.
Require: A, B, C, &g, &
T < 0; X7+ 0;
for j<2;T,_1 <C; j++ do
X; < Xj_1 +Expon(1);
if |B| > &5 then
Tj < log,(1—X;*B/A)/B;
else
W« Xj/A;
T, < W,
for k< 2; W > &g; k++ do
W WxBxXj*(k—1)/(k*A);
Tj < Tj+W;

N<+—j—1;
return N and the arrival times T7,...,Ty.

4 PARAMETER ESTIMATION BY MAXIMUM LIKELIHOOD
4.1 Parameter Estimation for a Single Burst

We start by writing the loglikelihood function for a single burst, as a function of (A,B,C), given that
the arrival times for that burst are 7T7,...,Ty, and N is the number of arrivals. Note that 73 = 0 does not
contribute to the likelihood. The loglikelihood of these observations is then as follows; see, e.g., Daley
and Vere-Jones (2003) for how to derive such a formula:

N C
logl = Y logh(T}) - / A(r)de
j=2 0

N C
= Z(logA—BT,-)—/ Ae Bt
i=2 0
N
= (N—1)logA—BY T,—AH (1)
j=2
where
(1—e ) /B if B#0;
H = (C—-C’B/2+C3B?/3!—C*B*/4!+--- if B is near 0,
C if B=0.

Clearly, one must have C > Ty.
To estimate the parameters (A,B,C) for a single burst, for given N and Tj,...,Ty, we can maximize
this loglikelihood with respect to (A, B,C), under these constraints. We now look at how to do this by first
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deriving a set of necessary optimality conditions that should be satisfied when logL is maximized. At the
optimum, for each of the parameters A, B,C, either the derivative of log L with respect to this parameter is
zero, or this parameter cannot move further in the direction of the positive derivative because it is blocked
by a constraint. The derivatives of logL with respect to the different parameters are:

dlogL
gO8% — (N—1)JA—H
dlogL Al oH A CB
S el —;E—Aﬁ——jgﬂ—kﬁ(l—(l—kcme ),
dlogL _CB

= —Ae B,
JC ¢

We are therefore looking for (A,B,C) for which each of these partial derivatives is zero or the parameter
is blocked by a constraint such as C > Ty. Let us examine these conditions more closely.

The partial derivative with respect to C is always negative, so C should be taken as small as possible,
which means C = Ty. Zeroing the derivative with respect to A tells us that we must take A= (N —1)/H.
Replacing A by (N —1)/H in the partial derivative with respect to B yields

(
Z H ﬁ__z

To equal this to zero, we need to find B for which

BlogL

ZT

8logH N Ce CB 1
l—e € B)’

1 C—CB 1 N
_ = = ZTi::S.
B l-e® N-15

Note that when B — 0, the left side converges to C/2. This can be verified by replacing e =2 by its Taylor
expansion around B = 0, then putting the two terms on the same denominator, simplifying, and taking the
limit. Therefore, if S =C/2, then B =0 is the solution. If § < C/2, then the solution B is positive. This
makes sense, because S < C/2 means that the arrivals tend to occur earlier than C/2 on average, which
suggests that the arrival rate should be decreasing. If S > C/2, we have the opposite. Once we know the
sign of B, we can find it using a standard root-finding technique.

4.2 Meta-Parameter Estimation

Suppose now that the vector ¥ = (A, B,C) has density hg(y) which depends on some unknown parameter
(vector) 6 € ®. Our goal is to estimate 0 from the available data. A standard strategy for this, at least
conceptually, is to maximize the loglikelihood of the data with respect to 8. See Munger et al. (2012) and
the references given there. This loglikelihood is the log of the expectation with respect to the density /g
of the product of likelihoods of all the bursts:

logL(6) = logﬁEeLk(Y) = f‘,log /Q Li(y)ho(y)dy
k=1 k=1

where m is the number of bursts in the data and L;(y) is the likelihood function for the kth burst as a
function of y, which is given by the exponential of the expression (1) in which (A, B,C) is replaced by y,
and N, T3,...,Ty depend on k. Maximizing this integral with respect to 8 is not easy. Even evaluating the
integral for a single 6 is usually too hard to be done exactly. Instead, we approximate the integral by an
average obtained by Monte Carlo. For any given 6 and each k, we sample n independent realizations of
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Y, say yx1(0),...,ykn(0), from the density hg. We can then replace the integral [, Li(y)he(y)dy by the
average

LY La(i(6)
i=1

in the loglikelihood expression. This gives the overall loglikelihood estimator

logL,(6) = kfllog (1 ium,i(e))) . @)

Conceptually, we can assume that the Monte Carlo samples are defined for all 8 € @, with common random
numbers across all values of 6. After “fixing” the common random numbers, the vector (y,1(0), ...,y (0))
and the estimator logZ,(0) become deterministic functions of 6. The idea is then to maximize the
deterministic function logL,(8) with respect to 8. This function can be computed at any desired value of
0 by reusing the common random numbers. Under appropriate assumptions on /g and on the sampling
method, this is usually a smooth function of 8, although it is typically not concave and it may have multiple
local maxima, so it is generally not easy to maximize. Note that (2) is a biased estimator of log L, because
the expectation of the log is not equal to the log of the expectation, but the bias vanishes when n — oo.
This bias can also be reduced by using the Delta method with one additional term in the Taylor expansion.

A key ingredient for applying this methodology is that one must first select a parameterized density
family {hg, 6 € ®} for Y. This is also not trivial, mostly because the three components of ¥ are usually
not independent and it is generally not easy to model this dependence. We will look at it in our numerical
examples in Section 5.

A simpler (perhaps more naive) approach to estimate the density /g is to first estimate the vector
Y = (A,B,C) separately for each burst, by maximizing its own loglikelihood function as explained in
Section 4.1, then look at the distribution of the realizations of Y thus obtained, and fit some three-dimensional
density hg to these data. We apply this technique in the next section.

5 NUMERICAL EXAMPLES

For each of the 984 bursts of size 5 or more collected in our data, we estimated the three parameters A, B,C
by maximizing the likelihood as explained earlier. We took only the bursts of size 5 or more because for
the smaller bursts we can hardly estimate the three parameters. Figure 3 shows the cumulative number
of calls and the estimated cumulative arrival rate with our model for two examples of bursts, one with
approximately constant rate and the other with decreasing rate. The rate model does not fit perfectly for
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function in red) for two bursts.
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Figure 4: Scatter plot of points (B,A) (left), (B,C) (middle), and (A,C) (right).

those two bursts, but it provides a reasonable approximation, better than just assuming a constant rate.
In the left picture, there is a significant delay between the first and second call. We have observed these
types of gaps in other bursts as well, perhaps in around 10% of them. In some cases this delay was pretty
long relative to the length of the burst, so the cumulative rate had a hockey stick shape. In a few (rare)
cases we observed a significant gap in between two intervals of high-frequency arrivals, and in one case
there were gaps between four groups of arrivals. These types of bursts have explanations (e.g., a fire first
noticed only from inside a building, and later on seen from outside, etc.). We did not try to model these
occasional delays in the bursts for now; we leave this for future work.

Figure 4 shows scatter plots of the pairs (B,A), the pairs (B,C), and the pairs (A,C). We observe a
strong dependence in the first two pairs, but not much for the (A,C) pair. In the left plot, we also see that
there is no point (B,A) below the red line, i.e., with 0 <A < 4B. We will model the dependence using
copulas. The usual way to do this is to fit a univariate distribution to each marginal, then transform the
three variables of each point to uniforms by applying the probability integral transformation (i.e., take the
cdf of the estimated marginal), and fit a three-dimensional copula to these uniform points. We did this and
it did not work well because the dependence behaves differently when B > 0 than when B < 0, and it was
hard to capture this difference by a standard copula.

For this reason, we decided to separate the two cases, B > 0 and B < 0, and construct separate models
for the two. For each case, we have a marginal distribution for each variable, A, B, and C. This gives six
marginal distributions. We estimated each marginal distribution in two ways. The first approach was to
select and fit parameterized distributions and the second was to estimate each density by a kernel density
estimator (KDE) with a Gaussian kernel. The reason for using these two different methods is the following.
We found that the KDE provides a better fit than the parameterized distributions, so we used it to transform
the data to uniform to obtain an empirical copula. On the other hand, when generating triples (A,B,C)
using the copula, we need to apply the inverse (estimated) cdf to a uniform to generate each coordinate
of this vector, and the inverse cdf is much easier to compute for a parameterized distribution than for a
KDE. Therefore for that purpose, we used the parameterized versions of the marginals. We now describe
the process in more details.

Let F,", Fj, FZ denote the cdf’s of the marginal distributions of A,B,C obtained by KDE when
B >0, and let F,, Fp, F be the marginal distributions from KDE when B < 0. Each of these KDEs
was constructed using a Gaussian kernel with a bandwidth selected by a heuristic formula of Silverman
(1986). After computing these cdf’s, we applied the probability integral transformation to transform each
parameter vector (A, B,C) in the data to a vector U = (Us,Us,Uc) = (F, (A),Fy (B),FZ (C)) if B> 0, and
similarly using the other marginals if B < 0, For the case B < 0, we actually modeled the density and cdf of
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Figure 5: Scatter plot of pairs (Ug,Us), (Ug,Uc), and (Us,Uc) for B > 0 (above) and for B < 0 (below).

—B instead of B. The resulting vector U has marginals that are (approximately) uniform over (0, 1), so its
distribution is (approximately) a copula. Scatter plots of the two-dimensional projections of the resulting
vectors U are shown in Figure 5. This figure reveals negative dependence for all pairs, except for (B,A)
when B > 0 for which the dependence is positive. Some corners are totally empty. For example, when
B >0 and Uy is small, Up is never large and Uc is never small.

It is hard to fit a three-dimensional copula model that matches all this dependance. What we did is model
the copulas for the pairs (Up,Uys) and (Up,Uc) for each sign of B, using two-dimensional Archimedean
copulas. To generate a triple (A,B,C), we first select the sign of B, which is positive with some probability
p, then we generate Up from the uniform distribution over (0, 1), then Uy conditional on Up and also
Uc conditional on Up, each from the appropriate copula, and finally we apply the appropriate inverse cdf
to each uniform to obtain the final triple. For this last step, the inverse cdf’s of the marginals must be
easily computable, which is not the case for the KDE’s. For this reason, for this step we uses parametric
distributions for the marginals. The selected parametric distributions were lognormal for A, gamma for
/B, and Weibull for C, for the case B > 0. For the case B < 0, we took the generalized extreme value
(GEV) distribution for v/A, gamma for v/—B, and GEV for C. To obtain (4,B,C) from U, if B > 0 we put
(A,VB,C) = ((G})~"1(Ua), (G}) "' (Us),(GE) 1 (Uc)) where G, G, G- denote the cdf’s of the estimated
parametric marginals, and similarly for the case where B < 0.

After estimating all the parameters, we generated a sample of 984 realizations of (A,B,C) from our
model, using the method just described. Figure 6 shows scatter plots of the two-dimensional projections
of these points. These plots can be compared with the plots of the raw data in Figure 4. We find that the
model is reasonably representative.
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Figure 6: Scatter plot of the two-dimensional projections of a sample of 984 realizations of (A,B,C)
simulated with our model.

CONCLUSIONS

We developed a stochastic model for bursts of call arrivals in emergency call centers, based on data from the
SOS Alarm call center in Sweden. The probabilistic behavior of each burst is determined by a vector of three
parameters. We modeled the three-dimensional distribution of this vector using a copula construction and
found that this distribution matches very well the empirical distribution of the parameter vectors estimated
directly from the data. Further work that we intend to do includes trying to model the delays that sometimes
occur in the bursts, trying a KDE of the three-dimensional copula (instead of parametric two-dimensional
ones), and implementing the methodology described in Section 4.2. The latter would permit one to consider
all the bursts from the data, and not only those of size 5 or more (say) to estimate the model. On the other
hand, maximizing the likelihood is likely to be much more difficult.

Several other types of situations involve bursty arrivals processes for various types of events, and not
only in call centers. Think of an event causing a burst of activity in social networks on the Internet, for
example. The model studied here can certainly be adapted to many of those situations. In some cases, a
master event triggers a burst of secondary events, and each secondary event may trigger a burst of calls to
some call center. For example, a large episode of freezing rain as happened in January 1998 in Southwest
Quebec (the master event) can take down electric lines and transformers in several places (secondary events)
over a couple of days, and then several people may call within an hour or so for the same equipment
damage. The freezing rain may also trigger several car accidents, with each accident potentially causing
a burst of calls to an emergency system. Modeling these types of two-level or multilevel burst processes
offers opportunities for further interesting work.
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