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ABSTRACT

When using digital nets for randomized quasi-Monte Carlo, the generating matrices are usually randomly
scrambled before applying a random digital shift. This scrambling is to remove the excessive structure that
the original matrices may have. In this paper, we explore the idea of pre-scrambling the generating matrices
to “optimize” them in some way so that applying the random digital shift alone becomes sufficient. For the
optimization criterion, we experiment with a class of recently-proposed figures of merit based on truncated
versions of error and variance bounds obtained by bounding the coefficients in the Walsh expansion of
smooth integrands. We summarize our numerical experiments and some difficulties encountered.

1 INTRODUCTION

The Monte Carlo (MC) method is used routinely to estimate the mathematical expectation of a function
f of several random variables, written as a multivariate integral. By a change of variables, this integral
can be expressed as an integral over (0,1)s, the unit hypercube in s dimensions, which can be interpreted
as a mathematical expectation with respect to the independent uniform random numbers over the interval
(0,1) that drive the simulation. Standard MC draws n independent random points uniformly over (0,1)s,
evaluates f at each point, and takes the average to estimate the integral. This average is an unbiased
estimator whose variance converges as O(n−1) when n → ∞, so the width of a confidence interval on the
mean (which is proportional to the standard deviation) converges as O(n−1/2), which is slow.

Variance reduction methods can reduce the hidden constant in the O(n−1/2) expression, most often
without changing the rate (Asmussen and Glynn 2007; L’Ecuyer 2023). In this paper, we are interested in
Quasi-Monte Carlo (QMC) and Randomized quasi-Monte Carlo (RQMC) methods, which under certain
regularity conditions do improve the convergence rate (Niederreiter 1992; Dick and Pillichshammer 2010;
L’Ecuyer 2009). With QMC, the n independent random points used by MC are replaced by n deterministic
points that cover the unit hypercube (0,1)s more evenly that typical independent random points. The
average of the n function evaluations gives a deterministic approximation of the mean. With RQMC, the
QMC points are randomized in a way that: (i) each randomized point has the uniform distribution over
the unit hypercube whereas (ii) the point set has a whole remains very evenly distributed over the unit
hypercube (L’Ecuyer and Lemieux 2002; Owen 2003; L’Ecuyer 2018). The RQMC estimator is again the
average of the n evaluations of f . The first condition ensures that this RQMC estimator is unbiased, while
the second can make its variance converge at a faster rate than with MC, under appropriate conditions that
depend on the way the points are constructed. Here, the n function evaluations are not independent, so the
variance cannot be estimated by their sample variance. It is usually estimated by the sample variance of r
independent replicates of the RQMC estimator, for a small r.

The two main construction methods for QMC points are lattice rules and digital nets. To define a
lattice rule of rank 1 with n points in s dimensions, one selects a vector of integers aaa = (a1, . . . ,as) and
the lattice point set is simply Pn = {uuui = (i/n)aaa mod 1, i = 0, . . . ,n−1}. The choice of aaa determines the
quality of the point set (Sloan and Joe 1994; L’Ecuyer and Lemieux 2000; L’Ecuyer and Munger 2012;
L’Ecuyer and Munger 2016; Dick et al. 2023). To define a digital net in base b (usually b = 2, or a prime
number), in s dimensions, one selects s generating matrices CCC1, . . . ,CCCs with w ≥ k rows and k columns,
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whose elements are integers in {0, . . . ,b−1}, and whose first k rows are linearly independent in arithmetic
modulo b. The QMC point set has n = bk points and is defined as Pn = {uuui = (ui,1, . . . ,ui,s), i = 0, . . . ,n−1}
where ui, j = ∑

w
ℓ=1 ui, j,ℓb−ℓ, andui, j,1

...
ui, j,w

=CCC j

 ai,0
...

ai,k−1

 mod b, with i =
k−1

∑
ℓ=0

ai,ℓbℓ.

The choice of generating matrices determines the quality of the net. See Niederreiter (1992), Dick and
Pillichshammer (2010), L’Ecuyer et al. (2022) for further details. The most popular construction is that
of Sobol’ (1967) (in base b = 2) with the direction numbers given by Joe and Kuo (2008). It is popular
because efficient implementations are available in many software libraries and environments, and work
for arbitrary k and s. For these constructions, each CCC j has an infinite number of columns (defined by a
recurrence) and is truncated to k columns to get 2k points, for any k > 0. Increasing k by 1 doubles the
number of points by adding k/2 new points to the previous ones. We can also truncate s to the required
number of dimensions. When using a digital net in base 2, we usually store the generating matrices by
using one w-bit integer for each column. This requires sk integers in total. There are very fast algorithms to
compute any point coordinate directly from that. Storing all the point coordinates explicitly would require
s2k integers or floating-point numbers, but we prefer to avoid that because it is too inefficient.

The standard way of randomizing lattice points without destroying their structure, to obtain RQMC
points, is a random shift modulo 1: generate a single random point in the unit hypercube and add it to all
the lattice points, modulo 1. This randomization does not suit digital nets because it does not preserve the
equidistribution and t-value properties of the point sets (see Section 2.1). An simple approach that preserves
these properties is to replace the random shift modulo 1 by a random digital shift (RDS) (L’Ecuyer and
Lemieux 1999; L’Ecuyer and Lemieux 2002; Dick and Pillichshammer 2010; L’Ecuyer 2018): generate
again a single random point in the unit hypercube and add the digits of the base-b expansion of its coordinates
to the corresponding digits of each point, modulo b. For b = 2 (the most common base), this amounts to
making a XOR (exclusive-or) of the binary digits of the random point with the corresponding binary digits
of all the points of the digital net. This is computationally very fast and should suffice to obtain good
RQMC points if the generating matrices of the net have been carefully constructed.

However, for the commonly available constructions, the generating matrices often have too much
structure. For the Sobol’ points with the original generating matrices, for example, the projections of the
points on certain subsets of high-order coordinates have very poor uniformity (Schmid 2001; Joe and Kuo
2008). For this reason, it is common practice to randomize the digital nets by applying more extensive
random transformations than just a digital shift. The prominent methods either scramble directly the digits
of the point coordinates by random permutations, as in the nested uniform scramble (NUS) of Owen (1995),
or “scramble” the generating matrices CCC j before applying the RDS, as with the left matrix scramble (LMS)
of Matousěk (1998). LMS left-multiplies (modulo 2) each matrix CCC j by a random w× k matrix LLL j whose
first k rows form a non-singular lower-triangular submatrix with ones on the diagonal, the entries below
the diagonal are independent random bits, and w ≥ k. See Section 3 for an illustration. With LMS alone,
each point does not have the uniform distribution (e.g., the point 0 is unchanged), but by adding a RDS
after the LMS (LMS+RDS) we obtain a valid RQMC scheme. Other linear scrambles of this type are
discussed by Matoušek (1999) and Owen (2003). They preserve the digital net property: they only change
the generating matrices, so we still have a digital net after the scramble. After applying NUS, on the other
hand, the point set is no longer defined as a digital net in general. To memorize the points, it is no longer
sufficient to store the generating matrices. The points are usually stored explicitly and this takes more
space. The Sobol’ points are most often randomized by LMS+RDS, presumably because this is fast and
easily accessible in popular software such as MATLAB, R, Python, C++, Java, etc.

Applying NUS or LMS is also motivated and justified by the fact that with these methods, when
the integrand f is sufficiently smooth, the variance of the RQMC estimator is guaranteed to converge
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as O(n−3(logn)s−1) (Owen 1997; Hickernell and Yue 2001; Yue and Hickernell 2002). This rate is not
achieved in general when using Sobol’ points with only a RDS.

The convergence rates just mentioned for NUS, LMS, and other similar scrambles are proved by an
averaging argument: The variance for a given smooth integrand f is bounded by a constant that measures
the variation of f , multiplied by the square discrepancy of the distribution of the points with respect to the
uniform distribution. The convergence order of the variance bound is proved by showing that the average
square discrepancy of the points over all possible realizations of the randomization converges at the given
rate. This means that on average, LMS gives very good generating matrices. But if we take the best of
many LMS realizations, we should do better than just picking one at random or taking the average. The
retained scramble would give “pre-scrambled” generating matrices that we can save and re-use by applying
only the RDS. This will be slightly faster and it may provide an RQMC estimator with smaller variance
than redoing LMS for each sample. The aim of the present paper is to explore this idea. We focus on
digital nets in base b = 2 randomized by LMS. To “optimize” (or select) the LMS, we need an appropriate
figure of merit (FOM) to measure the quality (discrepancy) of the points.

When selecting the parameters for Sobol’ points, Joe and Kuo (2008) considered only the t-value of
the two-dimensional projections. Those projections are known to have good uniformity, but higher-order
projections may be poorly behaved. One can use FOMs based on the t-values for richer sets of projections
(Marion et al. 2020; L’Ecuyer et al. 2022), but this is computationally expensive and also the t-value may
not be the most sensitive uniformity measure available. One prominent FOM used in Latnet Builder is a
weighted P̃α with α = 2; see L’Ecuyer et al. (2022), pages 7 to 9. We know how to construct generating
matrices for which the square of this discrepancy converges as O(n−2(logn)s−1). The RQMC variance
then converges at least at this rate, for sufficiently smooth functions. But this measure turns out to be
LMS-scramble-invariant, which means that applying any LMS to the generating matrices of a given digital
net does not change their P̃2 discrepancy. Therefore, this FOM is not useful for what we want to do.
Moreover, for a digital net with n = 2k points, this FOM depends only on the first k bits of each coordinate
of the points. In Section 2.3, we illustrate numerically that LMS is more effective when we randomize
more than the first k bits. This suggests that a good FOM should look at more than just the first k bits.

In this paper, we consider alternative FOMs known as Walsh figures of merit (WAFOMs), which are
based on the fact that the QMC integration error with a digital net can be written as the sum of Walsh
coefficients of f over the dual net, and that bounds on these coefficients are available for smooth functions
(Dick 2009; Dick and Pillichshammer 2010; Yoshiki 2017). For RQMC with a RDS only, the variance
is equal to the sum of squared Walsh coefficients over the same space (L’Ecuyer and Lemieux 2002;
Lemieux and L’Ecuyer 2003), and similar WAFOMs are also available. In principle, the sum of the bounds
on the coefficients (squared for RQMC) for a given class of integrands could be taken as a FOM. But
these sums have an infinite number of terms. Matsumoto et al. (2014) proposed to approximate f by
a piecewise-constant function with a very large number of small cubic pieces to truncate the sum to a
finite number of terms, and also derived an alternative expression for this finite sum with a much smaller
number of terms, for the deterministic case. They called this expression the “WAFOM.” Yoshiki (2017)
proposed a slightly different version, based on different bounds. Harase (2015, 2016) discusses their
efficient implementation and the search for low-WAFOM point sets. Goda et al. (2016) proposed modified
versions based on approximate bounds for the RQMC variance. When w > k, these WAFOMs depend on
all the w bits of all coordinates of all points. Our Section 3 provides a review of all these WAFOMs.

One way to search for low-WAFOM digital nets is to start with Sobol’ generating matrices, apply
several independent LMS scrambles to them, and retain the ones with the lowest WAFOMs. If s and k
are fixed, each LMS can be fully generated for all coordinates before selecting the best one. But it is
practically more convenient when the same point sets can be used (by truncating or extending) for any k
and s. Constructing extensible digital nets using WAFOMs turns out to be more challenging. Section 3
discusses different ways of implementing this optimization process (one coordinate at a time, one matrix
column at a time, etc.). We report experimental results in Section 4. A brief conclusion follows.
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2 RQMC WITH DIGITAL NETS, WITH LMS AND RDS

Here we recall some definitions and properties of digital nets. More details can be found in Dick and
Pillichshammer (2010), L’Ecuyer (2018), and the references given there. We also give numerical illustrations
that compare different ways of randomizing a digital net, in terms of the resulting RQMC variance.

2.1 Equidistribution and t-value

A key property of a digital net Pn is that the base-b digits of the coordinates of uuui are obtained by a linear
transformation of the base-b digits of the integer i. In particular, the first q j digits of the jth coordinate
ui, j are determined by the linear transformation defined by the first q j rows of CCC j. If we divide each axis j
in bq j equal parts, for some integers q j ≥ 0, we obtain a partition of [0,1)s into bq = bq1+···+qs rectangular
boxes of equal sizes, and the box in which point uuui falls is determined by the linear transformation defined
by the matrix whose rows are the first q j rows of CCC j, for j = 1, . . . ,s, in arithmetic modulo b. Basic linear
algebra tells us that each box will contain the same number of points from Pn if and only if this matrix has
rank q, which is of course possible only if q ≤ k. We the say that the points are (q1, . . . ,qs)-equidistributed
in base b. This property is easy to verify, just by computing the rank of a matrix. As a special case, by
taking q j = q = k, we find that coordinate j truncated to its first k digits will visit all bk possible values
exactly once if and only if the first k rows of CCC j are linearly independent (modulo b). This is a basic
property that we want to keep when constructing or randomizing the matrices CCC j.

A point set Pn is called a (t,k,s)-net in base b if and only if it is (q1, . . . ,qs)-equidistributed whenever
q1 + · · ·+qs = k− t. This is possible for t = 0 only if b ≥ s−1. The t-value of a digital net is the smallest
t for which it is a (t,k,s)-net. An important result that connects the t-value with QMC error bounds is that
for fixed s and t, if Pn is a (t,k,s)-net in base b for k = 1,2,3, . . . , then the star discrepancy of Pn converges
as O(n−1(logn)s−1), and for any f having finite Hardy-Krause variation, the QMC integration error with
these point sets converges at this same rate. Moreover, for randomizations that preserve the (t,k,s)-net
property, the RQMC variance converges as O(n−2(logn)2(s−1)).

LMS and NUS preserve the equidistribution and t-value: If a digital net is (q1, . . . ,qs)-equidistributed,
then it remains (q1, . . . ,qs)-equidistributed after applying LMS or NUS. LMS also preserves the digital net
property and is usually faster to apply than NUS, hence our preference.

2.2 Experimental Setting and Test Functions

The numerical experiments reported in this paper are for the following four test functions, all defined over
the unit hypercube in s dimensions. The first three are from Genz (1987). In the following, uuu = (u1, . . . ,us)
denotes a point in [0,1)s, and ϕ and Φ are the density and the cdf of the standard normal distribution. We
take a j = j/s and s = 3, 6, 12 for all functions.

1. Oscillatory: f (uuu) = cos
(
∑

s
j=1 a ju j

)
.

2. Exponential: f (uuu) = exp
(
(2/3)∑

s
j=1 u j

)
.

3. Gaussian: f (uuu) = exp
(

∑
s
j=1 u2

j

)
.

4. Polynomial: f (uuu) = ∏
s
j=1(1+a j · (u j −1/2)), taken from Section 6.3 of (L’Ecuyer et al. 2022).

We also used other functions from Genz (1987) and L’Ecuyer et al. (2023) in our experiments and our
summaries account for all these experiments.

2.3 Is LMS Really Reducing the Variance?

In the rest of the paper, we assume that b = 2. For all our experiments, the initial point sets were Sobol’
nets with the direction numbers of Joe and Kuo (2008). The variance bound of O(n−3(logn)s−1) with NUS
or LMS was proved under the assumption that these methods are applied with w = ∞. If w is too small, or
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if we do only the RDS, we may get a slower rate. To see this and get a sense of the impact of performing
the additional LMS rather than just apply a RDS alone, we looked at how the variance behaves with: (i)
only a RDS (RDS); (ii) LMS with w = k followed by RDS (LMS-k); (iii) LMS with w = 31 followed by
RDS (LMS-31). The RDS is always done with a 31-bit digital shift. For each test function of Section 2.2
in s = 3, 6, 12 dimensions, We made r = 1000 independent replications of the RQMC process to estimate
the variance for k = 8, . . . ,20, and plotted the log of this variance as a function of k. We also did ordinary
MC for comparison. We found that (i) and (ii) give almost the same RQMC variance, (iii) is usually better
and sometimes much better, depending on f and its dimension, and all three give a better rate than MC.
Figure 1 shows three cases, with s = 6. The orange and green lines indicate rates of O(n−2) and O(n−3),
for comparison. The slope of the red path approaches that of the green line for the first two functions. For
the Gaussian, the LMS does not seem to help; this happens in some cases. The orange path (wfixed) is for
a particular LMS constructed by the “FIXED” method described in Section 4.
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Figure 1: Log10 of the Variance as a function of k with five methods, for three functions, with s = 6

2.4 Comparing Scrambling Realizations

Suppose we apply LMS+RDS to a digital net to estimate the integral of f with RQMC. Let X̄rqmc be the
RQMC estimator, v f its unconditional variance, L denote the realization of the LMS (i.e., of LLL1, . . . ,LLLs),
and v f (L) = Var[X̄rqmc | L]. We have v f = E[v f (L)], because Var[E[X̄rqmc | L]] = 0. This means that unless
all v f (L) are the same, there is at least one L for which v f (L)< v f . Picking such a L and applying only
RDS would give a lower-variance RQMC estimator than doing the random LMS.

We made experiments to get an idea of the distribution of v f (L) for our test functions f , for s = 3, 6,
and 12, and to see if the good L’s for one f tends to be also good for the other functions. If this holds, then
it would make sense to search for good L’s, at least for certain classes of functions. For each considered
( f ,s,k), we draw 1000 realizations of L and made 200 independent RDSs for each one to estimate v f (L).

We found that the distribution of v f (L) varies depending on f , s, and also k. Figure 2 illustrates a few
cases, for s= 6 and k = 16. For the Polynomial function, the observations of v f (L) range approximately from
10−25 to 10−10, so the ratio between the worst and best v f (L) is about 1015, which is huge! There are also
cases where this factor is no more than about 10. The scatter plots suggest a positive dependence between
the variances for pairs of functions. We also found cases where the dependence is weaker. The green dots
show that applying LMS is very helpful for the Oscillatory, Polynomial, and Exponential functions, but not
much for the Gaussian function, as we already saw in Figure 1. Note that E[log10(v f (L)]< log10E[v f (L)].
For the Polynomial function with LMS+RDS, for example, the average log10(v f (L)) is −17.457 while
log10(v f ) is −12.07.
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Figure 2: Above: Histograms of 1000 realizations of log10(v f (L)) for three functions, for s = 6 and k = 16.
Below: Scatter plots of the 1000 points (log10(v f1(L)), log10(v f2(L))), for three pairs of functions. The
green and orange dots represent log10(v f ) for RDS-only and for the “FIXED” method of Section 4.

3 WALSH FIGURES OF MERIT

When using a digital net in base 2 for QMC integration of a function f , the (deterministic) error is given
by ∑000̸=kkk∈D f̂ (kkk), where D ⊂Ns

0 is the dual net and the f̂ (kkk) for kkk = (k1, . . . ,ks) ∈Ns
0 are the coefficients in

the Walsh expansion of f , under the assumption that ∑000̸=kkk∈D | f̂ (kkk)|< ∞. Moreover, the RQMC variance
with a RDS is equal to ∑000̸=kkk∈D | f̂ (kkk)|2 whenever this sum is finite, i.e., when the RQMC variance is finite.
See L’Ecuyer and Lemieux (1999), Lemieux and L’Ecuyer (2003), Dick and Pillichshammer (2010) for
more details. Dick (2007, 2008) has shown that if f has smoothness α , which means (very roughly) that
all its mixed partial derivatives of order up to α with respect to each coordinate are integrable, then∣∣ f̂ (kkk)

∣∣≤ K∥ f∥α2−µα (kkk) (1)

approximately, where K is a constant, ∥ f∥α is a measure of variation of f that depends on the integrals
of the mixed partial derivatives, µα(kkk) = µα(k1)+ · · ·+µα(ks), µα(k) = (a1 +1)+ · · ·+(amin(α,ν)+1) if
k = 2a1 + · · ·+2aν > 0 with a1 > · · ·> aν , and µα(0) = 0. This suggests using the FOM ∑000̸=kkk∈D 2−µα (kkk)

for QMC and ∑000̸=kkk∈D 2−2µα (kkk) for RQMC, for a selected α .
Unfortunately, this is impractical because these sums have an infinite number of terms. For this reason,

Dick (2009) replaces the first sum by its largest term, max000̸=kkk∈D 2−µα (kkk), which he want to minimize.
This is a much cruder FOM, but is easier to compute. Replacing the second sum by its largest term
gives an equivalent FOM (the value is squared). Dick then shows how to construct digital nets for which
max000̸=kkk∈D 2−µα (kkk) = O(n−α(logn)αs), using an interlacing technique. This is implemented in LatNet
Builder (L’Ecuyer et al. 2022).

Matsumoto et al. (2014) proposed an alternative FOM that truncates the first sum to the vectors kkk
whose coordinates are all less that 2w in absolute value, and takes α = w, where w that represents the
number of output digits that are considered. The number of terms in the sum is now finite, but can still be
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large. With n = 2k, this sum is over 2sw−k binary vectors kkk. For w = 31, s = 20, and k = 16, for example,
we have n = 216 points and the sum has 2604 terms. But Matsumoto et al. (2014) have shown that the
truncated sum can be rewritten equivalently as

WM(Pn) =−1+
1
n

n−1

∑
i=0

s

∏
j=1

w

∏
ℓ=1

(
1+η(ui, j,ℓ)2−ℓ

)
, (2)

where η(u) = (−1)u, and ui, j,ℓ is digit ℓ of coordinate j of point uuui ∈ Pn. This sum has only n = 2k terms
and is much faster to compute. Matsumoto and Yoshiki (2013) have shown that for k ≥ 9s, there exist
point sets Pn for which WM(Pn) = O(n−C(log2 n)/s+D) for some constants C and D. But with the condition
that k ≥ 9s, this result is practically relevant only for very small s. It is then useful to explore empirically
what rate we can achieve with practical constructions.

Yoshiki (2017) obtained a different bound than Dick by showing that µα(kkk) can be replaced by
µ ′

α(kkk) = µ ′
α(k1) + · · ·+ µ ′

α(ks) in which µ ′
α(k) = (a1 + 2) + · · ·+ (amin(α,ν) + 2) = µα(kkk) +min(α,ν),

under the condition that all mixed partial derivatives of order up to α with respect to each coordinate are
continuous. The constant K in (1) is also replaced by a different constant K′ that can be larger than K, so
the new bound is not always smaller. This new bound leads to the modified WAFOM:

WMY(Pn) =−1+
1
n

n−1

∑
i=0

s

∏
j=1

w

∏
ℓ=1

(
1+η(ui, j,ℓ)2−(ℓ+1)

)
. (3)

Goda et al. (2016) introduced versions of (2) and (3) that represent bounds on the RQMC variance
with a RDS, ∑000 ̸=kkk∈D | f̂ (kkk)|2, for certain classes of functions:

W 2
G (Pn) =−1+

1
n

n−1

∑
i=0

s

∏
j=1

w

∏
ℓ=1

(
1+η(ui, j,ℓ)2−2ℓ

)
(4)

when using the bounds of Dick and

W 2
GY(Pn) =−1+

1
n

n−1

∑
i=0

s

∏
j=1

w

∏
ℓ=1

(
1+η(ui, j,ℓ)2−2(ℓ+1)

)
(5)

based on the bounds of Yoshiki. These FOMs are more appropriate than the previous ones when we use a
RDS for RQMC, because the variance is bounded approximately by a constant times these bounds.

All these WAFOMs can be generalized to cover weighted function spaces with general projection-
dependent weights, for which the WAFOM is computed for each subset of coordinates, and the full WAFOM
is the weighted sum of those, with a weight for each projection. Yoshiki (2017) derives his formulas in
this setting. Most FOMs in LatNet Builder are also implemented for this setting.

In the remainder, the generic term “WAFOM” refers to a general class of measures that includes (2)
to (5). What we say about the computation of (2) applies equally well to the other variants.

When computing (2), each coordinate ui, j is represented as a w-bit integer zi, j = ⌊2wui, j⌋, not a floating-
point number, and we extract the bits ui, j,ℓ from this integer using shifts and masks. The expression
(1+η(ui, j,ℓ)2−ℓ) has only two possible values for each ℓ, and only 2w possible values in total since there
are w possible values of ℓ. These 2w values can be precomputed and stored in a table to speed up the
computations. More speedup can be achieved by precomputing partial products as follows (Harase 2016).
Select integers v1,v2,v3, . . . , each around 8 or 10, whose sum is w. For w = 31, one can take v1 = v2 = v3 = 8
and v4 = 7, for example. The partial product pi, j,1,v1 = ∏

v1
ℓ=1

(
1+η(ui, j,ℓ)2−ℓ

)
can take only 2v1 possible

values, depending on (ui, j,1, . . . ,ui, j,v1). We can precompute these 2v1 values and store them in a table.
Likewise, the partial product pi, j,v1+1,v1+v2 = ∏

v1+v2
ℓ=v1+1

(
1+η(ui, j,ℓ)2−ℓ

)
can only take 2v2 possible values,
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which we can precompute and store, and so on. For a given zi, j, one would look in the first table for the
value of pi, j,1,v1 depending on the first v1 bits of zi, j, then the value of pi, j,v1+1,v1+v2 that depends on the
next v2 bits, etc., and multiply those partial products to obtain the full products in (2).

When computing a WAFOM for fixed s, we can just compute the double product in (2) one point at a
time, and add up. If we want to construct point sets that are extensible in the dimension, i.e., for which
the first s coordinates gives a good s-dimensional point set for any s ≥ 1, it is possible to construct them
coordinate by coordinate (CBC) as follows. When we compute (2) for a given s− 1, we memorize the
n products in the sum. When adding coordinate s, it suffices to compute the inner product for j = s and
multiply it by the previously-stored double product, for each point i.

To construct point sets that are extensible in the number of points, i.e., for which we can always increase
k by 1 to double the number of points, we want to be able to add columns one by one to the generating
matrices. When adding column k, the previous 2k−1 points will remain the same and there will be 2k−1

new points, for a total of 2k points. To update the WAFOM, it suffices to compute and add the double
products in (2) for the new points, and add their sum to the previous sum, because the double products for
the old points do not change. When adding a new column k to a generating matrix CCC j, we want to make
sure that the new upper left k×k submatrix is invertible, as mentioned earlier. For this, if we assume that
the property was true for the (k−1)× (k−1) submatrix, it suffices to check that column k is independent
from the previous ones. If it is not, we simply flip the last bit of the new column (at position (k,k)) and it
will become independent. Of course, testing the linear independence for each k requires work.

One special case where this testing is not required is when we apply LMS to Sobol’ upper-triangular
matrices CCC j using lower-triangular invertible matrices LLL j, to obtain the new generating matrices C̃CC j = LLL jCCC j.
These C̃CC j inherit the equidistribution properties of the CCC j. The LLL j and CCC j have the form:

LLL j = LLL =



1 0 0 . . . 0
ℓ2,1 1 0 . . . 0

...
. . . 0

ℓk,1 ℓk,2 1
ℓk+1,1 ℓk+1,2 ℓk+1,k

...
...

ℓw,1 ℓw,2 ℓw,k


and CCC j =CCC =


1 v1,2 . . . v1,k
0 1 . . . v2,k
... 0

. . .
...

... 1

 .

The first column of C̃CC j is LLL j multiplied by the first column of CCC j, which gives the first column of LLL j. More
generally, the kth column of C̃CC j depends only on the first k columns of LLL j, for any k. Therefore, the first k
columns of C̃CC j will never be changed when we add new columns to LLL j and CCC j (to increase k). When we
add column k, we can only select the w− k blue entries (bits) in the display. When trying to select this
column to optimize a FOM (with everything else fixed), we may sample several choices at random for the
blue entries, and select the best choice. Since the first k−1 columns of C̃CC j do not depend on column k of
LLL j, they will remain unchanged, so the first 2k−1 points will remain unchanged. In fact, changing the bit
ℓr,k from 0 to 1 just flips the corresponding bit c̃r,k in the matrix C̃CC j and has no other effect. This means
that picking the bits ℓk+1,k, . . . , ℓw,k at random is equivalent to directly picking the bits c̃k+1,k, . . . , c̃w,k of the
matrix C̃ j at random. On the other hand, the first k bits of column k depend on the previous columns of
LLL j, so we need these previous columns to compute the top k bits.

A natural way to construct low-WAFOM digital nets that are extensible in both s and k could be to
start with a given digital sequence (e.g., Sobol’ points) and apply LMS incrementally as follows. Select
a maximal dimension smax and two integers kmax > kmin > 0. For j = 1,2, . . . ,smax sample N matrices
LLL j with k = kmin columns, compute (update) the WAFOM for the current j-dimensional 2k-point net for
each sample, and selects the LLL j that gives the smallest WAFOM. Then, for k = kmin + 1, . . . ,kmax and
j = 1, . . . ,smax, add column k to LLL j by sampling N random choices and retain the one that gives the best
updated WAFOM. We call this Algorithm EXT-two (for two-way extensible).
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We also define the following variants. Algorithm EXT-dim constructs a net that is extensible only in
the dimension, for fixed k. At each step, we add a new coordinate j by sampling N possibilities for L j (all
columns at once) and retaining the best. Algorithm EXT-size constructs a net that is extensible only in the
number of points, for a fixed dimension s. At each step, we increase k by 1 by sampling N possibilities
for the column k of all the matrices L j at once, and retaining the sample that gives the best WAFOM.
Algorithm FIXED constructs a net that is not extensible at all. We fix both s and k, and for each of the N
trials, we sample all the columns of all the matrices LLL j at once, and compute the WAFOM.

Instead of applying LMS to an existing net, it is also possible to sample the columns of the generating
matrices directly at random, with any of the four extensibility options described above. This can be done
by making sure that the k× k upper-left submatrices are always invertible, for all k, or by ignoring that.

Some of these construction methods have been explored by previous authors. We now summarize this
previous work. Harase (2015) explored Algorithm FIXED in an example in which he starts with a known
digital net with good t-value (he tried both Sobol’ and Niederreiter-Xing nets) in s = 5 dimensions, with
w = 32, each k from 1 to 23, using N = 105 random trials for each k. He also tried generating the entries of
the generating matrices directly at random, for comparison. He reports the WAFOM WMY(Pn) in (3) and
the (deterministic) QMC integration error for selected functions f taken from Genz (1987), as a function
of k. The best WAFOMs obtained by the three methods were very similar, better than those of the original
Niederreiter-Xing nets, and much better than those of the uncrambled Sobol’ nets. The integration error
was highly reduced and converged at a faster rate with the low-WAFOM constructions than with the original
Sobol’ points for smooth integrands f . For discontinuous or non-smooth f , his experiments suggest that
the t-value of the net is more important than the WAFOM. He did not try RQMC.

Harase (2016) (written in 2013) constructed low-WAFOM nets by sampling directly the columns of
the generating matrices for all dimensions at once, for s = 5 (only) and w = 32, to construct digital nets
that are extensible in the number of points (EXT-size), for k = 8, . . . ,25. He used the WAFOM for QMC
in (3), and up to N = 105 random trials for each k. He examines the same quantities as in Harase (2015)
and his results are very similar. Earlier, Matsumoto et al. (2014) searched for low-WAFOM point sets in
the class of recurrence-based digital nets constructed by F2-linear recurrences as in L’Ecuyer and Lemieux
(1999). However, Harase (2016) obtained smaller WAFOMs.

Goda et al. (2016) made similar experiments to search for low-WAFOM point sets in terms of WGY(Pn)
in (5), for RQMC. They tried sampling all the generating matrices at random, with N = 1000 trials, for
s = 4 and s = 12 (fixed s and fixed k). They also tried a simulated annealing approach to “optimize”
the WAFOM. In experiments similar to Harase (2015) but for RQMC, they observed a strong positive
correlation between their WAFOM (5) and the RQMC variance for smooth functions.

4 RQMC EXPERIMENTS WITH WAFOM-BASED DIGITAL NET CONSTRUCTIONS

One of our main goals in this work was to explore the construction of digital nets by using LMS and
WAFOM measures to find good generating matrices for RQMC for which a RDS is sufficient, as outlined
in the previous section. We are particularly interested in constructions that are extensible in both s and k.
We implemented using SSJ (L’Ecuyer and Buist 2005) efficient algorithms to compute the WAFOMs (2)
to (5) and the four algorithms FIXED, EXT-dim, EXT-size, and EXT-two, to search for LMSs that give
good WAFOMs. We ran the three “EXT” methods for N = 10, 20, 50, 300, and retained the best extensible
construction in each case. For the “FIXED” method, for each fixed s and k, we sampled 10,000 independent
LMS’s and retained the best. Our hope was that EXT-two and FIXED would give similar WAFOM values
for large enough N, but this did not happen. The “EXT” methods tend to give larger values.

Figure 3 illustrates this by showing the values of (3) or (5) obtained by the four LMS construction
methods, as functions of k, for w = 31, kmin = 6, kmax = 20, smax = 6, for three cases. The other cases are
similar. We used the given value of N for the “EXT” methods, and N = 10,000 for the FIXED method. We
found that in general, the extensible constructions are not as good as those of the FIXED method. Also,
increasing N for the “EXT” methods does not bring much improvement. It appears that fixing the generating
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matrices coordinate by coordinate or column by column without going back does not work well with the
WAFOM. This is in contrast with the usual coordinate by coordinate methods that are commonly employed
to construct extensible QMC point sets with other criteria (Dick and Pillichshammer 2010; L’Ecuyer and
Munger 2016; L’Ecuyer et al. 2022). We think this comes from the fact that for the WAFOMs, the early
choices have a lot of impact on the future WAFOM values (for larger s or k), and the best choice for the
current s and k may be bad for the future values. In particular, one can see that the first k columns of
LLL already determine the first k bits of all the future points (for the larger k), so it largely determines the
WAFOMs for all the larger values of k. To address this problem, we are currently examining modified
construction algorithms that retain a small population of constructions at each step rather than only the one
with lowest WAFOM. Results of this will be reported in the future.

Figure 4 shows the log of the RQMC variance with RDS only, for each selected construction, and
with the original Sobol’ points. The “FIXED” case (orange path) appears more consistent than the “EXT”
variants. It is also represented in Figure 1, for comparison with random LMS + RDS (lms31) given there.
It gives a much smaller variance and a better rate (empirically) than lms31. That is, the idea of optimizing
the LMS appears quite effective.
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Figure 3: Log of WAFOM as a function of k for s = 6 with different construction algorithms for (3) with
N = 300 (left), then (5) with N = 20 and N = 300 (center and right). SOBOL is for Sobol’ points directly.
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Figure 4: Log of RQMC variance as a function of k for the retained construction based on the WAFOM
(5), with RDS only, for s = 6 and N = 20. The green solid line has slope O(n−3).
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5 CONCLUSION

We gave a review of WAFOMs and examined their possible use to improve the generating matrices of
digital nets by trying to “optimize” the LMS. The results are very encouraging. More work is needed to
improve the search methods for extensible nets. We also plan to implement in LatNet Builder (L’Ecuyer
et al. 2022) weighted versions of the WAFOM, with arbitrary weights on subsets of coordinates.
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Carlo Methods 2010, edited by H. Woźniakowski and L. Plaskota, 133–159. Berlin: Springer-Verlag.

L’Ecuyer, P. and D. Munger. 2016. “Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice
Rules”. ACM Transactions on Mathematical Software 42(2):Article 15.

L’Ecuyer, P., M. Nakayama, A. B. Owen, and B. Tuffin. 2023. “Confidence Intervals for Randomized Quasi-Monte Carlo
Estimators”. In Proceedings of the 2023 Winter Simulation Conference, 445–456: IEEE Press.

https://www-labs.iro.umontreal.ca/~lecuyer/ift6561/book.pdf
https://www-labs.iro.umontreal.ca/~lecuyer/ift6561/book.pdf


L’Ecuyer, Cherkanihassani, Derkaoui

Lemieux, C. and P. L’Ecuyer. 2003. “Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation”. SIAM
Journal on Scientific Computing 24(5):1768–1789.

Marion, P., M. Godin, and P. L’Ecuyer. 2020. “An algorithm to compute the t-value of a digital net and of its projections”.
Journal of Computational and Applied Mathematics 371(June):112669.
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