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ABSTRACT

Linear recurrences modulo 2 with long periods have
been widely used for contructing (pseudo)random
number generators. Here, we use them for quasi-
Monte Carlo integration over the unit hypercube.
Any stochastic simulation fits this framework. The
idea is to choose a recurrence with a short period
length and to estimate the integral by the average
value of the integrand over all vectors of successive
output values produced by the small generator. We
examine randomizations of this scheme, discuss cri-
teria for selecting the parameters, and provide exam-
ples. This approach can be viewed as a polynomial
version of lattice rules.

1 MONTE CARLO VS QUASI-MONTE
CARLO

1.1 The Monte Carlo Method

The aim of most stochastic simulations is to estimate
a mathematical expectation, and this can be put into
the framework of estimating the integral of a func-
tion f over the t-dimensional unit hypercube [0, 1)t,
namely

μ =
∫

[0,1)t

f(u)du. (1)

Randomness in simulations is indeed generated from
a sequence of i.i.d. U(0, 1) (pseudo)random variables,
i.e., a random point in [0, 1)t if t uniforms are gener-
ated. When t is random, one can view the number
of dimensions as infinite, with only a finite subset of
the random numbers being used.

The usual estimator of μ is the average value of f
over a point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)t,

Qn =
1
n

n−1∑
i=0

f(ui). (2)

The integration error is En = Qn − μ. In the tra-
ditional Monte Carlo (MC) method, Pn is a set of
n i.i.d. uniform random points over [0, 1)t. Then,
E[Qn] = μ and Var [Qn] = σ2/n, provided that
σ2 =

∫
[0,1)s f2(u)du−μ2 < ∞, in which case one has

the central limit theorem:
√

n(Qn − μ)/σ ⇒ N(0, 1),
so |En| = Op(σ/

√
n) (regardless of t) and this error

can be estimated via either the central limit theorem,
or large deviations theory, or some other probabilis-
tic method (Bratley, Fox, and Schrage 1987; Fishman
1996; Law and Kelton 1991).

Generating the points Pn requires nt random num-
bers (assuming that t is a finite constant) and com-
mon wisdom says that the period length of the ran-
dom number generator used for that purpose should
be several orders of magnitude larger than nt (e.g.,
L’Ecuyer 1998).

What we suggest here is the opposite: Take a small
random number generator which has only n states,
and let Pn be the set of all vectors of t successive
output values produced by the generator, from all its
initial states (i.e., over all of its cycles). If the gener-
ator is designed so that Pn covers the unit hypercube
more evenly than random points, it appears plausible
that Qn could become a better approximation of μ
than the Qn obtained by random points. The idea
is not new: The lattice rules proposed by Korobov
(1959) are in fact a special case. The idea was also
discussed by Niederreiter (1986).

1.2 Quasi-Monte Carlo

Placing the points Pn more evenly than at random is
the basic idea of so-called quasi-Monte Carlo meth-
ods. A precise meaning can be given to “more even-
ly” by defining a measure of discrepancy between the
discrete distribution determined by the points of Pn

and the uniform distribution over [0, 1)t. The point
set Pn is said to have low-discrepancy if its discrep-
ancy measure is significantly smaller than that of a



typical random point set.
There are several ways of defining a discrepancy,

many of them leading to an error bound of the form

|En| ≤ V (f)D(Pn) for all f ∈ F , (3)

where F is a Banach space of functions f with norm
‖·‖, V (f) = ‖f−μ‖ measures the variability of f , and
D(Pn) is the discrepancy of Pn (see, e.g., Hellekalek
1998; Hickernell 1998b; Niederreiter 1992). When
D(Pn) is the widely-used rectangular star discrepancy
D∗

n(Pn), defined in terms of rectangular boxes with
one corner at the origin (e.g., Niederreiter 1992), (3)
is the well-known Koksma-Hlawka inequality. A pop-
ular way of constructing point sets with low discrep-
ancy D∗

n(Pn) is by constructing so-called (t,m, s)-
nets, for which D∗

n(Pn) = O(n−1(lnn)t−1) (Larcher
1998; Niederreiter 1992; Niederreiter and Xing 1998).
Then, if V (f) < ∞, the error bound converges at the
deterministic rate O(n−1(lnn)t−1), which is asymp-
totically better than the probabilistic rate Op(n−1/2)
of the MC method.

This is nice in principle, but the worst-case bounds
given by the Koksma-Hlawka inequality are (almost
always) practically useless, because Dn(Pn) and (es-
pecially) V (f) are too hard to compute and, more
importantly, the error bound is typically several or-
ders of magnitude larger than the true error and (es-
pecially for large t) much too large to be of any use.
This does not mean that QMC does not work, only
that the error should be estimated by other tools than
the Koksma-Hlawka inequality. An alternative is to
randomize Pn, say m times, independently, so that its
discrepancy remains low while the m corresponding
replicates of Qn are i.i.d. unbiased estimators of μ.

1.3 Outline

In Section 2, we overview one way of constructing a
point set Pn by taking all vectors of successive values
produced by a linear congruential generator (LCG)
and shifting all these points by a common uniform
random point, modulo 1. Such a Pn is a Korobov lat-
tice rule (Sloan and Joe 1994). In Section 3, we look
at what happens if we replace the LCG by a linear
feedback shift register (LFSR) (or Tausworthe) gen-
erator. This gives lattice rules in a polynomial space.
Explicit expressions for the error and for the variance
of the randomized estimator are given in terms of the
coefficients of a Walsh series expansion of f . Based
on a functional ANOVA decomposition of Var [En],
we introduce, in Section 4, selection criteria for the
LFSR parameters which take into account the quality
of certain low-dimensional projections. These crite-
ria are somewhat related to (but different from) those

defining a (t,m, s)-net. These same criteria could also
be used for selecting (pseudo)random number genera-
tors. We give specific examples of small LFSR gener-
ators that satisfy these criteria. Larcher (see Larcher
1998 and the references cited there) has also studied
polynomial lattice rules over IF2 using Walsh expan-
sions, but from a different viewpoint: His interest
was mainly in (t,m, s)-net properties and Koksma-
Hlawka error bound. In Section 5, we use our LFSR
point sets for one simulation example.

2 RANDOMLY SHIFTED LATTICE
RULES

Consider an LCG defined by the linear recurrence

xi = (axi−1) mod n, ui = xi/n,

for some integers 0 < a < n. Let Pn = {u =
(u0, . . . , ut−1) : x0 ∈ ZZn}, where ZZn = {0, . . . , n−1},
the set of all t-dimensional vectors of successive out-
put values produced by the LCG over all of its cycles.
This Pn is the intersection of a lattice Lt with the unit
hypercube [0, 1)t. In the context of QMC, such a Pn

is called a Korobov rule. If n is a prime and a is
primitive modulo n, the LCG has one cycle of length
n − 1 and one cycle of length 1 (the absorbing state
0), so it is easy to enumerate Pn by going through the
nontrivial cycle and adding the point u = (0, . . . , 0).

Write the Fourier expansion of f as

f(u) =
∑
h∈ZZt

f̂(h) exp(2π
√
−1h · u),

with Fourier coefficients

f̂(h) =
∫

[0,1)t

f(u) exp(−2π
√
−1h · u)du.

The integration error with the lattice rule is then
(Hickernell 1996; Sloan and Joe 1994)

En =
∑

0 �=h∈L∗
t

f̂(h) (4)

(assuming that this series converges absolutely)
where L∗

t = {h ∈ ZZt : k · h ∈ ZZ for all k ∈ Lt}
is the dual lattice to Lt.

This En is hard to compute in practice, but
its mean square can be estimated by the follow-
ing technique, called a Cranley-Patterson rotation
(Cranley and Patterson 1976). Generate U uni-
formly over [0, 1)t and replace each ui in Pn by
ũi = (ui + U) mod 1 (where the “modulo 1” reduc-
tion is coordinate-wise). The set Pn is thus replaced
by P̃n = {ũ0, . . . , ũn−1}, and Qn and En by Q̃n and



Ẽn. One can show (Lemieux and L’Ecuyer 2000b)
that E[Ẽn] = 0 and

Var [Ẽn] =
∑

0 �=h∈L∗
t

|f̂(h)|2. (5)

Equations (4) and (5) suggest a discrepancy measure
of the form

D(Pn) =
∑

0 �=h∈L∗
t

w(h) or D(Pn) = sup
0 �=h∈L∗

t

w(h),

(6)
where the (arbitrary) weights w(h) decrease with
the size of h in a way that corresponds to how we
think the Fourier coefficients f̂(h) decrease (see, e.g.,
Entacher, Hellekalek, and L’Ecuyer 2000; Hickernell
1998a; Lemieux and L’Ecuyer 2000a for examples).

To estimate the error, compute m i.i.d. copies of
Q̃n with the same Pn (using m independent uniform
shifts U) and compute their sample variance, which
is an unbiased estimator of Var [Q̃n] = Var [Ẽn].

3 LATTICE RULES IN A RING OF POLY-
NOMIALS OVER IF2

3.1 LFSR Generators

We consider the linear recurrence

xn = (a1xn−1 + · · · + akxn−k) mod 2 (7)

of order k > 1, where ak = 1 and aj ∈ {0, 1} for each
j. This sequence is purely periodic and the period
length of its longest cycle is 2k − 1 if and only if its
characteristic polynomial

P (z) = −
k∑

i=0

aiz
k−i (8)

(where a0 = −1) is a primitive polynomial over IF2,
the Galois field with 2 elements (Lidl and Niederreiter
1986). Tausworthe-type linear feedback shift register
(LFSR) generators evolve according to (7) and pro-
duce the output

un =
L∑

i=1

xns+i−12−i (9)

at step n, where the parameters s and L are positive
integers. Tezuka and L’Ecuyer (1991) and L’Ecuyer
(1996) give an efficient algorithm for implementing
this generator when P (z) is a trinomial, P (z) = zk −
zq − 1, and the parameters satisfy the conditions 0 <
2q < k ≤ L and 0 < s < k − q.

Since trinomial-based generators of this type
are unsatisfactory from the theoretical viewpoint

(Lindholm 1968), Tezuka and L’Ecuyer (1991) pro-
posed composite LFSR generators defined as follows.
Take J LFSR generators that satisfy the above con-
ditions, the jth one having the characteristic polyno-
mial Pj(z) = zkj − zqj − 1, so it obeys

xj,i = (xj,i−rj + xj,i−kj ) mod 2,

uj,n =
L∑

i=1

xnsj+i−12−i,

where rj = kj − qj . Let

un = u1,n ⊕ · · · ⊕ uJ,n

=
L∑

i=1

((x1,ns+i−1 + · · · + xJ,ns+i−1) mod 2) 2−i.

If each Pj(z) is a primitive trinomial and if the kj ’s
are relatively prime, {un} is also an LFSR genera-
tor with period length ρ = (2k1 − 1) · · · (2kJ − 1),
and (reducible) characteristic polynomial P (z) =
P1(z) · · ·PJ (z) of degree k = k1 + · · · + kJ . Specific
sets of parameters, as well as implementations in the
C language, are provided by L’Ecuyer (1996, 1999).
The parameters given there are for k ≥ 88 and are
for MC (the cardinality of Pn is 2k). For QMC, we
need smaller values of k, ranging (say) from about 10
to 25.

3.2 Equidistribution

For a point set Pn in [0, 1)t and an arbitrary set of
dimensions I = {i1, . . . , id} ⊆ {1, . . . , t}, let Pn(I)
be the projection of Pn over the d-dimensional sub-
space determined by I. If we partition the interval
[0, 1) into 2� segments of length 2−�, this partitions
the d-dimensional unit hypercube into 2d� cubic boxes
of equal size. If Pn has cardinality 2k, we say that
Pn(I) is d-distributed to � bits of accuracy, or (d, �)-
equidistributed , if each box of the partition contains
exactly 2k−d� points of Pn(I). This means that if
we look at the first � bits of each coordinate of the
points of Pn(I), each of the 2d� possible d�-bit strings
appears exactly the same number of times. Of course,
this can happen only if d� ≤ k. To verify the equidis-
tribution, one can write a system of linear equations
that express these d� bits as a function of the k bits
of the initial state of the recurrence, (x0, . . . , xk−1):
One has d-distribution to � bits of accuracy if and
only if the matrix of this linear transformation has
full rank, d�.

L’Ecuyer (1996, 1999) computed tables of com-
bined LFSR generators for which Pn(I) is d-
distributed to � bits of accuracy for each I of the form
{1, . . . , d} and for each (d, �) such that d� ≤ k, and



� ≤ L, where L = 32 or 64 (the word size). He called
such generators maximally equidistributed (ME).

A related property is that of a “(t,m, s)-net” (a
(q, k, t)-net, in our notation), where one considers all
the partitions of [0, 1)t into rectangular boxes of di-
mensions 2−�1 , . . . , 2−�t (not only cubic boxes), such
that �1+ · · ·+�t = k−q for some integer q. In our no-
tation, Pn is a (q, k, t)-net in base 2 if for each of these
partitions, each box of the partition contains exactly
2q points. See Niederreiter (1992) or Owen (1998)
for further details. If q = 0, this implies the ME
property. The (q, k, t)-net property is much harder
to check than the ME property, especially when k is
large and q is small, because it involves a much larger
number of partitions, i.e., building and computing the
rank of a much larger number of matrices.

We propose as a compromise, in Section 4, crite-
ria based on enriched versions of the ME property,
and motivated by a variance decomposition given in
Section 3.5.

The point sets Pn that correspond to LFSR gen-
erators are dimension-stationary (Lemieux and L’E-
cuyer 2000b), in the sense that Pn({i1, . . . , iv}) =
Pn({i1 + j, . . . , iv + j}) for all i1, . . . , iv and j such
that 1 ≤ i1 < · · · < iv ≤ t and 1 ≤ j ≤ t − iv.
This property is conveniently exploited to reduce the
number of sets I for which the quality of the pro-
jection Pn(I) must be examined: It suffices to con-
sider those for which i1 = 1. This property does
not hold in general, e.g., for common (q, k, t)-net con-
structions with q > 0, the projections Pn({i1, . . . , iv})
and Pn({i1 + j, . . . , iv + j}) often differ in quality.

3.3 Polynomial Representation and General
LFSR Implementation

The LFSR generators can be interpreted as linear
congruential generators in a space of polynomials.
To see this, we define a one-to-one mapping be-
tween the state space IFk

2 of the recurrence (7) and
the space IF2[z]/(P ) of polynomials of degree less
than k with coefficients in IF2: To the state sn =
(xn, . . . , xn+k−1), we associate the polynomial

pn(z) =
k∑

j=1

cn,jz
k−j (10)

where
⎛
⎜⎜⎝

cn,1

cn,2

...
cn,k

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 . . . 0
a1 1 . . . 0
...

. . .
...

ak−1 . . . a1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xn

xn+1

...
xn+k−1

⎞
⎟⎟⎠ mod 2.

(11)

We then have (see, e.g., L’Ecuyer 1994)

pn(z) = zpn−1(z) mod (P (z), 2), (12)

where “mod (P (z), 2)” means the remainder of the
polynomial division by P (z), with the operations on
the coefficients performed in IF2. In other words, we
have an LCG in IF2[z]/(P ), with modulus P (z) and
multiplier z.

In the remainder of the paper, we restrict our atten-
tion to the implementation (9) and consider the point
set Pn = {u = (u0, . . . , ut−1) : s0 ∈ IFk

2}. The polyno-
mial LCG (12) has a lattice structure similar to that
of the usual LCG (Couture, L’Ecuyer, and Tezuka
1993; Tezuka 1995; Couture and L’Ecuyer 2000). In
the case of (9), the dual lattice is the space L∗

t of
multivariate polynomials h(z) = (h1(z), . . . , ht(z)),
where hi(z) =

∑�−1
j=0 hi,jz

j, hi,j ∈ IF2, � ∈ IN, and
such that

∑t
i=1 hi(z)z(i−1)s mod (P (z), 2) = 0. In a

deliberate abuse of notation, we identify each poly-
nomial h(z) with the integer vector h = (h1, . . . , ht),
where hi =

∑�−1
j=0 hi,j2j ∈ IN, so L∗

t can also be
viewed as a space of integer vectors h. This dual
lattice plays a role in providing error and variance
expressions similar to (4) and (5), as we soon explain.

3.4 Walsh Expansion

For any multivariate polynomial h = h(z) defined
as above, and for u = (u1, . . . , ut) where ui =∑

j≥1 ui,j2−j ∈ [0, 1) and ui,j �= 1 for infinitely many
j, define

h⊗ u =
t∑

i=1

∞∑
j=1

hi,j−1ui,j mod 2.

The Walsh expansion in base 2 of f : [0, 1)t → IR is
then (e.g., Beauchamp 1984):

f(u) =
∑

h∈INt

f̃(h)(−1)h⊗u, (13)

with coefficients

f̃(h) =
∫

[0,1)t

f(u)(−1)h⊗udu. (14)

Each term in (13) represents a piecewise-constant pe-
riodic function of u with frequency hi along the ith
axis and amplitude f̃(h). Each vector h is a bit se-
lector , which picks a finite number of bits from the
binary expansion of (u1, . . . , ut). Intuitively, the h’s
for which ‖h‖∞ = max1≤i≤t hi is small are more im-
portant because they test the most significant bits of
the uj . The following results are not hard to prove,
and they also apply to the projections Pn(I) (with
obvious adaptations).



Proposition 1 One has

n−1∑
j=0

(−1)h⊗uj =
{

n if h ∈ L∗
t ,

0 otherwise.

Proposition 2 (Couture, L’Ecuyer, and Tezuka
1993.) The point set Pn is t-distributed to � bits
of accuracy if and only if L∗

t contains no vector
h = (h1, . . . , ht) �= 0 such that 0 ≤ hi < 2� for each
i, i.e., if and only if the shortest nonzero vector h in
L∗

t has length ‖h‖∞ = sup1≤i≤t |hi| ≥ 2� (with the
sup norm).

As pointed out to us by R. Couture, the counter-
part of the Cranley-Patterson rotation for polyno-
mial lattice rules over IF2 (i.e., LFSR point sets) is
to generate a single uniform random variable U in
[0, 1)t and replace Pn by P̃n = {ũ0, . . . , ũn−1}, where
ũi = ui ⊕ U, the bitwise exclusive-or of the binary
expansions of the coordinates of ui and U. We de-
fine the random variables Q̃n and Ẽn as in Section 2,
but with this new P̃n. Note that this randomization
of Pn is much simpler than the scrambling proposed
by Owen (1997b) for nets, and possesses essentially
the same variance properties (the details will appear
in a forthcoming paper by Couture, L’Ecuyer, and
Lemieux).

Proposition 3 One has E[Ẽn] = 0 and, similar to
(4) and (5), the integration error with Pn and the
variance with P̃n can be written as

En =
∑

0 �=h∈L∗
t

f̃(h) (15)

if this series converges absolutely, and

Var [Ẽn] =
∑

0 �=h∈L∗
t

|f̃(h)|2. (16)

if f is square-integrable.

This suggests discrepancy measures of the form (6),
with L∗

t replaced by L∗
t . The weight should be chosen

in accordance with our knowledge (or intuition) of
how the Walsh coefficients are likely to behave as a
function of h. Again, we can make m independent
shifts and compute a confidence interval for μ from
the m i.i.d. copies of Q̃n.

3.5 Functional ANOVA Decomposition

We now decompose the variance of Ẽn in terms of the
projections determined by the subsets I of {1, . . . , t}.
This will motivate discrepancy measures based on the

quality of these projections. The ANOVA decompo-
sition of Hoeffding (e.g., Owen 1998) is

f(u) =
∑

I⊆{1,...,t}
fI(u),

where fI(u) = fI(u1, . . . , ut) depends only on {ui, i ∈
I},

∫
[0,1)2t fI(u)fJ (v)dudv = 0 for all I �= J , fφ(u) ≡

μ, and
∫
[0,1)t fI(u)du = 0 for I �= φ, where φ denotes

the empty set. For v > 0,
∑

|I|≤v fI(·) is the least
mean square approximation of f(·) by a sum of v-
dimensional (or less) functions. The variance decom-
poses as

σ2 = Var [Ẽn]

=
∑

I⊆{1,...,t}
σ2

I

=
∑

I⊆{1,...,t}

∑
0 �=h∈L∗

t

|f̃I(h)|2

where (for I �= φ) σ2
I is the variance of fI(U), and

the coefficient f̃I(h) of the Walsh expansion of fI is
0 unless h satisfies: hj �= 0 if and only if j ∈ I.

For typical simulation models, a large fraction of
the variance is accounted for by a relatively small
number of sets I, in the sense that

∑
I⊆J σ2

I is near
σ2 for some class J of cardinality much less than 2t.
The most important sets I are often those that con-
tain successive indices, or a small number of indices
that are not too far apart. This suggests discrepancy
measures of the form (6), where the sum (or sup)
is over a class of vectors h that correspond to these
types of sets I. We propose such measures in the next
section.

4 SPECIFIC CRITERIA AND PARAME-
TER SETS

Let L∗
t (I) denote the projection of L∗

t over the sub-
space determined by I, and let 2�∗(I) be the length
of the shortest nonzero vector h in L∗

t (I). We want
�∗(I) to be large. If |I| = j then �∗(I) ≤ �k/j�. We
then define

Δ(d, s) = max
I∈S(d,s)

[�k/j� − �∗(I)] . (17)

where S(d, s) = {I = {i1, . . . , ij} : i1 = 1, and ei-
ther each ij ≤ s and |I| ≤ d, or I contains only
consecutive indices}. We say that the point set Pn

is ME(d, s) if Δ(d, s) = 0, i.e., if it is ME and if for
each I ⊆ {1, . . . , s} of cardinality no more than d,
the projection Pn(I) is also ME. Note that ME(1, k)
is the same as ME.

Lecuyer
Barrer 

Lecuyer
Note
This statement turned out to be incorrect. 



In recent papers (Owen 1997a; Larcher 1998; Hick-
ernell 2000), it has been pointed out that the qual-
ity criterion q for (q, k, t)-nets should be generalized
to a vector of parameters (qI)I⊆{1,2,...,t} that would
measure the quality of each projection Pn(I) of the
net, or at least a certain number of these projec-
tions. These qI are defined in a similar way to q, but
with the restriction that each lj defining the rectan-
gular boxes for which the equidistribution property is
checked must be at least 1 when j ∈ I and we have
q = maxI qI . Since k−|I|+1−�∗(I) is an upper bound
on qI for our LFSR point sets, the criterion we pro-
pose can be seen as a way to construct (q, k, t)-nets
for which qI can be bounded individually whenever
I ∈ S(d, t), because �∗(I) is known in this case.

We performed exhaustive searches over all com-
bined LFSR generators with either two or three com-
ponents whose characteristic polynomials are prim-
itive trinomials with relatively prime degrees, and
which satisfy the implementation conditions men-
tioned in Section 3.1, to find the best ones with
respect to Δ(3, 10), which also turned out to be
the best ones with respect to Δ(4, 10). We give
the search results in Table 1, in which δv,u is
such that Δ(d, u) = max1≤v≤d δv,u, and δv,u =
maxI∈S′ (v,u) [�k/j� − �∗(I)], where j = |I| and
S

′
(v, u) = {I = {i1, . . . , ij} : i1 = 1, and either

ij ≤ u and |I| = v > 1 or I contains only consec-
utive indices, if v = 1}. Most of the generators in
the table are ME(2,10) and the smallest value of k
for which we could find an ME(3,10) generator was
k = 19.

Table 1: Best Combined LFSRs with their δv,10

k (k, q, s) δ1,10 δ2,10 δ3,10 δ4,10 Δ(4, 10)
10 (7,1,3) 0 1 2 1 2

(3,1,2)
12 (5,2,3) 0 1 2 2 2

(4,1,2)
(3,1,1)

14 (9,4,3) 0 2 1 1 2
(5,2,2)

16 (11,2,7) 2 1 2 2 2
(5,2,2)

19 (10,3,4) 0 1 1 2 2
(9,4,2)

5 A NUMERICAL EXAMPLE

For a numerical illustration, we consider the pricing
of an asian option on the arithmetic average, for a
single asset. We assume the Black-Scholes model for
the evolution of the asset value, with risk-free appre-
ciation rate r, volatility σ, strike price K, and expi-
ration time T . The average is over the values at the
t observation points T − t + 1, . . . , T . To simulate
each observation of the selling price, one needs t nor-
mal random variables. To reduce the variance, one
can use the selling price of the option on the geomet-
ric average as a control variable, as well as antithetic
variates. Details about this model can be found in
Lemieux and L’Ecuyer (1998).

In Table 2, we give the estimated variance reduc-
tion factors (with respect to MC) obtained by the
randomly-scrambled LFSR point sets (as in Section
3.4) given in Table 1. The parameters of the option
are S(0) = 100, r = ln 1.09, σ = 0.2 and T = 120. We
use 100 randomizations U to estimate the variance.
When the control variable and antithetic variates are
used, we call this the ACV estimator. Otherwise, we
have the naive estimator. For Monte Carlo, we used
the same total sample size 100n (for a fair compari-
son).

Table 2: Estimated Variance Reduction Factors

s n K = 90 K = 100 K = 110
naive estimator

10 1024 420 210 62
4096 3200 1600 730
16384 22000 11000 1800
65536 55000 13000 2300

60 1024 78 55 9.3
4096 200 88 7.4
16384 1100 180 41
65536 1000 200 41

ACV estimator
10 1024 17 17 4.5

4096 64 22 7.4
16384 122 22 12
65536 74 29 18

60 1024 16 8.0 2.2
4096 16 8.4 2.7
16384 14 11 1.6
65536 30 9.5 3.1

For this problem, the LFSR point sets from Ta-
ble 1 reduce the variance by factors ranging approx-
imately between 2 and 50000 compared to MC. As



expected, the reduction factors usually increase with
n and decrease with t. The improvement over MC is
more important with the naive estimators than with
the ACV ones: This had been noted previously by
Lemieux and L’Ecuyer (1998) and Lemieux and L’E-
cuyer (2000a). Also, the reduction factors decrease
with K: The explaination is that when K is large,
the function f is zero on most of the domain [0, 1)t

and thus, the good equidistribution of LFSR point
sets is not very useful. In this situation, importance
sampling is an appropriate variance reduction tech-
nique, as discussed by Glasserman, Heidelberger, and
Shahabuddin (1999).

Notice that the generator used for k = 16 is not
ME: Among ME generators for this value of k, the
best value of Δ(4, 10) that could be obtained was 3
and was given by a bad projection in dimension 3 (i.e.,
δ3,10 = 3). This generator turned out to be quite bad
for the asian option problem, giving sometimes esti-
mators with more variance than MC. The one from
Table 1 definitely gives better estimators than the ME
one and this shows that looking at projections over
non-consecutive indices is important for this type of
application.

The results obtained in this example are quite
promising given the simplicity of the method and the
fact that it is faster than MC. They also compare
favorably with results obtained by randomly-shifted
LCGs chosen with an equivalent criterion.
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student in the “Département d’Informatique et de
Recherche Opérationnelle”, at the University of
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