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What this talk is about
Monte Carlo (MC) simulation is widely used to estimate the expectation E[X ] of a random
variable X and compute a confidence interval on E[X ]. MSE = Var[X̄n] = O(n−1).

But simulation usually provides information to do much more! The output data can be used
to estimate the entire distribution of X , e.g., the cumulative distribution function (cdf) F of
X , defined by F (x) = P[X ≤ x ], or its density f defined by f (x) = F ′(x).

If X1, . . . ,Xn are n indep. realizations of X , the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ]

is unbiased for F (x) at all x , and Var[F̂n(x)] = O(n−1).

However, for a continuous r.v. X , the density f provides a better visual idea of the
distribution. Here we focus on estimating f over [a, b] ⊂ R.
Can we have E[f̂n(x)− f (x)]2 = O(n−1)???
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Small example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cdf Fk(y) := P[Yk ≤ y ].

Project duration X = (random) length of longest path from source to sink.
Can look at deterministic equivalent of X , E[X ], cdf, density, ...

The sample cdf
F̂n(x) = 1

n

∑n
i=1 I[Xi ≤ x ]

is an unbiased estimator of the cdf
F (x) = P[X ≤ x ].

Want to estimate the density of X ,
f (x) = F ′(x) = d

dxP[X ≤ x ].

The sample derivative F̂ ′n(x) is useless
fo estimate f (x), because it is 0 almost
everywhere.
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Yk ∼ N(µk , σ

2
k) for k = 1, 2, 4, 11, 12, and Yk ∼ Expon(1/µk) otherwise.

µ1, . . . , µ13: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Results of an experiment with n = 100 000. Note: X is not normal!

X
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

Xdet = 48.2
mean = 64.2

ξ̂0.99 = 131.8
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Density Estimation

Suppose we estimate the density f over a finite interval [a, b].

Let f̂n(x) denote the density estimator at x , with sample size n.

We use the following measures of error:

MISE = mean integrated squared error =

∫ b

a
E[(f̂n(x)− f (x))2]dx

= IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]− f (x))2dx
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Density Estimation

Simple histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh

for x ∈ Ij = [a + (j − 1)h, a + jh), j = 1, ...,m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

f̂n(x) =
1

nh

n∑
i=1

k

(
x − Xi

h

)
.
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KDE bandwidth selection: an illustration in s = 1 dimension

KDE (blue) vs true density (red) with RQMC point sets with n = 219:
midpoint rule (left), Stratified sample of U = F (X ) (right)
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KDE asymptotic convergence with Monte Carlo for smooth f

For any g : R→ R, define

R(g) =

∫ b

a
(g(x))2dx ,

µr (g) =

∫ ∞
−∞

x rg(x)dx , for r = 0, 1, 2, . . .

For histograms and KDEs, when n→∞ and h→ 0:

AMISE = AIV + AISB ∼ C

nh
+ Bhα .

C B α

Histogram 1 R(f ′) /12 2

KDE µ0(k2) (µ2(k))2 R(f ′′) /4 4
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The asymptotically optimal h is

h∗ =

(
C

Bαn

)1/(α+1)

and it gives AMISE = Kn−α/(1+α).

C B α h∗ AMISE

Histogram 1
R(f ′)

12
2 (nR(f ′)/6)−1/3 O(n−2/3)

KDE µ0(k2)
(µ2(k))2 R(f ′′)

4
4

(
µ0(k2)

(µ2(k))2R(f ′′)n

)1/5

O(n−4/5)

To estimate h∗, one can estimate R(f ′) and R(f ′′) via KDE (plugin).

This is under the simplifying assumption that h must be the same all over [a, b].
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Can we take the stochastic derivative of an estimator of F?

Can we estimate the density f (x) = F ′(x) by the derivative of an estimator of F (x).

A simple candidate cdf estimator is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ].

However dF̂n(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!
We need a smoother estimator of F .



D
ra

ft

11

Conditional Monte Carlo (CMC) for Derivative Estimation
Idea: Replace indicator I[Xi ≤ x ] by its conditional cdf given filtered information:

F (x | G)
def
= P[X ≤ x | G]

where the sigma-field G contains not enough information to reveal X but enough to compute
F (x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x over [a, b],
differentiable except perhaps over a denumerable set of points D(G) ⊂ [a, b], and for which
F ′(x | G) = dF (x | G)/dx (when it exists) is bounded uniformly in x by a random variable Γ
such that E[Γ2] ≤ Kγ <∞.

Theorem 1: Under Assump. 1, for x ∈ [a, b], E[F ′(x | G)] = f (x) and Var[F ′(x | G)] < Kγ .

Theorem 2: If G ⊂ G̃ both satisfy Assumption 1, then Var[F ′(x | G)] ≤ Var[F ′(x | G̃)].

Conditional density estimator (CDE) with sample size n: f̂cde,n(x) = 1
n

∑n
i=1 F

′(x | G(i))
where G(1), . . . ,G(n) are n independent realizations of G.
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Example 1. A sum of independent random variables

X = Y1 + · · ·+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,
and G is defined by hiding Yk for an arbitrary k :

G = Gk = S−k
def
= Y1 + · · ·+ Yk + · · ·+ Yd .

We have
F (x | Gk) = P[X ≤ x | S−k ] = P[Yk ≤ x − S−k ] = Fk(x − S−k)

and the density estimator becomes F ′(x | Gk) = fk(x − S−k).

Shifted density of Yk .

The idea of using CMC for density estimation was introduced by Asmussen (2018) for this
special case, with k = d and same Fj for all j .
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Example 2: generalization

Let X = h(Y1, . . . ,Yd) and define Gk again by erasing a continuous Yk ;
Gk = (Y1, . . . ,Yk−1,Yk+1, . . . ,Yd).

Exemple: X = (Y1 + Y 2
2 )/Y3 where Y3 > 0.

If k = 3, since X ≤ x if and only if Y3 ≥ Y1 + Y 2
2 )/x ,

we have F (x | G3) = P(X ≤ x | Y1,Y2) = 1− F3((Y1 + Y 2
2 )/x),

and the density estimator at x is F ′(x | G3) = f3((Y1 + Y 2
2 )/x)(Y1 + Y 2

2 )/x2.

If k = 2, then F (x | G2) = P(X ≤ x | Y1,Y3) = P(|Y2| ≤ (Y3x − Y1)1/2) = F2(Z )− F2(−Z )
where Z = (Y3x − Y1)1/2, and the density estimator at x is
F ′(x | G2) = (f2(Z ) + f2(−Z ))dZ/dx = (f2(Z )− f2(−Z ))Y3/(2Z ).

This second estimator can be problematic if Z can take values near 0; this shows that a good
choice of k can be crucial in general.
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Example 3: discontinuity issues

Let X = max(Y1,Y2) where Y1 and Y2 are independent and continuous. With G = G2 (we
hide Y2):

P[X ≤ x | Y1 = y) =

{
P[Y2 ≤ x | Y1 = y) = F2(x) if x ≤ y ;

0 if x < y .

If F2(y) > 0, this function is discontinuous at x = y , so Assumption 1 does not hold.
The method does not work in this case.

Same problem if X = min(Y1,Y2). With G = G2, we have

P[X ≤ x | Y1 = y) =

{
F2(x) if x ≤ y ;

1 if x ≤ y .

If F2(y) < 1, this function is also discontinuous at x = y .
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Elementary quasi-Monte Carlo (QMC) Bounds (Recall)
Integration error for g : [0, 1)s → R with point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s :

En =
1

n

n−1∑
i=0

g(ui )−
∫
[0,1)s

g(u)du.

Koksma-Hlawka inequality: |En| ≤ VHK(g)D∗(Pn) where

VHK(g) =
∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂v
(u)

∣∣∣∣∣ du, (Hardy-Krause (HK) variation)

D∗(Pn) = sup
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ (star-discrepancy).

There are explicit point sets for which D∗(Pn) = O((log n)s−1/n) = O(n−1+ε), ∀ε > 0.
Explicit RQMC constructions for which E[En] = 0 and Var[En] = O(n−2+ε), ∀ε > 0.

With ordinary Monte Carlo (MC), one has Var[En] = O(n−1).
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Combining RQMC with the KDE

Done in Ben Abdellah, L’Ecuyer, Owen, Puchhammer (2019).

Difficulty:
The KDE has a very large variation when the bandwidth h is small (to reduce the bias). So
unless the (effective) dimension is very small, RQMC reduces the MISE only modestly.
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Applying RQMC to the CDE

To apply RQMC to the CDE, we must be able to write the density estimator as a function of
u ∈ [0, 1)s :

F (x | G) = g̃(x ,u),

F ′(x | G) = g̃ ′(x ,u) = dg(x ,u)/dx

for some g̃ : [a, b]× [0, 1)s for which g̃ ′(x , ·) has bounded HK variation for each x .

CDE sample: g̃ ′(x ,U1), . . . , g̃ ′(x ,Un) where {U1, . . . ,Un} is an RQMC point set over [0, 1)s .

If g̃ ′(x , ·) does not have bounded variation, RQMC can still be worthwhile, although there is
no guarantee.
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Example: sum of independent random variables (again)

X = Y1 + · · ·+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,
and G is defined by hiding Yk for an arbitrary k :

Gk = S−k
def
= Y1 + · · ·+ Yk + · · ·+ Yd = F−11 (U1) + · · ·+ F−1k (Uk) + · · ·+ F−1d (Ud).

We have F (x | Gk) = Fk(x − S−k) = g̃(x , ·)
and the density estimator is F ′(x | Gk) = fk(x − S−k) = g̃ ′(x ,U) where U = (U1, . . . ,Ud).

If g̃ ′(x , ·) has bounded HK variation, then MISE = O(n−2+ε).
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Experimental setting for numerical experiments

We want to test the method on some examples. For each method and each n considered, we
compute the CDE with n samples, evaluate it at a set of ne evaluation points over [a, b],
repeat this nr times, compute the variance at each evaluation point, and estimate the IV.

We repeat this for n = 214, . . . , 219 and fit the model IV = Kn−ν by linear regression:

log2 IV ≈ log2 K − ν log2 n . We report ν̂ and also the IV for n = 219.

MC and RQMC Point sets:

I MC: Independent points (MC),

I Lat+s: lattice rule with a random shift modulo 1,

I Lat+s+b: lattice rule with a random shift modulo 1 + baker’s transformation,

I LMS: Sobol’ points with left matrix scrambling (LMS) + digital random shift.
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Displacement of a cantilever beam (Bingham 2017)

Displacement X of a cantilever beam with horizontal load Y2 and vertical load Y3:

X = h(Y1,Y2,Y3) =
κ

Y1

√
Y 2
2

w4
+

Y 2
3

t4
(1)

where κ = 5× 105, w = 4, t = 2, Y1, Y2, Y3 independent normal, Yj ∼ N (µj , σ
2
j ),

Description Symbol µj σj
Young’s modulus Y1 2.9× 107 1.45× 106

Horizontal load Y2 500 100
Vertical load Y3 1000 100

The goal is to estimate the density of X over [3.1707, 5.6675], which covers about 99% of
the density (it clips 0.5% on each side).
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Conditioning on G1 = {Y2,Y3} means hiding Y1. We have

X =
κ

Y1

√
Y 2
2

w4
+

Y 2
3

t4
≤ x if and only if Y1 ≥

κ

x

√
Y 2
2

w4
+

Y 2
3

t4
def
= W1(x)

def
= W1.

For x > 0,
F (x | G1) = P[Y1 ≥W1 |W1] = 1− Φ((W1 − µ1)/σ1)

and

F ′(x | G1) = −φ((W1 − µ1)/σ1)W ′
1(x)

σ1
=
φ((W1 − µ1)/σ1)W1(x)

xσ1
.
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Suppose we condition on G2 = {Y1,Y3} instead, i.e., hide Y2. We have

X ≤ x if and only if Y 2
2 ≤ w4

(
(xY1/κ)2 − Y 2

3 /t
4
) def

= W2.

If W2 ≤ 0, then F ′(x | G2) = 0. If W2 > 0,

F (x | G2) = P[−
√

W2 ≤ Y2 ≤
√
W2 |W2] = Φ((

√
W2 − µ2)/σ2)− Φ(−(

√
W2 + µ2)/σ2)

and

F ′(x | G2) =
φ((
√
W2 − µ2)/σ2) + φ(−(

√
W2 + µ2)/σ2)

w4x(Y1/κ)2/(σ2
√
W2)

> 0.

For conditioning on G3, the analysis is the same as for G2, by symmetry, and we get

F ′(x | G3) =
φ((
√
W3 − µ3)/σ3) + φ(−(

√
W3 + µ3)/σ3)

t4x(Y1/κ)2/(σ3
√
W3)

> 0.

for W3 > 0, where W3 is defined in a similar way as W2.
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Instead of choosing a single conditioning k , we can take a convex combination:

f̂ (x) = α1F
′(x | G1) + α2F

′(x | G2) + α3F
′(x | G3),

where α1 + α2 + α3 = 1. This is equivalent to taking F ′(x | G1) as the main estimator and
the other two as control variates (CV). We can use CV theory to optimize the αj ’s.

ν̂ − log2MISE (n = 219)
KDE G1 G2 G3 comb. KDE G1 G2 G3 comb.

MC 0.80 0.97 0.98 0.99 0.98 14.7 19.3 14.5 22.8 22.5
Lat+s — 2.06 2.82 2.04 2.02 — 38.9 25.4 41.5 41.5
Lat+s+b — 2.26 2.55 1.98 2.07 — 44.3 23.3 45.5 46.0
Sob+LMS 0.96 2.21 2.03 2.21 2.21 20.5 44.0 23.6 45.7 46.1

For n = 219, the MISE is about 2−14.7 for the usual KDE+MC and 2−46 for the new
CDE+RQMC; i.e., MISE is divided by more than 231 ≈ 2 millions.
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Comparison for CDE with linear combination of 3 estimators, for cantilever.
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CMC for the SAN Example
Want to estimate the density of the longest path length X .

CMC estimator of P[X ≤ x ]: F (x | G) = P[X ≤ x | {Yj , j 6∈ L}] for a minimal cut L.

Ex.: L = {5, 6, 7, 9, 10} and Yj = F−1j (Uj). This estimator continuous in the Uj ’s and in x .
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For each j ∈ L, let Pj be the length of the longest path that goes through arc j when we
exclude Yj from that length. Then

F (x | G) = P [X < x | {Yj : j 6∈ L}] =
∏
j∈L

Fj [x − Pj ]

and
F ′(x | G) =

∑
j∈L

fj [x − Pj ]
∏

l∈L, l 6=j

Fl [x − Pj ],

if fj exists for all j ∈ L.

Under this conditioning, the cdf of every path length is continuous in x , and so is F (· | G),
and Assumption 1 holds, so F ′(x | G) is an unbiased density estimator.
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Estimated MISE = Kn−ν , for KDE with CMC.

ν̂ − log2MISE (n = 219)

KDE
MC 0.77 20.9
Lat+s 0.75 22.0
Sobol+LMS 0.76 22.0

CDE
MC 0.99 25.5
Lat+s 1.26 29.9
Sobol+LMS 1.25 29.9

With RQMC, we observe a convergence rate near O(n−1.25) for the IV and the MISE.

For n = 219, by using the new CDE+RQMC rather than the usual KDE+MC,
the MISE is divided by about 29 ≈ 500.



D
ra

ft

27

Conclusion

I The CDE is an unbiased density estimator with better convergence rate for the IV and
the MISE. Combining it with RQMC can provide an even better rate, and sometimes
huge MISE reductions.

I Future: Density estimation for a function of the state of a Markov chain, using
Array-RQMC.

I What if we we cannot find G for which Assumption 1 holds and F ′(x | G) is easy to
compute?
Current work: density estimator based on likelihood ratio derivative estimation.

I Lots of potential applications.
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