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Monte Carlo (MC) simulation is widely used to estimate the expectation E[X] of a random
variable X and compute a confidence interval on E[X]. MSE = Var[X,] = O(n™1).

But simulation usually provides information to do much more! The output data can be used
to estimate the entire distribution of X, e.g., the cumulative distribution function (cdf) F of
X, defined by F(x) = P[X < x], or its density f defined by f(x) = F'(x).

If X1,...,X, are n indep. realizations of X, the empirical cdf
1 n
Fa(x) = - ;H[X; < x]
1=

is unbiased for F(x) at all x, and Var[F,(x)] = O(n~1).

However, for a continuous r.v. X, the density f provides a better visual idea of the
distribution. Here we focus on estimating f over [a, b] C R.
Can we have E[f,(x) — f(x)]? = O(n~1)???



Small example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Y} (also length
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Gives precedence relations between activities. Activity k has random duration Y} (also length
of arc k) with known cdf Fi(y) = P[Y) < y|.

Project duration X = (random) length of longest path from source to sink.
Can look at deterministic equivalent of X, E[X], cdf, density, ...

The sample cdf sink
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is an unbiased estimator of the cdf v Y
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Want to estimate the density of X, (4 (7)
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Numerical illustration from Elmaghraby (1977):
Yi ~ N(uk,02) for k =1,2,4,11,12, and Yx ~ Expon(1/p) otherwise.
t1, ..., p13: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Results of an experiment with n = 100 000. Note: X is not normal!
Frequency
\ mean = 64.2
Xaet =482
10000 + IIRp=
5000 + o.00 = 131.8
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Density Estimation

Suppose we estimate the density f over a finite interval [a, b].
Let fn(x) denote the density estimator at x, with sample size n.

We use the following measures of error:

b
MISE = mean integrated squared error = / E[(f2(x) — f(x))?]dx
a
= IV+ISB
b
IV = integrated variance :/ Var[f,(x)]dx
a

b
ISB = integrated squared bias :/ (E[fn(x)] — f(x))?dx
a



Density Estimation

Simple histogram: Partition [a, b] in m intervals of size h = (b — a)/m and define
f(x) = l;] forxel=[a+(—1)ha+jh), j=1,..m
n

where n; is the number of observations X; that fall in interval j.

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

A 1 — x — X;
f"(X):nth< h )
i=1




KDE bandwidth selection: an illustration in s = 1 dimension

KDE (blue) vs true density (red) with RQMC point sets with n = 219
midpoint rule (left),  Stratified sample of U = F(X) (right)
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KDE asymptotic convergence with Monte Carlo for smooth f

For any g : R — R, define

b
R(g) = / (e(x))2dx,

oo

ur(g) = / x"g(x)dx, forr=0,1,2,...
—00

For histograms and KDEs, when n — oo and h — 0:

AMISE = AIV + AISB ~ n_i + Bhe.

C B o
Histogram 1 R(f") /12 2
KDE | uio(k?) (k2(k))® R(f") /4 4




The asymptotically optimal h is

C 1/(a+1)
Ban

and it gives AMISE = Kn—o/(1+),

C B « h* AMISE

Histogram Rg ) 2 (nR(f")/6)71/3 O(n=2/3)
)2 R(F" 2 1/5

KDE | po(k?) el ))4 el <(M2(5;)(2ksz,,)n> O(n*/%)

To estimate h*, one can estimate R(f’) and R(f") via KDE (plugin).

This is under the simplifying assumption that h must be the same all over [a, b].



Can we take the stochastic derivative of an estimator of F?

Can we estimate the density (x) = F’(x) by the derivative of an estimator of F(x).
A simple candidate cdf estimator is the empirical cdf

n

Fa(x) = %Zn[x,- < x].

i=1

However dﬁn(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!
We need a smoother estimator of F.

10



Conditional Monte Carlo (CMC) for Derivative Estimation h

Idea: Replace indicator I[X; < x] by its conditional cdf given filtered information:

F(x | G) € PX < x| 4]

where the sigma-field G contains not enough information to reveal X but enough to compute
F(x | G), and is chosen so that the following holds:
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Idea: Replace indicator I[X; < x] by its conditional cdf given filtered information:

F(x|6) € PIX <x|g]

where the sigma-field G contains not enough information to reveal X but enough to compute
F(x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F(x | G) is a continuous function of x over [a, b],

differentiable except perhaps over a denumerable set of points D(G) C [a, b], and for which

F'(x | G) =dF(x | G)/dx (when it exists) is bounded uniformly in x by a random variable I
such that E[?] < K, < oc.

Theorem 1: Under Assump. 1, for x € [a, b], E[F'(x | G)] = f(x) and Var[F'(x | G)] < K.
Theorem 2: If G C G both satisfy Assumption 1, then Var[F'(x | G)] < Var[F'(x | G)].
Conditional density estimator (CDE) with sample size n: figo ,(x) = IS F(x]| Gy

where G ... G(" are n independent realizations of G.
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Example 1. A sum of independent random variables

X = Y1+ -+ Yy, where the Y} are independent and continuous with cdf F; and density f;,
and G is defined by hiding Y} for an arbitrary k:

G=Gi=S, ¥yvi+...+ 1.4V,

We have
F(x|Gr) =PX <x|S_k] =P[Yk < x—5_k] = Fx(x — S_k)

and the density estimator becomes F'(x | Gx) = fi(x — S_k).
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Example 1. A sum of independent random variables

X = Y1+ -+ Yy, where the Y, are independent and continuous with cdf F; and density f;,
and G is defined by hiding Y} for an arbitrary k:

G=Gi=S+ ¥ Vit v 44y

We have
F(x|Gr) =PX <x|S_k] =P[Yk < x—5_k] = Fx(x — S_k)

and the density estimator becomes F'(x | G) = fi(x — S_x). Shifted density of Y.

The idea of using CMC for density estimation was introduced by Asmussen (2018) for this
special case, with k = d and same F; for all j.



Example 2: generalization

Let X = h(Y7,...,Yy) and define Gx again by erasing a continuous Yjk;
=1+, Ye-1, ki1, -+, Yd)-
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Example 2: generalization

Let X = h(Y7,...,Yy) and define Gx again by erasing a continuous Yjk;
Ge =Yy os Y1, Yists - -5 Ya).

Exemple: X = (Y1 + Y$)/Y3 where Y3 > 0.

If k=3, since X < x ifand only if Y3 > Y7 + Y22)/x,

we have F(x | G3) =P(X < x| Y1, Y2) =1— F3((Y1 + Y$£)/x),

and the density estimator at x is F/(x | G3) = f((Y1 + Y2)/x)(Y1 + YZ)/x°.

If k = 2, then F(X | gz) = IP)(X <x | Yl, Y3) = P(‘Y2| < (Y3X — Y1)1/2) = Fg(Z) — F2(—Z)
where Z = (Y3x — Y1)'/2, and the density estimator at x is

F/(x| G2) = (B(2) + h(=2))dZ/dx = (£(Z) — £(~2))V3/(22).

This second estimator can be problematic if Z can take values near 0; this shows that a good
choice of k can be crucial in general.
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Example 3: discontinuity issues

Let X = max(Y1, Y2) where Y7 and Y; are independent and continuous. With G = G, (we
hide Y2):
PYa<x[Yi=y)=F(x) ifx<y;

P[X < Y =vy) =
X=xin=y) {0 if x <y.

If F2(y) > 0, this function is discontinuous at x = y, so Assumption 1 does not hold.
The method does not work in this case.
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Let X = max(Y1, Y2) where Y7 and Y; are independent and continuous. With G = G, (we
hide Y2):
PYa<x[Yi=y)=F(x) ifx<y;

P[X < Y =vy) =
X=xin=y) {0 if x <y.

If F2(y) > 0, this function is discontinuous at x = y, so Assumption 1 does not hold.
The method does not work in this case.

Same problem if X = min(Y1, Y2). With G = G, we have

Fa(x) ifx<y;

P[XSX‘Yl_y)_{l if x <y

If F>(y) < 1, this function is also discontinuous at x = y.



Elementary quasi-Monte Carlo (QMC) Bounds (Recall)
Integration error for g : [0,1)° — R with point set P, = {ug,...,u,_1} C [0,1)*:

Koksma-Hlawka inequality: |E,| < Vik(g)D*(Pn) where

|o]
Vik(g) = Z / 8 g du, (Hardy-Krause (HK) variation)
p£ocs V101
Pn ) .
D*(P,) = sup V01[0,u)—M[0u)|‘ (star-discrepancy).
uef0,1)s n

There are explicit point sets for which D*(P,) = O((log n)*~1/n) = O(n~1*€), Ve > 0.

Explicit RQMC constructions for which E[E,] = 0 and Var[E,] = O(n~2T¢), Ve > 0.
With ordinary Monte Carlo (MC), one has Var[E,] = O(n™1).

15



Combining RQMC with the KDE

Done in Ben Abdellah, L'Ecuyer, Owen, Puchhammer (2019).

Difficulty:
The KDE has a very large variation when the bandwidth h is small (to reduce the bias). So
unless the (effective) dimension is very small, RQMC reduces the MISE only modestly.

16
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Applying RQMC to the CDE

To apply RQMC to the CDE, we must be able to write the density estimator as a function of
ue(0,1)*:

13

F(x1G) = &(x.u),
F'(x|G) = &'(x,u)=dg(x,u)/dx

for some g : [a, b] x [0,1)* for which g’(x,-) has bounded HK variation for each x.
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Applying RQMC to the CDE

To apply RQMC to the CDE, we must be able to write the density estimator as a function of
ue(0,1)*:

13

F(x[G) = &(x.u),
F'(x|G) = &'(x,u)=dg(x,u)/dx

for some g : [a, b] x [0,1)* for which g’(x,-) has bounded HK variation for each x.
CDE sample: g'(x,U1),...,8'(x,Up) where {Uq,...,U,} is an RQMC point set over [0,1)%.

If &'(x,-) does not have bounded variation, RQMC can still be worthwhile, although there is
no guarantee.
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Example: sum of independent random variables (again)

X = Y1+ ---+ Yy, where the Y; are independent and continuous with cdf F; and density f;,
and G is defined by hiding Y/ for an arbitrary k:

gkzs_kd:efler...+ +~"+Yd=Ff1(U1)+“'+ +"'+F51(Ud)-

We have F(x | Gx) = Fe(x — S_k) = &(x, )
and the density estimator is F'(x | Gx) = fu(x — S_x) = &'(x,U) where U = (Us, ..., Uy).

If &'(x,-) has bounded HK variation, then MISE = O(n=2%¢).
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Experimental setting for numerical experiments

We want to test the method on some examples. For each method and each n considered, we
compute the CDE with n samples, evaluate it at a set of n. evaluation points over [a, b],
repeat this n, times, compute the variance at each evaluation point, and estimate the IV.
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Experimental setting for numerical experiments

We want to test the method on some examples. For each method and each n considered, we
compute the CDE with n samples, evaluate it at a set of n. evaluation points over [a, b],
repeat this n, times, compute the variance at each evaluation point, and estimate the IV.

We repeat this for n =2, ... 219 and fit the model IV = Kn™" by linear regression:
log, IV ~ log, K — vlog, n . We report 7 and also the IV for n = 219

MC and RQMC Point sets:

» MC: Independent points (MC),
» Lat+s: lattice rule with a random shift modulo 1,
» Lat+s+b: lattice rule with a random shift modulo 1 + baker’s transformation,

» LMS: Sobol" points with left matrix scrambling (LMS) + digital random shift.
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Displacement of a cantilever beam

Displacement X of a cantilever beam with horizontal load Y5 and vertical load Yj3:

K Y2 Y2
X = h(Y1, Ya, Y3)=71 W—i+t—3 (1)

where k =5x10°, w=4,t=2, Y1, Yo, Y3 independent normal, Y; ~ N(uj,af),

Description Symbol 1 o
Young's modulus Y1 2.9 x 107 1.45x 10°
Horizontal load Y, 500 100
Vertical load Ys 1000 100

The goal is to estimate the density of X over [3.1707, 5.6675], which covers about 99% of
the density (it clips 0.5% on each side).
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Conditioning on G; = { Y2, Y3} means hiding Y7. We have

K [YZ2 Y2 . . K [Y? Y2 der def
XZV]_ F—FFgX |fand0n|y|f Y]_Z; W+F:W1(X):Wl
For x > 0,
F(x[G1) =P[Y1 > Wi | W] =1 - &((W1 — p1)/01)
and

Flx| G1) = (Wi — ) /o) Wi(x) _ ¢((Wa — ) /o) Wa(x)

o1 X01




Suppose we condition on G, = { Y7, Y3} instead, i.e., hide Y. We have

def

X <x ifandonlyif YZ<w*((xY1/k)? - YZ/t") = Ws.

22



Suppose we condition on G, = { Y7, Y3} instead, i.e., hide Y. We have

def

X <x ifandonlyif YZ<w*((xY1/k)? - YZ/t") = Ws.
If W5 <0, then F/(X | gg) =0. If Ws > 0,
F(x| G2) = P/ Wa < Yo < /Wa | W] = O((v/Wa — p12) /02) — D(—(v/ Wa + p12) /2)
and
Fl(x | Go) = A((VWa — o) /02) + (= (VW2 + pi2) /02) < 0.

x(V1/k)?/(02VW2)
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Suppose we condition on G, = { Y7, Y3} instead, i.e., hide Y. We have
X<x ifandonlyif Y2 <w*((xVa/r)?— Y2/t") € s,
If W, <0, then F/(X | gg) =0. If Wh >0,

F(x | Go) = P[—/Wa < Yo < /Wa | W] = O((v/Wa — 12) /02) — D(—(/ Wa + 12) /02)

and

H((VWa — p12) /02) + ¢(—=(vVWa + pi2) /02)

(Vi /72 (72/ o) -0

F'(x|Ga) =

For conditioning on G3, the analysis is the same as for G, by symmetry, and we get

(VW5 — p13)/03) + (= (vVWs + p3) /o3)
*x(Y1/k)?/(03vW3)

for W3 > 0, where Wj is defined in a similar way as Ws.

F'(x|Gs) = > 0.

22



Instead of choosing a single conditioning k, we can take a convex combination:
f(X) = OélF,(X ’ Ql) -+ CKQF/(X ’ g2) + C¥3F/(X | 93),

where a1 + ap + a3 = 1. This is equivalent to taking F'(x | G1) as the main estimator and
the other two as control variates (CV). We can use CV theory to optimize the q;'s.
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f(X) = OélF,(X ’ Ql) -+ CKQF/(X ’ g2) + C¥3F/(X | 93),

where a1 + ap + a3 = 1. This is equivalent to taking F'(x | G1) as the main estimator and
the other two as control variates (CV). We can use CV theory to optimize the q;'s.

D —log, MISE (n = 219)
KDE gl g2 g3 com b KDE Ql 92 gg Comb.
MC 0.80 | 0.97 098 099 0098 | 147 | 19.3 145 228 225
Lat+s — | 206 282 204 202 — | 389 254 415 415
Lat+s+b — | 226 255 198 2.07 — | 443 233 455 46.0
Sob+LMS | 0.96 | 221 2.03 221 221 | 205 | 440 23.6 457 46.1




Instead of choosing a single conditioning k, we can take a convex combination:
f(X) = OélF,(X ’ Ql) -+ CKQF/(X ’ g2) + C¥3F/(X | 93),

where a1 + ap + a3 = 1. This is equivalent to taking F'(x | G1) as the main estimator and
the other two as control variates (CV). We can use CV theory to optimize the q;'s.

D —log, MISE (n = 219)
KDE gl g2 g3 com b KDE Ql g2 gg Comb.
MC 0.80 | 0.97 098 099 0098 | 147 | 19.3 145 228 225
Lat+s — | 206 282 204 202 — | 389 254 415 415
Lat+s+b — | 226 255 198 2.07 — | 443 233 455 46.0
Sob+LMS | 0.96 | 221 2.03 221 221 | 205 | 440 23.6 457 46.1

For n = 219, the MISE is about 2~ '*7 for the usual KDE4+MC and 2 ° for the new
CDE+4RQMC; i.e., MISE is divided by more than 23! ~ 2 millions.



Comparison for CDE with linear combination of 3 estimators, for cantilever.
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CMC for the SAN Example

Want to estimate the density of the longest path length X.
CMC estimator of P[X < x]: F(x|G)=P[X <x|{Y},j &L} for a minimal cut L.

Ex.: £={5,6,7,9,10} and Y; = Fj_l(UJ) This estimator continuous in the U;'s and in x.

source

Y1



For each j € L, let P; be the length of the longest path that goes through arc j when we
exclude Y} from that length. Then

Fix|G)=PIX<x|{Y;:j¢ L} =]]Flx- Pl

JeL

and

Flx|9)=> fx=P] T[] Flx- Pl

JjeL IeL, I#£]
if f; exists for all j € L.

Under this conditioning, the cdf of every path length is continuous in x, and so is F(- | G),
and Assumption 1 holds, so F/(x | G) is an unbiased density estimator.
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Estimated MISE = Kn™", for KDE with CMC.

p  —log, MISE (n = 219)
MC 0.77 20.9
KDE Lat+s 0.75 22.0
Sobol4+LMS | 0.76 22.0
MC 0.99 25.5
CDE Lat+s 1.26 29.9
Sobol+LMS | 1.25 29.9

With RQMC, we observe a convergence rate near O(n*1'25) for the IV and the MISE.

For n = 219, by using the new CDE-+RQMC rather than the usual KDE+MC,
the MISE is divided by about 2° ~ 500.
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Conclusion

» The CDE is an unbiased density estimator with better convergence rate for the IV and
the MISE. Combining it with RQMC can provide an even better rate, and sometimes
huge MISE reductions.

> Future: Density estimation for a function of the state of a Markov chain, using
Array-RQMC.

» What if we we cannot find G for which Assumption 1 holds and F/(x | G) is easy to
compute?
Current work: density estimator based on likelihood ratio derivative estimation.

» Lots of potential applications.
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