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What this talk is about
Monte Carlo (MC) simulation is widely used to estimate the expectation E[X] of a random
variable X and compute a confidence interval on E[X]. MSE = Var[X̄n] = O(n−1).
But simulation usually provides information to do much more! The output data can be

used to estimate the entire distribution of X, e.g., the cumulative distribution function

(cdf) F of X, defined by F (x) = P[X ≤ x ], or its density f defined by f (x) = F ′(x).

If X1, . . . , Xn are n indep. realizations of X, the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ]

is unbiased for F (x) at all x , and Var[F̂n(x)] = O(n−1).
For a continuous r.v. X, the density f provides a better visual idea of the distribution.

Here we focus on estimating the density f of X over [a, b] ⊂ R.
(Density is with respect to Lebesgue measure.)
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Setting

Classical density estimation in statistics was developed in the context where X1, . . . , Xn are

given independent observations of X and one estimates the density f of X from that.

Leading method: kernel density estimator (KDE); MSE[f̂n(x)] = O(n−4/5).

In this talk, we assume that X1, . . . , Xn are generated by simulation from a model.

We can choose n and we have some freedom on how the simulation is performed.

Questions:

1. Is it possible to obtain unbiased density estimators whose variance converges as O(n−1)
or better, using clever sampling strategies? How?

2. How can we benefit from RQMC to estimate density? Can we improve the convergence

rate of the error?
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Small example: a stochastic activity network (SAN)

Precedence relations between activities. Activity k has random duration Yk (length of arc

k) with known cdf Fk(y) := P[Yk ≤ y ].

Project duration X = (random) length of longest path from source to sink.

Specific case (Avramidis and Wilson 1998):

Yk ∼ N(µk , σ2k) for k = 1, 2, 4, 11, 12;
Yk ∼ Expon(1/µk) otherwise;
µ1, . . . , µ13: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7,

10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5;

σk = µk/4.

Mean E[X] ≈ 64.2
C.I. for E[X] could be, e.g., [64.05, 64.32].

That’s all?
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Results of an experiment with n = 100 000 independent runs.

The histogram gives an idea of the density of X.

Much more information than a C.I. on E[X]. Can we do better than a histogram?

X
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

Xdet = 48.2

mean = 64.2

ξ̂0.99 = 131.8
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Density estimation

Want to estimate the density of X = h(Y) = h(Y1, . . . , Ys), assuming we know how to get

Monte Carlo samples of Y from its multivariate distribution.

Suppose we estimate the density f over a finite interval [a, b].

Let f̂n(x) denote the density estimator at x , with sample size n.

We use simple error measures:

MISE = mean integrated squared error =

∫ b
a
E[(f̂n(x)− f (x))2]dx = IV + ISB

IV = integrated variance =

∫ b
a

Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b
a
(E[f̂n(x)]− f (x))2dx

To minimize the MISE, we may need to balance the IV and ISB.
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Density estimation

Histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh
for x ∈ Ij = [a + (j − 1)h, a + jh), j = 1, ..., m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at

0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

f̂n(x) =
1

nh

n∑
i=1

k

(
x −Xi
h

)
.
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n = 6

n = 100
Credit: Drleft at English Wikipedia / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

https://commons.wikimedia.org/w/index.php?curid=73892711 https://commons.wikimedia.org/wiki/File:Comparison of 1D histogram and KDE.png
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Asymptotic convergence with Monte Carlo for smooth f

Here we assume independent random samples (Monte Carlo or given data).

For histograms and KDEs, when n →∞ and h → 0:

AMISE = AIV + AISB ∼
C

nh
+ Bhα .

The asymptotically optimal h is

h∗ =

(
C

Bαn

)1/(α+1)
and it gives AMISE = Kn−α/(1+α).
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For any g : R→ R, define

R(g) =

∫ b
a
(g(x))2dx, µr (g) =

∫ ∞
−∞
x rg(x)dx, for r = 0, 1, 2, . . .

C B α h∗ AMISE

Histogram 1
R(f ′)

12
2 (nR(f ′)/6)−1/3 O(n−2/3)

KDE µ0(k
2)

(µ2(k))
2 R(f ′′)

4
4

(
µ0(k

2)

(µ2(k))2R(f ′′)n

)1/5
O(n−4/5)

To estimate h∗, one can estimate R(f ′) and R(f ′′) via KDE (plugin).

This is true under the simplifying assumption that h must be the same all over [a, b].

One may also vary the bandwidth over [a, b].
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Randomized quasi-Monte Carlo (RQMC)

Suppose X = h(Y) = g(U) ∈ R where U = (U1, . . . , Us) ∼ U(0, 1)s .

Monte Carlo: Xi = g(Ui) for U1, . . . ,Un independent U(0, 1)
s . Estimate the mean E[X] by

µ̂n =
1

n

n∑
i=1

g(Ui).

RQMC: Take U1, . . . ,Un as RQMC points and compute again

µ̂n,rqmc =
1

n

n∑
i=1

g(Ui).

Both unbiased. Var[µ̂n] = O(1/n). Var[µ̂n,rqmc] is often O(n−2+ϵ) or even O(n−3+ϵ).
QMC point sets: integration lattices, polynomial lattices, digital nets, . . .

Randomizations: random shift mod 1, random digital shift, scrambles, . . .
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RQMC variance bounds

There are various Cauchy-Schwarz-type inequalities of the form

Var[µ̂n,rqmc] ≤ V 2(g) ·D2(Pn)

for all g in some Hilbert space or Banach space H, where V (g) = ∥g − µ∥H is the variation
of g, and D(Pn) is the discrepancy of Pn = {U1, . . . ,Un} (defined by an expectation in the
RQMC case).

Classical Koksma-Hlawka: D(Pn) = D
∗(Pn) is the star discrepancy and

V (g) = VHK(g) =
∑
∅≠v⊆S

∫
[0,1]|v|

∣∣∣∣∣ ∂|v|∂uv g(uv, 1)
∣∣∣∣∣ duv, (Hardy-Krause (HK) variation)

Variance bounds are conservative; RQMC often works well empirically, sometimes even

when VHK(f ) =∞.
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Combining RQMC with the KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui)
h

)
=
1

n

n∑
i=1

g̃(Ui).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] = E[f̂n(x)].
RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV and MISE.

To prove RQMC variance bounds, we need bounds on the variation of g̃.

Partial derivatives:
∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)
h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .

But when expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
The term for |v| = s grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when h → 0.

Can make it O(h−s) via a change of variables.



D
ra
ft

13

Combining RQMC with the KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui)
h

)
=
1

n

n∑
i=1

g̃(Ui).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] = E[f̂n(x)].
RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV and MISE.
To prove RQMC variance bounds, we need bounds on the variation of g̃.

Partial derivatives:
∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)
h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .

But when expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
The term for |v| = s grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when h → 0.

Can make it O(h−s) via a change of variables.



D
ra
ft

13

Combining RQMC with the KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui)
h

)
=
1

n

n∑
i=1

g̃(Ui).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] = E[f̂n(x)].
RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV and MISE.
To prove RQMC variance bounds, we need bounds on the variation of g̃.

Partial derivatives:
∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)
h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .

But when expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
The term for |v| = s grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when h → 0.

Can make it O(h−s) via a change of variables.



D
ra
ft

14

An AIV upper bound that we were able to prove

Assumption. Let g : [0, 1]s → R be piecewise monotone in each coordinate uj when the
other coordinates are fixed. Assume that all first-order partial derivatives of g are

continuous and that ∥gw1gw2 · · · gwℓ∥1 <∞ for all selections of non-empty, mutually
disjoint index sets w1, . . . ,wℓ ⊆ S = {1, . . . , s}.

Proposition Then the Hardy-Krause variation of g̃ satisfies

VHK(g̃) ≤ cjh−s +O(h−s+1) for each j .

Corollary. With RQMC point sets having D∗(Pn) = O(n−1+ϵ) for all ϵ > 0 when n →∞,
we obtain

AIV = O(n−2+ϵh−2s) for all ϵ > 0.

By picking h to minimize the AMISE bound, we get AMISE = O(n−4/(2+s)+ϵ) .

Worse than MC when s ≥ 4. The factor h−2s hurts! But this is only an upper bound.
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Why not take the sample derivative of an estimator of F?

We want to estimate the density f (x) = F ′(x).

A simple unbiased estimator of F is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ].

However dF̂n(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!

We need a smoother estimator of F .
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Conditional Monte Carlo (CMC) for density estimation
Idea: Replace indicator I[Xi ≤ x ] by its conditional cdf given filtered information:

F (x | G) def= P[X ≤ x | G]

where the sigma-field G contains not enough information to reveal X but enough to
compute F (x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x over [a, b],
differentiable except perhaps over a denumerable set of points D(G) ⊂ [a, b], and for which
f (x | G) = F ′(x | G) = dF (x | G)/dx (when it exists) is bounded uniformly in x by a
random variable Γ such that E[Γ2] ≤ Kγ <∞.
Proposition CDE: Under Ass. 1, for x ∈ [a, b], E[f (x | G)] = f (x) and Var[f (x | G)] < Kγ .

Proposition: If G ⊂ G̃ both satisfy Assumption 1, then Var[f (x | G)] ≤ Var[f (x | G̃)].

Conditional density estimator (CDE) with sample size n: f̂cde,n(x) =
1
n

∑n
i=1 f (x | G(i))

where G(1), . . . ,G(n) are n independent “realizations” of G. Var[f̂cde,n(x)] = O(n−1) .
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Example: displacement of cantilever beam (Bingham 2017)

X = h(Y1, Y2, Y3) =
κ

Y1

√
Y2
2

w4
+
Y3
2

t4

where κ = 5× 105, w = 4, t = 2, Y1, Y2, Y3 independent normal, Yj ∼ N (µj , σ2j ),

Description Symbol µj σj
Young’s modulus Y1 2.9× 107 1.45× 106
Horizontal load Y2 500 100

Vertical load Y3 1000 100

We estimate the density of X over [3.1707, 5.6675], which covers about 99% of the

density (it clips 0.5% on each side).



D
ra
ft

18

CDE estimator
Conditioning on G−1 = {Y2, Y3} means hiding Y1. We have

X =
κ

Y1

√
Y 22
w4
+
Y 23
t4
≤ x if and only if Y1 ≥

κ

x

√
Y 22
w4
+
Y 23
t4
def
= W1(x).

For x > 0,

F (x | G−1) = P[Y1 ≥ W1(x) | W1(x)] = 1−Φ((W1(x)− µ1)/σ1)

and

f (x | G−1) = F ′(x | G−1) = −
φ((W1(x)− µ1)/σ1)W ′1(x)

σ1
=
φ((W1(x)− µ1)/σ1)W1(x)

xσ1
.

For n = 219, the MISE is about 2−14.7 for the usual KDE+MC and 2−22.8 for the CDE

with G−3; the MISE is divided by about 28 = 256.

The MISE rate goes from O(n−4/5) to around O(n−1) with the CDE.
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We can also hide Y2 or Y3 instead of Y1.

4 5

0

1

2

x

4 5

0

10

20

30

x

4 5

0

0.5

1

x
Five realizations of conditional density f (· | G−k) (blue),
their average (red), and true density (thick black),

for k = 1 (left), k = 2 (middle), and k = 3 (right).

We see that hiding Y3 seems to perform the best.
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CMC for the SAN Example
X = length of longest path. CMC estimator of P[X ≤ x ]:
Pick a minimal cut L between source and sink, and let F (x | G) = P[X ≤ x | {Yj , j ̸∈ L}] .

Ex.: L = {5, 6, 7, 9, 10} and Yj = F−1j (Uj). This estimator continuous in the Uj ’s and in x .
(Erasing a singe Yj does not work: it does not make the conditional cdf continuous.)

0source 1
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Another minimal cut: L = {2, 3, 5, 8, 12}.
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For each j ∈ L, let Pj be the length of the longest path that goes through arc j when we
exclude Yj from that length. Then

F (x | G) = P
[
X < x | {Yj : j ̸∈ L}

]
=
∏
j∈L
Fj(x − Pj)

and

f (x | G) =
∑
j∈L
fj(x − Pj)

∏
l∈L, l ̸=j

Fl(x − Pj),

if fj exists for all j ∈ L.

Under this conditioning, the cdf of every path length is continuous in x , and so is F (· | G),
and Assumption 1 holds, so f (x | G) is an unbiased density estimator.

When we replace a KDE by the CDE in our example, empirically, the MISE rate goes from

O(n−4/5) to O(n−1) and the MISE for n = 219 is divided by about 25 to 30.



D
ra
ft

21

For each j ∈ L, let Pj be the length of the longest path that goes through arc j when we
exclude Yj from that length. Then

F (x | G) = P
[
X < x | {Yj : j ̸∈ L}

]
=
∏
j∈L
Fj(x − Pj)

and

f (x | G) =
∑
j∈L
fj(x − Pj)

∏
l∈L, l ̸=j

Fl(x − Pj),

if fj exists for all j ∈ L.

Under this conditioning, the cdf of every path length is continuous in x , and so is F (· | G),
and Assumption 1 holds, so f (x | G) is an unbiased density estimator.

When we replace a KDE by the CDE in our example, empirically, the MISE rate goes from

O(n−4/5) to O(n−1) and the MISE for n = 219 is divided by about 25 to 30.



D
ra
ft

22

Applying RQMC to the CDE

Now we want to sample the CDE using RQMC points.

For this, we must rewrite the CDE as a function of u ∈ [0, 1)s :

F (x | G) = g̃(x,u),

f (x | G) = g̃′(x,u) = dg̃(x,u)/dx

for some g̃ : [a, b]× [0, 1)s for which g̃′(x, ·) has bounded variation for each x .

CDE sample: g̃′(x,U1), . . . , g̃
′(x,Un) where {U1, . . . ,Un} is an RQMC point set.

If g̃′(x, ·) has bounded variation, then we can get an O(n−2+ϵ) rate for the MISE, and
sometimes better. This holds in several examples that we tried.

If g̃′(x, ·) has unbounded variation, RQMC may still reduce the IV, but no guarantee.
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A likelihood ratio density estimator (LRDE)
Back to X = h(Y) where Y has known density fY over R ⊆ Rd . We have

F (x) = P[h(Y) ≤ x ] =
∫
Rd
I[h(y) ≤ x ] fY(y)dy.

Want to change the integrand into a continuous function of x .

Main idea: Make a change of variable y 7→ z = z(x) of the form y = ϕ(z; x), for a family of
one-to-one functions {ϕ(·; x), x ∈ [a, b]} such that {h(ϕ(z; x)) ≤ x} ≡ {h̃(z) ≤ 1} for a function
h̃ independent of x when z is given.

In case R̃ = ϕ−1(R)
def
= ϕ−1(R; x) is independent of x , the integration domain remains

independent of x after the change of variable, and we can rewrite

F (x) =

∫
R̃

I[h̃(z) ≤ 1] fY(ϕ(z; x))|Jϕ(z; x)| dz,

where |Jϕ(z; x)| is the Jacobian of the transformation y = ϕ(z; x).
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F (x) =

∫
R̃

I[h̃(z) ≤ 1] L(z; x, x0) fY(ϕ(z; x0))|Jϕ(z; x0)|dz

where

L(z; x, x0) =
fY(ϕ(z; x))|Jϕ(z; x)|
fY(ϕ(z; x0))|Jϕ(z; x0)|

.

is the likelihood ratio between the density of z at x and at x0. Under appropriate conditions:

f (x) = F ′(x) =
d

dx

∫
R̃

I[h̃(z) ≤ 1]L(z; x, x0)fY(ϕ(z; x0))|Jϕ(z; x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]
(
d

dx
L(z; x, x0)

)
fY(ϕ(z; x0))|Jϕ(z; x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]
(
d

dx
L(z; x, x0)

)
fY(ϕ(z; x))|Jϕ(z; x)|

L(z; x, x0)
dz

=

∫
R̃

I[h̃(z) ≤ 1]
(
d

dx
lnL(z; x, x0)

)
fY(ϕ(z; x))|Jϕ(z; x)|dz

=

∫
R

I[h(y) ≤ x ]S(y, x)fY(y)dy = E[I[h(Y) ≤ x ]S(Y, x)]
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where

S(y, x) =
(
∇(ln fY)(y)t∇xϕ(z; x) +

d ln |Jϕ(z; x)|
dx

)∣∣∣
z=ϕ−1(y;x)

is the score function associated with L.

This gives the unbiased likelihood ratio density estimator (LRDE)

f̂ (x) = I[h(Y) ≤ x ]S(Y, x)

where Y ∼ fY. Here, Y can have a multivariate distribution for which conditioning is hard.

This LR approach has been widely used to estimate the derivative of E[h(Y)] with respect
to a parameter of the distribution of Y (e.g., Glynn 1987, L’Ecuyer (1990), Asmussen and

Glynn 2007).
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Assumption LR. For all x ∈ [a, b], the mapping ϕ(·; x) has continuous partial derivatives
and |Jϕ(·; x)| ≠ 0. With probability 1 over the realizations of Y = ϕ(Z; x),
fY(ϕ(Z; x))|Jϕ(Z; x)| is a continuous function of x over [a, b], and is differentiable except
perhaps at a countable set of points D(Y). There is also a random variable Γ defined over

the same probability space as Y with E[Γ2] <∞ and

sup
x∈[a,b]

|I[h(Y) ≤ x ]S(Y, x)| ≤ Γ.

Proposition LR. Suppose R̃ = ϕ−1(R; x) is independent of x . Under Assumption LR, the

LRDE is unbiased for the density f (x) at x for all x ∈ [a, b], and its MISE is bounded by
(b − a)E[Γ2].
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What if R̃(x) = ϕ−1(R; x) depends on x?

In that case, when taking the derivative w.r.t. x , we must account for the displacement of

the boundary. According to Leibniz’s integral rule, we must add to F ′(x) the term

B(y, x) =

∫
∂R̃(x)

[· · · ]b(z(x), x)dz =
∫
∂R
I[h(y) ≤ x ]b(ϕ−1(y, x), x)fY(y)dy

where b(z(x), x) is the rate of displacement of the boundary ∂R̃(x) as a function of x in

the outward normal direction.

This term can be easy to estimate, e.g., when R is a rectangular box.
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GLR density estimators

Peng et al. (2020) proposed an adaptation of a generalized likelihood ratio (GLR) method of Peng

et al. (2018) to density estimation. An improved version can be found in Peng et al. (2021).

The estimators are somewhat similar to our LRDEs, although the assumptions are different and

somewhat stronger.
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Cantilever beam example

Estimated MISE = Kn−ν̂ . MISE with n = 219 is 2−e19.

ν̂ e19

KDE G−3 CDE-c LRDE KDE G−3 CDE-c LRDE

MC 0.76 0.99 0.98 1.03 15.8 22.8 22.5 16.8

Lat+s 1.03 2.06 2.04 1.55 21.9 41.6 41.9 26.4

Lat+s+b 0.93 2.27 2.25 1.25 21.0 46.8 47.0 24.7

Sob+LMS 0.97 2.21 2.21 1.31 21.5 45.7 46.1 25.6

The MISE decreases roughly as O(n−2) or better for CDE+RQMC.

For n = 219, the MISE is about 2−15.8 for the usual KDE+MC and 2−47 for the new

CDE+RQMC; i.e., MISE is divided by more than 231 ≈ 2 billions.
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SAN Example

ν̂ e19

KDE

MC 0.78 20.9

Lat+s 0.95 22.7

Sob+LMS 0.74 21.9

CDE

MC 0.96 25.6

Lat+s 1.31 30.9

Sob+LMS 1.27 29.9

LRDE

MC 1.00 20.5

Lat+s 1.22 23.5

Sob+LMS 1.16 24.6

With CDE+RQMC, we observe a convergence rate near O(n−1.3) for the MISE.

For n = 219, by using the new CDE+RQMC rather than the usual KDE+MC,

the MISE is divided by about 500 to 1000.

LRDE does not perform as well as CDE.
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Conclusion

▶ Combining a KDE with RQMC can reduce the MISE and sometimes improve its
convergence rate, even though our MISE bounds converge faster only when the

dimension is very small.

▶ The CDE is an unbiased density estimator with better convergence rate. Combining it
with RQMC can provide an even better rate, and sometimes huge MISE reductions.

▶ When we cannot find G for which Assumption 1 holds and f (x | G) is easy to compute,
the LRDE and the GLR can be good unbiased alternatives.

The LRDE is often discontinuous in U, in which case it does not combines well with

RQMC. Perhaps in some cases, one can add CMC to them before applying RQMC.

▶ Extensions: Density estimation for a function of the state of a Markov chain, using
Array-RQMC. Generalization to multivariate output.
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