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What this talk is about
Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods have been studied
extensively for estimating an integral, say E[X ], and for approximating a function from its
evaluation at a finite number of points.

How can we use them to estimate the entire distribution of X?
Here we will focus on estimating the density of X over [a, b] ⊂ R.

People often look at empirical distributions via histograms, for example.
More refined methods: kernel density estimators (KDEs).
Can RQMC improve such density estimators, and by how much?

Are there other types of density estimators than KDEs, that work better with RQMC?

We will discuss an alternative that takes the sample derivative of a smoothed estimator of
the cumulative distribution function (cdf). The smoothing can be achieved via conditional
Monte Carlo, for example.
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Small example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cdf Fk(y) := P[Yk ≤ y ].

Project duration X = (random) length of longest path from source to sink.

Want to estimate the density of X ,
f (x) = F ′(x) = d

dxP[X ≤ x ].

The sample cdf
F̂n(x) = 1

n

∑n
i=1 I[Xi ≤ x ]

is an unbiased estimator of the cdf
F (x) = P[X ≤ x ].

But its derivative F̂ ′n(x) is not a mean-
ingful estimator of f (x), because it is 0
almost everywhere.
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Yk ∼ N(µk , σ

2
k) for k = 0, 1, 3, 10, 11, and Yk ∼ Expon(1/µk) otherwise.

µ0, . . . , µ12: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Results of an experiment with n = 100 000.

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

Xdet = 48.2
mean = 64.2

ξ̂0.99 = 131.8
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Setting

Classical density estimation was developed in the context where independent observations
X1, . . . ,Xn of X are given and one wishes to estimate the density f of X from that.

Here we assume that X1, . . . ,Xn are generated by simulation from a stochastic model.
We can choose n and we have some freedom on how the simulation is performed.

The Xi ’s are realizations of a random variable X = g(U) ∈ R with density f , where
U = (U1, . . . ,Us) ∼ U(0, 1)s and g(u) can be computed easily for any u ∈ (0, 1)s .

Can we obtain a better estimate of f with RQMC instead of MC? How much better?
Whats about taking a stratified sample over [0, 1)s?
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Density Estimation

Suppose we estimate the density f over a finite interval [a, b].

Let f̂n(x) denote the density estimator at x , with sample size n.

We use the following measures of error:

MISE = mean integrated squared error =

∫ b

a
E[(f̂n(x)− f (x))2]dx

= IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]− f (x))2dx



D
ra

ft

7

Density Estimation

Simple histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh

for x ∈ Ij = [a + (j − 1)h, a + jh), j = 1, ...,m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

f̂n(x) =
1

nh

n∑
i=1

k

(
x − Xi

h

)
.
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KDE bandwidth selection: an illustration in s = 1 dimension

KDE (blue) vs true density (red) with RQMC point sets with n = 219:
lattice + shift (left), Stratified sample of U = F (X ) (right)
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Asymptotic convergence with Monte Carlo for smooth f

For any g : R→ R, define

R(g) =

∫ b

a
(g(x))2dx ,

µr (g) =

∫ ∞
−∞

x rg(x)dx , for r = 0, 1, 2, . . .

For histograms and KDEs, when n→∞ and h→ 0:

AMISE = AIV + AISB ∼ C

nh
+ Bhα .

C B α

Histogram 1 R(f ′) /12 2

KDE µ0(k2) (µ2(k))2 R(f ′′) /4 4
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The asymptotically optimal h is

h∗ =

(
C

Bαn

)1/(α+1)

and it gives AMISE = Kn−α/(1+α).

C B α h∗ AMISE

Histogram 1
R(f ′)

12
2 (nR(f ′)/6)−1/3 O(n−2/3)

KDE µ0(k2)
(µ2(k))2 R(f ′′)

4
4

(
µ0(k2)

(µ2(k))2R(f ′′)n

)1/5

O(n−4/5)

To estimate h∗, one can estimate R(f ′) and R(f ′′) via KDE (plugin).

This is under the simplifying assumption that h must be the same all over [a, b].
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Elementary quasi-Monte Carlo (QMC) Bounds (Recall)
Integration error for g : [0, 1)s → R with point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s :

En =
1

n

n−1∑
i=0

g(ui )−
∫
[0,1)s

g(u)du.

Koksma-Hlawka inequality: |En| ≤ VHK(g)D∗(Pn) where

VHK(g) =
∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂v
(u)

∣∣∣∣∣ du, (Hardy-Krause (HK) variation)

D∗(Pn) = sup
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ (star-discrepancy).

There are explicit point sets for which D∗(Pn) = O((log n)s−1/n) = O(n−1+ε), ∀ε > 0.
Explicit RQMC constructions for which E[En] = 0 and Var[En] = O(n−2+ε), ∀ε > 0.

With ordinary Monte Carlo (MC), one has Var[En] = O(n−1).
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Asymptotic convergence of KDE with RQMC
Idea: Replace U1, . . . ,Un by RQMC points.

RQMC does not change the bias.

For a KDE with smooth k , one could hope (perhaps) to get

AIV = C ′n−βh−1 for β > 1, instead of Cn−1h−1.

If the IV is reduced, the optimal h can be taken smaller to reduce the ISB as well
(re-balance) and then reduce the MISE.

Unfortunately, things are not so simple.

Roughly, decreasing h increases the variation of the function in the KDE estimator.
So we rather have something like

AIV = C ′n−βh−δ

or IV ≈ C ′n−βh−δ in some bounded region, for β > 1 and δ > 1.
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Bounding the AIV under RQMC for a KDE
KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui )

h

)
=

1

n

n∑
i=1

g̃(Ui ).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] =
∫
[0,1)s g̃(u)du = E[f̂n(x)].

RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV.

To get RQMC variance bounds, we need bounds on the variation of g̃ .

The partial derivatives are:

∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)

h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .
By expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
One of the term for v = S grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when

h→ 0, so this AIV bound grows in h as h−2s−2. Not so good!
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Improvement by a Change of Variable, in One Dimension

Suppose g : [0, 1]→ R is monotone. Change of variable w = (x − g(u))/h.

In one dimension (s = 1), we have dw/du = −g ′(u)/h, so

VHK(g̃) =
1

h

∫ 1

0

k ′
(
x − g(u)

h

)(
−g ′(u)

h

)
du =

1

h

∫ ∞
−∞

k ′(w)dw = O(h−1).

Then, if k and g are continuously differentiable, with RQMC points having D∗(Pn) = O(n−1+ε), we
obtain AIV = O(n−2+εh−2).

With h = Θ(n−1/3), this gives AMISE = O(n−4/3+ε).
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Higher Dimensions
Assumptions. Let g : [0, 1]s → R be piecewise monotone in each coordinate uj when the
other coordinates are fixed, with at most Mj pieces. Assume that all first-order partial
derivatives of g are continuous and that ‖gw1gw2 · · · gw`

‖1 <∞ for all selections of
non-empty, mutually disjoint index sets w1, . . . ,w` ⊆ S = {1, . . . , s}.

For each j ∈ S, let Gj =
∥∥∥∏`∈S\{j} g{`}

∥∥∥
1

and cj = Mj ‖k(s)‖∞
(
Gj + I(s = 2) ‖g{1,2}‖1

)
.

Proposition Then the Hardy-Krause variation of g̃ satisfies

VHK(g̃) ≤ cjh
−s +O(h−s+1) for each j .

Corollary. With RQMC point sets having D∗(Pn) = O(n−1+ε) for all ε > 0 when n→∞,
using KH and squaring gives the bound

AIV = O(n−2+εh−2s) for all ε > 0.

By picking h to minimize the AMISE bound, we obtain AMISE = O(n−4/(2+s)+ε) .

Worst than MC when s > 3. The factor h−2s hurts! But this is only an upper bound.
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Stratification of the unit cube

Partition [0, 1)s into n = bs congruent cubic cells Si :=
∏s

j=1 [ij/b, (ij + 1)/b),
i ∈ I = {i = (i1, i2, . . . , is) : 0 ≤ ij < b for each j}, for some b ≥ 2.

Construct Pn = {U1, . . . ,Un} by sampling one point uniformly in each subcube Si,
independently, and put Xi = g(Ui ) for i = 1, . . . , n.

Proposition. Suppose g is monotone. Then the KDE obtained from those points has

IV ≤ (b − a)s · k2(0) · h−2n−(s+1)/s .

Corollary. By taking h = κn−(s+1)/(6s), one has AMISE = O(n−(2/3)(s+1)/s) .

This gives a better rate than MC for s < 4.
The factor h−2 hurts, but much less than h−2s .



D
ra

ft

17

Empirical Evaluation with Linear Model in a limited region
Regardless of the asymptotic bounds, the true IV and MISE may behave better than for MC
for pairs (n, h) of interest. In a region of interest, we consider the model

MISE = IV + ISB ≈ Cn−βh−δ + Bhα .

The optimal h for this model satisfies

hα+δ =
Cδ

Bα
n−β.

and it gives MISE ≈ Kn−αβ/(α+δ).

We can take the asymptotic α (known) and B (estimated as for MC).

To estimate C , β, and δ, estimate the IV over a grid of values of (n, h), and fit a linear
regression model:

log IV ≈ logC − β log n − δ log h.
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Model estimation

For each (n, h), we estimate the IV by making nr = 100 indep. replications of the RQMC
density estimator, compute the variance at ne = 1024 evaluation points (stratified) over
[a, b], and multiply by (b − a)/n. We use logs in base 2, since n is a power of 2.

Validation

After estimating model parameters, we can test out-of-sample with independent simulation
experiments at pairs (n, h) with h = ĥ∗(n).

For test cases in which density is known, to assess what RQMC can achieve, we can compute
a MISE estimate at those pairs (n, h), and obtain new parameter estimates K̃ and ν̃ of model
MISE ≈ Kn−ν .
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Numerical illustrations

RQMC Point sets:

I MC: Independent points (Crude Monte Carlo),

I Stratification: stratified unit cube,

I LMS: Sobol’ points with left matrix scrambling (LMS) + digital random shift,

I NUS: Sobol’ points with nested uniform scrambling.



D
ra

ft

20

Simple test example with standard normal density

Let Z1, . . . ,Zs i.i.d. standard normal generated by inversion, and

X =
Z1 + · · ·+ Zs√

s
.

Then X ∼ N (0, 1).

Here we can estimate IV, ISB, and MISE accurately.
We can compute

∫ b
a f ′′(x)dx exactly.

We take [a, b] = [−2, 2].
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Estimates of model parameters for KDE

ISB = Bhα, IV ≈ Cn−βh−δ, MISE ≈ κn−ν

We have α = 4 and B = 0.04754.

method MC Sobol + NUS

s 1 1 2 3 5 20

R2 0.999 0.999 1.000 0.995 0.979 0.993
β 1.017 2.787 2.110 1.788 1.288 1.026
δ 1.144 2.997 3.195 3.356 2.293 1.450
α 3.758 3.798 3.846 3.860 3.782 3.870

ν̃ 0.770 1.600 1.172 0.981 0.827 0.730
e19 16.96 34.05 24.37 20.80 17.91 17.07

For n = 219, we have MISE ≈ 2−e19.
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Convergence of the MISE, for s = 2, for histograms (left) and KDE (right).
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Displacement of a cantilever beam (Bingham 2017)

Displacement D of a cantilever beam with horizontal load X and vertical load Y :

D =
4L3

Ewt

√
Y 2

t4
+

X 2

w4

where L = 100, w = 4, t = 2 (in inches), X , Y , and E are independent and normally
distributed with means and standard deviations:

Description Symbol Mean St. dev.

Young’s modulus E 2.9× 107 1.45× 106

Horizontal load X 500 100
Vertical load Y 1000 100

We want to estimate the density of X̃ = D/2.2535− 1
over [a, b] = [0.336, 1.561] (about 99.5% of density).
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Parameter estimates of the linear regression model for IV and MISE:

IV ≈ Cn−βh−δ, MISE ≈ κn−ν

Point set Ĉ β̂ δ̂ ν̂

KDE with Gaussian kernel, α = 4

Independent 0.210 0.993 1.037 0.789
Sobol+LMS 5.28E-4 1.619 2.949 0.932
Sobol+NUS 5.24E-4 1.621 2.955 0.932
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log2(IV) vs log2 n for cantilever with KDE, for fixed h.
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A weighted sum of lognormals, in s = 12 dimensions

X =
s∑

j=1

wj exp(Yj)

where Y = (Y1, . . . ,Ys)t ∼ N (µ,C).

Let C = AAt. To generate Y, generate Z ∼ N (0, I) and put Y = µ + AZ.

We will use principal component decomposition (PCA).

This has several applications. In one of them, with wj = s0(s − j + 1)/s, e−ρ max(X − K , 0)
is the payoff of a financial option based on an average price at s observation times, under a
GBM process. Want to estimate density of positive payoffs.

Numerical experiment: Take s = 12, ρ = 0.037, s0 = 100, K = 101, and C defined
indirectly via: Yj = Yj−1(µ− σ2)j/s + σB(j/s) where Y0 = 0, σ = 0.12136, µ = 0.1, and
B(·) a standard Brownian motion.

We will estimate the density of e−ρ(X − K ) over [a, b] = [0, 50].
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Histogram of positive values from n = 106 independent simulation runs:
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14 15 16 17 18 19 20

−40

−30

−20

log2(n)

lo
g
2
(I

V
)

Independent, h = 2−3,5

Sobol+NUS, h = 2−3,5

Independent, h = 2−1,5

Sobol+NUS, h = 2−1,5

Independent, h = 20,5

Sobol+NUS, h = 20,5

The RQMC bound in s = 12 dimension gives a worst rate than MC, but we observe a better
actual IV and MISE.
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Alternative approach:
Can we take the stochastic derivative of an estimator of F?

Can we estimate the density f (x) = F ′(x) by the derivative w.r.t. x of an estimator of F (x).

A simple candidate cdf estimator is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ].

However dF̂n(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!
We need a smoother estimator of F .



D
ra

ft

27

Conditional Monte Carlo (CMC) for Derivative Estimation
Idea: Replace the indicator I[Xi ≤ x ] by its conditional cdf given filtered (reduced)
information G:

F (x | G) := P[X ≤ x | G]

where the sigma-field G contains not enough information to reveal X but enough to compute
F (x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x which is
differentiable except perhaps over a denumerable set of points, and for which the derivative
F ′(x | G) = dF (x | G)/dx (when it exists), which is itself a random variable for each x , is
bounded uniformly in x by some random variable Γ having finite variance.

Theorem: F ′(x | G) is an unbiased estimator of f (x), with variance bounded uniformly in x .

Overall estimator with n iid replicates: f̂cmc,n(x) = 1
n

∑n
i=1 F

′(x | Gi ).

With this estimator, ISB = 0, so MISE = IV, which is rather easy to estimate.

The idea was introduced by Asmussen (2018) for a sum of random variables.
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Application to the normalized sum of standard normals

We had

X =
Z1 + Z2 + · · ·+ Zs√

s

where each Zj ∼ N (0, 1). For CMC, we can leave out Zs , so G = (Z1, . . . ,Zs−1) and

F (x | G) = P[X ≤ x | Z1, . . . ,Zs−1] = P[Zs ≤ x
√
s − (Z1 + Z2 + · · ·+ Zs−1)]

= Φ(x
√
s − (Z1 + Z2 + · · ·+ Zs−1)).

The resulting density estimator is

F ′(x | G) = φ(x
√
s − (Z1 + Z2 + · · ·+ Zs−1))

√
s.

Assumption 1 is easily verified.
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s = 3 s = 20
MC Sobol+LMS Sobol+NUS MC Sobol+LMS Sobol+NUS

CMC
ν 1.019 2.116 2.094 0.988 0.961 0.982

e19 21.36 40.81 40.65 19.27 19.58 19.54

KDE
ν 0.798 0.976 0.975 0.769 0.771 0.760

e19 17.01 20.79 20.80 17.00 17.10 17.07

For n = 219, we have MISE ≈ 2−e19.

We see that CMC is always helping, with both MC and RQMC.

CMC+RQMC brings a huge gain in 3 dimensions, much less in 20 dimensions.
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Cantilever beam

D =
4L3

Ewt

√
Y 2

t4
+

X 2

w4

where E , X , Y are normal r.v.’s. Want density over [a, b] = [0.407, 1.515].

For CMC, we can leave out E , i.e., take G = (X ,Y ). Then,

F (d | G) = P[D ≤ d | X ,Y ] = P

[
4L3

Ewt

√
Y 2

t4
+

X 2

w4
≤ d | X ,Y

]
= 1− Φ

 4L3

dwt

√
Y 2

t4 + X 2

w4 − µE

σE

 .

Taking the derivative w.r.t. d , we get

F ′(d | G) = φ

 4L3

dwt

√
Y 2

t4 + X 2

w4 − µE

σE

× 4L3

d2wtσE

√
Y 2

t4
+

X 2

w4
.
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Estimated MISE = Kn−ν .

For n = 219, we have MISE ≈ 2−e19.

MC Strat LMS NUS

CMC
ν 1.02 1.80 2.22 2.16
e19 18.54 30.64 43.18 43.08

KDE
ν 0.81 0.89 0.94 0.96
e19 15.12 18.08 21.33 21.35
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Small example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cdf Fk(y) := P[Yk ≤ y ].

Project duration X = (random) length of longest path from source to sink.

Want to estimate the density of X ,
f (x) = F ′(x) = d

dxP[X ≤ x ].

We saw that F̂ ′n(x) is not a meaningful
estimator of f (x).

0
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2

Y1
Y2

3
Y3
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sink
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Yk ∼ N(µk , σ

2
k) for k = 0, 1, 3, 10, 11, and Yk ∼ Expon(1/µk) otherwise.

µ0, . . . , µ12: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Results of an experiment with n = 100 000.

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

Xdet = 48.2
mean = 64.2

ξ̂0.99 = 131.8
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The SAN example, Sobol+NUS vs Independent points, KDE, summary for n = 219 = 524288.

Density
Independent points Sobol+NUS

h log2 IV IV rate log2 IV IV rate

0.10 -16.64 -0.999 -16.71 -1.006
0.18 -17.96 -0.999 -18.18 -1.015
0.32 -19.33 -0.998 -19.79 -1.035
0.43 -19.99 -0.998 -20.71 -1.064
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CMC for the SAN Example
Want to estimate the density of the longest path length X .

CMC estimator of P[X ≤ x ]: F (x | G) = P[X ≤ x | {Yj , j 6∈ L}]

where L = {4, 5, 6, 8, 9} and Yj = F−1j (Uj). This estimator continuous in the Uj ’s and in x .
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Y11
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To compute F (t | G): for each l ∈ L, say from al to bl , compute the length αl of the longest path
from 1 to al , and the length βl of the longest path from bl to the destination.

The longest path that passes through link l does not exceed t iff αl + Yl + βl ≤ x , which occurs with
probability P[Yl ≤ x − αl − βl ] = Fl [x − αl − βl ].

Since the Yl are independent, we obtain

F (x | G) =
∏
l∈L

Fl [x − αl − βl ].

To estimate the density of X , take the derivative w.r.t. x :

F ′(x | G) =
d

dx
F (x | G)

w.p.1
=

∑
j∈L

fj [x − αj − βj ]
∏

l∈L, l 6=j

Fl [x − αl − βl ].

Assumption 1 holds if the Fj are smooth enough, and then E[F ′(x | G)] = fX (x).
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Estimated MISE = Kn−ν , for KDE with CMC.

For n = 219, MISE ≈ 2−e19.

MC LMS NUS

CMC
ν 0.99 1.34 1.32
e19 25.48 29.67 29.66

For comparison, the base case without CMC and RQMC gave e19 ≈ 20.

With MC, the IV converges as O(1/n) and there is no bias, so MISE = IV.

With RQMC, we observe a convergence rate near O(n−4/3) for the IV and the MISE.
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Conclusion

I Both CMC and RQMC can improve the convergence rate of the IV and MISE when
estimating a density.

I With KDEs, the convergence rates observed in small examples are much better than the
bounds proved from standard QMC theory.
There are opportunities for QMC theoreticians here!

I The combination of CMC with RQMC for density estimation is very promising.
Lots of potential applications.

I Future: Density estimation for a function of the state of a Markov chain, using
Array-RQMC.

I More applications.
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