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Simulation Challenges

Want to simulate large complex systems to study their behavior and
improve decision making.



Examples: Climate change and environment

Need three-dimensional dynamic models for concentrations of greenhouse
gases CO5, CHy, N5O, freons, etc., aerosols, water vapor, air temperature,
water temperature, water currents, surface ice and snow, clouds, etc.

Stochastic aspects.



Simulating a whole human body, or one of its partsf
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Spread of infectious diseases, mutations, resistance.
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E.g., virus and bacteria in large populations of humans, animals, and
plants. Resistance to antibiotics. Etc.



Social networks, crowd behavior, evacuations, ...

Fertile ground for agent-based modeling.
Behaviors are stochastic and not independent, not easy to model.



Communication networks (various devices,
stochastic demand)
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Modeling (or even forecasting) the stochastic demand is difficult.
Lots of dependence.



Transportation networks, logistic and distribution
systems.

Similar problems. Uncertain demands and travel times.



Stochastic models in finance and economics. Risk
analysis.

B sap 500 | M Barclays ETH 557 va | B ipath 5P 500 Dyn vix

Much uncertainty here. Most models are SDEs based on historical data.
How to better exploit external knowledge? Dependence between asset
prices in a portfolio (beyond correlations) has a large impact on risk.
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Health-care (clinics, hospitals, ambulances, patient
evolution)

Stochastic demand, the evolution of each patient involves uncertainty, etc.



Telephone call centers (or contact centers)

Include sales by telephone, customer service, billing/recovery, public
services, 911, taxis, pizza order, etc. Employ around 3% of workforce in
North America. More than agriculture!
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Simulation Challenges

Want to simulate large complex systems to study their behavior and
improve decision making.

» Speed of execution of large simulations.
> Interoperability, interaction between models, reuse, standards, etc.

» Modeling methodology and tools for large and complex systems.
Agent-based modeling. Modeling human behavior.



Simulation Challenges

Want to simulate large complex systems to study their behavior and
improve decision making.

v

Simulation-based optimization and control.

\4

Speed of execution of large simulations.

\4

v

Modeling methodology and tools for large and complex systems.
Agent-based modeling. Modeling human behavior.

Interoperability, interaction between models, reuse, standards, etc.
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Simulation Challenges

Want to simulate large complex systems to study their behavior and
improve decision making.

» Trustable (valid) stochastic modeling of complex systems.
Taking account of various type of external information.

v

Simulation-based optimization and control.

\4

Speed of execution of large simulations.

\4

v

Modeling methodology and tools for large and complex systems.
Agent-based modeling. Modeling human behavior.

Interoperability, interaction between models, reuse, standards, etc.
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Big Data

Sometimes huge amounts of data available to build stochastic models.
How can we exploit this huge mass of data to build credible models?

How to effectively update the models in real time as new data comes in?
Strong links with data mining, machine learning, Bayesian statistics.

Generally much more complicated than selecting univariate distributions
and estimating their parameters. Model inputs are often multivariate
distributions and stochastic processes, with hard-to-model (but important)
dependence between them, and parameters that are themselves stochastic.
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lllustrative Example: A Multiskill Call Center

Different call types. Depends on required skill, language, importance, etc.
Agent types (groups). Each has a set of skills to handle certain call types.
Service time distribution may depend on pair (call type, agent group).

Arrivals f‘l l/\Z e l/\K
Abandonments
Call routing rules and queues  —
4
Agent types G . S
Service cdf Gl,l. . GK71 GLJ . GKTJ

' ' ' '



Baby Example: the N Model

Call Type 1 Call Type 2

o ,l, ,,,,,,,, i, o Arrivals

Waiting queue |

<€----- F-----% Abandonments

Router

Agent group !

Served

Here, group 2 can serve both call types.

In large call centers, can have over 100 call types and agent groups.
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Typical call center

Arrival process is nonstationary and much more complicated than Poisson.
Service times are not exponential and not really independent.
Abandonments (balking + reneging), retrials, returns, etc.
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Typical call center

Arrival process is nonstationary and much more complicated than Poisson.
Service times are not exponential and not really independent.
Abandonments (balking + reneging), retrials, returns, etc.

Skill-based routing: Rules that control in real time the call-to-agent and
agent-to-call assignments. Can be complex in general.
Static vs dynamic rules. (e.g., using weights).
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Typical call center

Arrival process is nonstationary and much more complicated than Poisson.
Service times are not exponential and not really independent.
Abandonments (balking + reneging), retrials, returns, etc.

Skill-based routing: Rules that control in real time the call-to-agent and
agent-to-call assignments. Can be complex in general.
Static vs dynamic rules. (e.g., using weights).

Agents using fewer skills tend to work faster. Also less expensive.
Compromise between single-skill agents (specialists) vs flexible multiskill
agents (generalists).

Staffing/scheduling/routing optimization: objective function and
constraints can account for cost of agents, service-level, expected excess
waiting time, average wait, abandonment ratios, agent occupancy ratios,
fairness in service levels and in agent occupancies, etc. Various constraints
on work schedules.
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Examples of common performance measures

Service level: SL(7) = fraction of calls answered within acceptable waiting
time 7. (May exclude calls that abandon before 7.)

May consider its observed value over a fixed time period (random
variable), or its expectation, or the average in the long run (infinite
horizon), or a tail probability P[SL(7) > /].
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Examples of common performance measures

Service level: SL(7) = fraction of calls answered within acceptable waiting
time 7. (May exclude calls that abandon before 7.)

May consider its observed value over a fixed time period (random
variable), or its expectation, or the average in the long run (infinite
horizon), or a tail probability P[SL(7) > /].

Abandonment ratio: fraction of calls that abandon.
Average waiting time for each call type.

Agent occupancy: fraction of the time where each agent is busy.
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Performance evaluation, single call type

Arrival rate ), service rate y, load \/u, s servers, waiting time .
Assumes Poisson arrivals with constant rate (not realistic) + single type.

M/M/s queue (Erlang-C). CTMC model.
Approx. of P[W > 0], P[W > 7], and E[W].



Performance evaluation, single call type

Arrival rate ), service rate y, load \/u, s servers, waiting time .

Assumes Poisson arrivals with constant rate (not realistic) + single type.

M/M/s queue (Erlang-C). CTMC model.
Approx. of P[W > 0], P[W > 7], and E[W].

Approximation under quality and efficiency driven (QED) regime:
A — oo and s — co with o = P[W > 0] € (0,1) fixed.

Halfin and Whitt (1981).

Square root safety staffing: s* = [A/u+ 5/ A/ u].

Could make sense for some large call centers.
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Performance evaluation, single call type

Arrival rate ), service rate y, load \/u, s servers, waiting time .
Assumes Poisson arrivals with constant rate (not realistic) + single type.

M/M/s queue (Erlang-C). CTMC model.
Approx. of P[W > 0], P[W > 7], and E[W].

Approximation under quality and efficiency driven (QED) regime:
A — oo and s — co with o = P[W > 0] € (0,1) fixed.
Halfin and Whitt (1981).

Square root safety staffing: s* = [A/u+ 5/ A/ u].
Could make sense for some large call centers.

M/M/s + M queue (Erlang-A).

Approx. of 7 = P[abandon], P[W > 0], and o = P[W > 7].
QED(7): Fix 7, &, and v > 0.

Modified square root rule: s* = [(1 —y)A/u+ 5/ (1 —y)\/u].
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Multiple call types, multiskill agents

Much more difficult.
Call routing rules become important and can be complicated.
Approximations for service levels are not very good.

Must rely on simulation.

In our lab, we develop ContactCenters, a Java simulation and optimization
software library for contact centers. Also some tools for model estimation
from data.



Data on call arrivals

Available observations (for each day): X = (Xi,...
over (15 or 30 minutes) successive time periods.

, Xp), arrival counts
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Data on call arrivals
Available observations (for each day): X = (Xi,...,X}), arrival counts

over (15 or 30 minutes) successive time periods.
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Ex.: Typical realizations of X for a Monday (15-min periods).
Non-stationary. Strong dependence between the X;'s.

Similar behavior in many other settings: customer arrivals at stores,
incoming demands for a product, arrivals at hospital emergency, etc.
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All days,

# calls arrived this day after T
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0

call volumes before and after T =2 p.m.

+
+
+ Mon. +_¢ + +
+  Tue. +
+ Wed. +#j+++ #ﬂ +
+ Thur. + *tf' -t
Fri. + R+ +
+ Sat. +++_.}=s’ *
Sun. Hht +
fowrs
T T T T T 1
2000 4000 6000 8000 10000 12000

# calls arrived this day before T

21



Modeling the arrivals

Stationary Poisson process as in Erlang formulas? No.
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Modeling the arrivals
Stationary Poisson process as in Erlang formulas? No.

Poisson process with time-dependent arrival rate A\(¢)?

Would imply that Var[X;] = E[X]]. Typically far from true.
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Modeling the arrivals
Stationary Poisson process as in Erlang formulas? No.

Poisson process with time-dependent arrival rate A\(¢)?
Would imply that Var[X;] = E[X]]. Typically far from true.

True arrival rate depends on several factors that are hard to predict. We
can view it as stochastic, say

N; = BjA;  and X; ~ Poisson(A;) over period j, where

B = (Bu,. .., Bp) = vector of random busyness factors with E[B;] = 1,
A = (A1,...,Ap) = vector of constant base rates (scaling factors).
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Modeling the arrivals
Stationary Poisson process as in Erlang formulas? No.

Poisson process with time-dependent arrival rate A\(¢)?
Would imply that Var[X;] = E[X]]. Typically far from true.

True arrival rate depends on several factors that are hard to predict. We
can view it as stochastic, say

N; = BjA;  and X; ~ Poisson(A;) over period j, where

B = (Bu,. .., Bp) = vector of random busyness factors with E[B;] = 1,
A = (A1,...,Ap) = vector of constant base rates (scaling factors).

Var[Xj] = E[Var[Xj| Bj]] + Var[E[Xj|Bj]] = Aj(1 + A;Var[B)]).
Dispersion index (DI) and its standardized version (SDI):

DI(X;) = Var[Xj]/\; =1+ \jVar[Bj] > 1,
SDI(X;) = (DI[X] — 1)/ = Var[B]].



23

Corr[B;, B]

Comb X = L T VarlBIn ) (L + 1/ (VB

We expect:

DI(Xj) > 1 and Corr[Xj, Xi] ~ Corr[B;, By] for “large” \;Var[B)];
i.e., large periods or high traffic.

DI(X;) =~ 1 and Corr[X;, Xi] = 0 for small \;Var[B;].

Approximately a Poisson process when \;Var[B;] is small.

Do we see this in real data?
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Corr[B;, By] ‘
(2 + 1/ (VarlB 1) (3 + 1/ (Var[ B2

Corr[X;, Xk]

We expect:

DI(Xj) > 1 and Corr[Xj, Xi] ~ Corr[B;, By] for “large” \;Var[B)];
i.e., large periods or high traffic.

DI(X;) =~ 1 and Corr[X;, Xi] = 0 for small \;Var[B;].

Approximately a Poisson process when \;Var[B;] is small.

Do we see this in real data?

In a simulation, we want to generate the B;'s, then generate the arrivals
one by one conditional on the piecewise-constant rates A;.

Another approach (less convenient) is to model and directly generate the
Xj's, then randomize the arrival times.

Modeling the rates is harder because they are not observed!



Data from a public utility call center (U)

One call type, data aggregated over 40 15-minute periods per day, from
8:00 to 18:00, Monday to Friday, after removing special days.
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Call center U
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DI (left) and SDI (right) as a function of j for different period lengths.
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Corr[Xj, Xi] in call center U, for 30 min to 4 hour data aggregations.
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Data from an emergency call center (E)

Take one call type, Monday to Thursday (similar days), after removing
special days (holidays, etc.). Other days have different arrival patterns.
Day starts at 5 a.m. and is divided into 48 periods of 30 minutes.
Mean counts per period, ~ A;:
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Emergency call center
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DI (left) and SDI (right) as a function of j for different period lengths.



Corr[Xj, Xi] in call center E, for 30 min to 4 hour data aggregations.
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Data from a business call center (B)

One call type, Tuesday to Friday, after removing special days.
Opening hours (8:00 to 19:00) divided into 22 periods of 30 minutes.
Monday and Saturday have different patterns. Mean counts per period:
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Call center B
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DI (left) and SDI (right) as a function of j for different period lengths.
SDI is not as large as for center E, but DI is much larger.



Corr[Xj, Xi] in call center B, for 30 min to 4 hour data aggregations.
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Rate models

N; = Bj\; over period j.

Poisson
PGsingle
PGindep
PG2
PG2pow
PGnorta

PGnortaAR1
PGnortaARM

Bj =1 for all j.

Bj = B for all j, where B ~ Gamma(c, «).

Bj's are independent, B; ~ Gamma(aj, o).

Bj = éjB, combines common B and independent Bj’s.
B; = B;BPi /E[BP].

B has gamma marginals B; and dependence specified by
a normal copula (we fit all Spearman correlations).

Bj = G {(®(Z))) where Z = (Z, ..., Z,) ~ N(O,R).
Normal copula with Corr[Z;, Z,] = pl=.

Normal copula with Corr[Z;, Z] = apli=<l 4 c.
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Difficulty: We want to model the B;'s, but they are not observed, only the
Xj's are observed. This makes parameter estimation by maximum
likelihood (ML) much more challenging, because we have no closed form
expression for the likelihood.

Moment matching is often possible, but much less robust and reliable.
We use Monte Carlo-based methods for ML estimation.
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Example: Likelihood Function for PG2 Model

I:B;J = busyness factor for day i, period j.
B; = busyness factor for day i.

B) 'Jeijéhjéi Oc?jé;?7 e %bij
p(X|B, 8, cx, A) / / X1 (o) dB;;
i=1 j= 1 J J

“le—aiBi;

_Hﬁ/oo (N BBy s e MBiuP oy B] e B
: 0 Xi j! () "
I = P
11 oy 11 ﬁ Moy +Xiy) _ (BiA)™
F(aj)’ 14 X,',J'! (Oéj + BI.)\J.)X,'J+aj
P 1 P
e Floy +X,)
1} r(aj)lj| |:HH Xi j!
. ILI/OO f[ (B | BB e
i=1 70 (aJ + Biyj)Xiite r(s)

Want to maximize this. No closed form expression for the last integral.




How the models match the DI for Center U

Coefficient of dispersion
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Comparison of the DI for the models and data.
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How the models match the correlations for Center U
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Comparison of sample correlation between past and future demand.



How the distribution predicted by the model fits the
data out-of-sample

For each observation i (one day), estimate the model without that day,
then for each period j (or block of successive periods) compute interval

[Lij, Uij] such that P[X;; € [L;, U ]] = p (desired coverage) according
to model, then compute the proportion of days where X; ; € [L;;, U; ] and
compare with p via sum of squares.

RMS Deviation of out-of-sample coverage probability, for call center U.

75% target cover

90% target cover

1/4h | 1/2h | 1h 2 h 4h | 1/4h | 1/2h | 1h 2 h 4 h
Poisson 38.9 47.1 | 539 | 59.6 | 64.6 | 39.2 50.9 | 59.7 | 67.5 | 744
PGsingle 8.6 8.0 6.9 4.0 1.7 7.3 7.0 5.4 3.1 1.4
PGindep 45 105 | 246 | 36.5 | 46.3 1.8 8.4 223 | 378 | 51.2
PG2 4.4 3.4 3.8 3.3 2.2 2.0 3.0 3.5 2.5 1.7
PG2pow 4.0 2.3 2.4 2.7 2.0 15 1.7 1.6 1.1 1.1
PGnorta 4.4 4.1 3.9 3.4 2.7 1.8 2.2 2.4 2.3 2.4
PGnortaARM 4.4 4.0 4.2 4.0 3.2 1.8 2.3 2.5 2.7 2.2




How the models match the DI, for Center E
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The DI for the models and data.
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How the models match the correlations, for Center E
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RMS Deviation of out-of-sample coverage probability, for call center E:

a1

75% target cover

90% target cover

05h | 1h 2h 4 h 8h [ 05h | 1h 2h 4 h 8 h
Poisson 10.7 | 166 | 23.5 | 31.3 | 37.5 8.5 13.8 | 21.0 | 30.1 | 38.7
PGsingle 7.2 10.0 | 125 | 135 | 12.0 53 78 | 10.1 | 114 | 9.0
PGindep 1.3 53 | 127 | 21.4 | 29.9 0.8 41 | 10.2 | 18.7 | 29.1
PG2 2.1 49 8.7 | 114 | 116 1.6 3.8 6.8 9.4 8.8
PG2pow 1.5 2.9 4.4 51 5.0 1.0 2.0 31 3.4 3.0
PGnorta 1.3 1.7 1.7 1.7 1.3 0.8 11 1.2 1.3 0.8
PGnortaARM 1.3 2.4 3.4 43 4.5 0.9 15 2.2 2.7 2.8




How the models match the DI for Center B

Coefficient of dispersion
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10
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The DI for the models and data.
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How the models match the correlations for Center B
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RMS Deviation of out-of-sample coverage probability, for call center B.
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75% target cover

90% target cover

05h | 1h 2h 4 h 8h | 05h | 1h 2h 4 h 8 h
Poisson 43.1 | 50.9 | 57.5 | 61.9 | 66.7 | 447 | 55.8 | 64.4 | 71.3 | 77.7
PGsingle 7.6 7.1 6.1 4.0 2.3 5.8 6.1 5.4 4.0 3.4
PGindep 3.1 13.2 | 27.3 | 39.3 | 48.7 2.0 12.1 | 26.4 | 41.2 | 51.9
PG2 4.8 4.1 51 43 2.6 3.0 2.9 3.3 2.9 2.3
PG2pow 25 3.3 4.1 2.0 0.8 1.7 33 3.7 2.8 2.7
PGnorta 3.2 3.0 2.7 1.2 1.3 2.0 2.4 2.2 1.7 2.0
PGnortaARM 3.2 31 2.8 1.9 0.5 2.0 2.4 2.3 2.2 2.8
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Impact of choice of arrival model

Take call center U on a week day. Single call type.
Lognormal service times with mean 206.4 and variance 23667 (seconds).

Abandonment at rate 1/2443 per second.

Staffing in each period: (16, 24, 31, 36, 43, 48, 51, 52, 56, 60, 62, 65, 67,
67, 66, 65, 62, 61, 60, 61, 64, 64, 63, 63, 64, 64, 64, 64, 65, 65, 64, 64,
62, 60, 58, 56, 53, 49, 48, 44).

Performance measures:

average waiting time (AWT);

service level (SL) with threshold 7 = 120 seconds.

We simulated 10,000 days with each arrival model.
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Poisson
- PGsingle
PGindep
-+ PG2
PG2pow
- PGnorta

Evolution of the SL (left) and AWT in seconds (right) during the day for

the Quebec utility society.

SL = proportion of calls answered within 120 seconds in the long run.
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Histogram of the distribution of the daily SL (left) and daily AWT (right),
with different models, for the Quebec utility society.

SL = proportion of calls answered within 120 seconds during the day.
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More on arrival process modeling

Modeling the arrival rates over successive days.
Dependence between the days.

Seasonal effects (day of the week, period of the year).
Special days (holidays, special events, etc.).

External effects (weather, marketing campaigns, etc.).



More on arrival process modeling

Modeling the arrival rates over successive days.
Dependence between the days.

Seasonal effects (day of the week, period of the year).
Special days (holidays, special events, etc.).

External effects (weather, marketing campaigns, etc.).

Dependence between call types: the arrival rate should in fact be a
multivariate process. Modeling via copulas.
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More on arrival process modeling

Modeling the arrival rates over successive days.
Dependence between the days.

Seasonal effects (day of the week, period of the year).
Special days (holidays, special events, etc.).

External effects (weather, marketing campaigns, etc.).

Dependence between call types: the arrival rate should in fact be a
multivariate process. Modeling via copulas.

Arrival bursts in emergency call center.
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Modeling the service times

In call center U, the available data for service times is the number of calls
of each type handled by each agent on each day, and the average duration
of these calls. From this, we can estimate the mean and variance of a
service times and match those to the mean and variance of a distribution

such as lognormal or gamma.

Service times are usually not exponential.
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Modeling the service times

In call center U, the available data for service times is the number of calls
of each type handled by each agent on each day, and the average duration
of these calls. From this, we can estimate the mean and variance of a
service times and match those to the mean and variance of a distribution
such as lognormal or gamma.

Service times are usually not exponential.
Common assumption: the distribution depends only on the call type.

But on closer examination, we find that it depends on the individual
agent, on the number of call types that the agent is handling, and may
change with time (learning effect, motivation and mood of agent, etc.).

This is an important fact to consider when making work schedules!
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Average service time per agent for one call type, in
center U (more than 1000 agents)
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Another call type

Temps de service
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Another call type

Temps de service moyen par agent pour le type d'appel R_Panne_F

1000

800
L
Hh

Temps de service

N
:t + +
+

T T T T T T
0 1000 2000 3000 4000 5000 6000
Nombre d'appels



Four different agents, same call type
All have handled more than 1000 calls. Daily averages:

Temps de service
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Same agent, 4 call types, weekly averages

Temps de service
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Same agent, 6 call types

Temps de service hebdomadaire moyen de I'agent
par type d'appel
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Same agent, 8 call types

Temps de service
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Modeling the evolution of service time averages
For given agent and call type, day i:
Mi = Ba, + ai + Tw; + €,

where d; = type of day i, w; = week of day /, and I'; is a random effect
that may follow, e.g., an AR process:

My = prwfl + ¢W'

The ¢ and 1, are residuals (noise).

This gives better predictions than just taking the overall average for each
agent.

There may also be common effects across agents.

Better: Would like to model the evolution of all distribution parameters.
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Performance measures and optimization

For a given staffing and routing strategy, the SL on a given day (or given
period) is a random variable. We may be interested in its distribution.

What if we pay a penalty iff the SL is below a given number today?
After solving some work-schedule optimization problem in some call

center, we re-simulated with our best feasible solution for 10000 days, and
computed the empirical distribution of the SL.
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Example of scheduling optimization problem
Suppose the routing rules are fixed.

Several call types, several agent types, several time periods.
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Example of scheduling optimization problem
Suppose the routing rules are fixed.
Several call types, several agent types, several time periods.

A shift type specifies the time when the agent starts working, when he/she
finishes, and all the lunch and coffee breaks.
Cs.q = cost of an agent of type s having shift type q.
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Example of scheduling optimization problem
Suppose the routing rules are fixed.
Several call types, several agent types, several time periods.

A shift type specifies the time when the agent starts working, when he/she
finishes, and all the lunch and coffee breaks.
Cs.q = cost of an agent of type s having shift type q.

The decision variables x and z are:

(i) x5, = number of agents of type i having shift type g;

(i) zs,sj = number of agents of type ¢ that work as type-s agents in
period j, with Sg C S; (they use only part of their skills).

This determines indirectly the staffing vector y, where y; ; = num. agents
of type s in period j, and a; , = 1 iff shift g covers period j:

Vsj = E ajqxsq—i—g Z|sj— g Zs1j for all s, .

lest lesSs
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Scheduling Optimization Problem
x = vector of shifts; ¢ = their costs; y = staffing vector;
(Long-run) service level for type k in period j (depends on entire vector y):

(y) = E[num. calls type k in period j answered within time limit]
kW) = E[num. calls type k in period j, ans., or abandon. after limit]”

(PO) :  [Scheduling problem]
min cfx = Zgzl Zf,‘):l Cs,qXs,q
subject to Ax+ Bz =,
8k j(¥) = Ik for all k, /,
g(y) =1l forallj,
gk(y) > Ik for all k,

gly) = 1,
x>0,z> 0,y >0, and integer.
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Sample-path optimization via simulation

We simulate n independent operating days of the center, to estimate the
functions g.

Let w represent the source of randomness, i.e., the sequence of
independent uniform r.v.'s underlying the entire simulation (n runs).

The empirical SL's over the n simulation runs are:
Znkj(y,w) for call type k in period j;
Znj(y,w) aggregated over period j;
Znk(y,w) aggregated for call type k;
2n(y,w) aggregated overall.
For a fixed w, these are deterministic functions of y.

We replace the (unknown) functions g(-) by g(:,w) and optimize.

To compute them at different values of y, we use simulation with
well-synchronized common random numbers. Discuss.



Empirical (sample) scheduling optimization problerr7|1

(SPO,) : [Sample scheduling problem]

min cfx =), fo:l Cs,q%s,q

subject to Ax+ Bz =y,
Enkj(y) = Ik for all k, j,
8njly) = Ij for all j,
Enk(y) = Ik for all k,
gn(Y) 2 l:
x >0,z >0, and integer.

Theorem: When n — oo, the optimal solution of SP0,, converges w.p.1 to
that of PO. Moreover, if a standard large deviation principle holds for g
(which is typical), the probability that the two solutions differ converges to
0 exponentially with n. [Adaptation of Vogel 1994, for example.|
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Solving the sample optimization problem

Integer programming with cutting planes.

[Atlason, Epelman, and Henderson, 2004; Cezik and L'Ecuyer 2005]
Replace the nonlinear constraints in SPQ, by a set of linear constraints.
This gives an integer program (IP).

We start with a relaxation of the IP problem (fewer constraints).

Then, at each step, use simulation to compute the service levels in SP0,,
for the optimal solution y of the current IP.

For each SL constraint that is not satisfied, add a cut based on estimated
subgradient.

Stop when all SL constraints of SP0,, are satisfied.
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for the optimal solution y of the current IP.
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subgradient.
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In practice, for large problems, we solve the IP as an LP and round the
solution (at each step, to be able to simulate). We select a rounding
threshold ¢ (usually around 0.5 or 0.6). Heuristic!
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Solving the sample optimization problem

Integer programming with cutting planes.

[Atlason, Epelman, and Henderson, 2004; Cezik and L'Ecuyer 2005]
Replace the nonlinear constraints in SPQ, by a set of linear constraints.
This gives an integer program (IP).

We start with a relaxation of the IP problem (fewer constraints).

Then, at each step, use simulation to compute the service levels in SP0,,
for the optimal solution y of the current IP.

For each SL constraint that is not satisfied, add a cut based on estimated
subgradient.

Stop when all SL constraints of SP0,, are satisfied.

In practice, for large problems, we solve the IP as an LP and round the
solution (at each step, to be able to simulate). We select a rounding
threshold ¢ (usually around 0.5 or 0.6). Heuristic!

Phase II: run longer simulation to perform a local adjustment to the final
solution, using heuristics (add, remove, switch).
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Other objectives and constraints
(alternative formulations)

Chance constraints: Replace long-term average g j(y) by a tail probability
of the service level, e.g.:

]P)[SLk’J(T) > lk,j] > A j for all k,j
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Other objectives and constraints
(alternative formulations)

Chance constraints: Replace long-term average g j(y) by a tail probability
of the service level, e.g.:

]P)[SLk,J(T) > lk,j] > A j for all k,J

Optimizing call routing rules.
Replace constraints by penalties.

Etc.
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Conclusion

Simulation can be useful only to the extent that we can trust the model.

We can do more and more runs and compute arbitrarily tight confidence
intervals on certain unknown quantities, but this can be meaningless if the
model is not accurate enough.

Huge masses of data are becoming available (currently) at a rate never
seen before and that increases exponentially. Exploiting this data to build
credible and valid stochastic models of complex systems is in my opinion
the biggest challenge that we now face for simulation.
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