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Monte Carlo for Markov Chains

Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d .
We want to estimate

µ = E[Y ] where Y =
τ∑

j=1

cj(Xj)

and τ is a stopping time w.r.t. F{(j ,Xj), j ≥ 0}.

Ordinary MC: For i = 0, . . . , n− 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τi , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τi∑
j=1

c(Xi ,j) =
1

n

n∑
i=1

Yi .
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Classical RQMC for Markov Chains

Put Vi = (Ui ,1,Ui ,2, . . . ).

Estimate µ by

µ̂rqmc,n =
1

n

n∑
i=1

τi∑
j=1

c(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s has the following properties:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn has low discrepancy.

Dimension is s = inf{s ′ : P[dτ ≤ s ′] = 1}.
For a Markov chain, the effective dimension often remains very large!



Array-RQMC for Markov Chains

[Lécot, Tuffin, L’Ecuyer 2004]
Simulate n chains in parallel. At each step, use an RQMC point set
Pn to advance all the chains by one step, while inducing global
negative dependence across the chains.

Intuition: The empirical distribution of X0,j , . . . ,Xn−1,j , should be a
very accurate approximation of the theoretical distribution of Xj , for
each j . The discrepancy between these two distributions should be
as small as possible.

Then, we will have small error in the estimates:

E[cj(Xj)] ≈ 1

n

n−1∑
i=0

cj(Xi ,j) and µ ≈ 1

n

n−1∑
i=0

Yi .

How can we preserve low-discrepancy of X0,j , . . . ,Xn−1,j when j
increases? Can we quantify the variance improvement?
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Select some measure of discrepancy D for a point set in the unit
cube, together with RKHS of functions, and corresponding variation
V .

Let Dj = D(X0,j , . . . ,Xn−1,j), the discrepancy of the states at step j
and

µ̂rqmc,j ,n =
1

n

n∑
i=1

c(Xi ,j)

We have
Var[µ̂rqmc,j ,n] ≤ E[D2

j ]V 2(cj).

We would like to show, by induction on j , that

E[D2
j ] ≤ κjn

−α+ε,

for some α ≥ 1, where κj does not depend on n and grows only very
slowly (or not at all) with j .
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Array-RQMC algorithm

For simplicity, assume Xj ∼ U[0, 1)`;
Roughly speaking, we will view E[D2

j ] as a (`+ d)-dimensional
integral and estimate it by randomized quasi-Monte Carlo.

1. Select an (`+ d)-dimensional low-discrepancy point set

Q̃n = {(w0, ũ0), . . . , (wn−1, ũn−1)},

where wi ∈ [0, 1)` and ũi ∈ [0, 1)d .

Define a randomization of P̃n = {ũ0, . . . , ũn−1}.
Let Pn = (u0, . . . ,un−1) denote its realization and Qn the
randomized Q̃n. This randomization must satisfy:
(a) each ui is U[0, 1)d and
(b) Qn has low discrepancy (in some sense).



2. Simulate (in parallel) n copies of the chain, as follows:

For j = 1, 2, . . . until all stopping times are reached
Randomize P̃n afresh into Pn = {u0, . . . ,un−1};
For i = 0, . . . , n − 1, do Xi ,j = ϕj(Xi ,j−1,ui );

Map the n chains to the n points, and renumber the chains
accordingly, so that Xi ,j is “close” to wi for each i
(more on this);

3. Estimate µ by the average Ȳn of the n values of Y .

Replicate m times to estimate variance and compute confidence
interval on µ.

Idea: Would like to estimate E[cj(Xj)] = E[cj(ϕj(Xj−1,U))] by
RQMC using Qn. But we replace wi by Xi ,j−1.
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Proposition (unbiasedness):
(a) The average Ȳn is an unbiased estimator of µ and
(b) the empirical variance of its m copies is an unbiased estimator of
Var[Ȳn].



Mapping chains to points
Multivariate sort:
Sort the states (the chains) by their first coordinate, in n1 packets
of size n/n1.

Then sort each packet by the second coordinate, in n2 packets of
size n/n1n2.

· · ·
At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ...

Generalization:
Define a sorting function v : X → [0, 1)c and apply the multivariate
sort (in c dimensions) to the transformed points v(Xi ,j).

Choice of v : Two states mapped to nearby values of v should be
approximately equivalent.

In L. Lécot, Tuffin (2004, 2008), we had v : X → R.
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A (4,4) mapping

States of the chains
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A (16,1) mapping, sorting along the first coordinate
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A (8,2) mapping
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A (2,8) mapping
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A (1,16) mapping, sorting along the second
coordinate
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O(n−2) convergence for ` = d = 1

Suppose D is the L2 star discrepancy, whose square is the CvM
statistic

W 2 =
1

12n2
+

1

n

n−1∑
i=0

(wi − xi )
2

where wi = (i + 1/2)/n. At best, W 2 = O(n−2).

Suppose

E
[

sup
x
|∂ϕ(x , u)/∂x |2

]
≤ K .

Induction proof: We assume that
— E[D2

j−1] ≤ κj−1n
−2+ε,

— the states at step j − 1 are sorted by increasing order,
— Xi ,j = ϕ(Xi ,j−1,Ui ,j), X̃i ,j = ϕ(wi ,Ui ,j),
— w̃0, . . . , w̃n−1 is a permutation of w0, . . . ,wn−1

that matches the ordering of X̃0,j , . . . , X̃n−1,j . Then,
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E[D2
j ] ≤ 1

n
E

[
n−1∑
i=0

(w̃i − Xi,j)
2

]
+

1

12n2

≤ 1

n

n−1∑
i=0

E
[
(w̃i − X̃i,j)

2 + (X̃i,j − Xi,j)
2
]

+
1

12n2

=
1

n

n−1∑
i=0

E
[
(w̃i − X̃i,j)

2 + (ϕ(wi ,Ui,j)− ϕ(Xi,j−1,Ui,j))2
]

+
1

12n2

≤ 1

n

n−1∑
i=0

E
[
(w̃i − X̃i,j)

2 + K (wi − Xi,j−1)2
]

+
1

12n2

≤ 1

n

n−1∑
i=0

E
[
(w̃i − X̃i,j)

2
]

+ KE[D2
j−1] +

1− K

12n2

≤ 1

n

n−1∑
i=0

E
[
(w̃i − X̃i,j)

2
]

+ Kκj−1n
−2+ε +

1− K

12n2

≤ E[D̃2
j ] + Kκj−1n

−2+ε − K

12n2
.



Observe that E[D̃2
j ] is the mean square discrepancy obtained when

we integrate ϕ(w , u) over [0, 1]2 by an RQMC point set.

If ϕ is smooth enough, we can find an RQMC point set
{(wi ,Ui ,j), 0 ≤ i < n} such that E[D̃2

j ] = O(n−2+ε).

Then, E[D̃2
j ] ≤ κn−2+ε for some κ, and therefore

E[D2
j ] ≤ (κ+ Kκj−1)n−2+ε = κjn

−2+ε

with

κj = κ+ Kκj−1 = (1 + K + · · ·+ K j−1)κ =
1− K j

1− K
κ.

For j →∞, this bound converges if and only if K < 1.



Example 1

Let Y = θU + (1− θ)V , where U,V indep. U(0, 1) and θ ∈ [0, 1).
This Y has distribution function Gθ.

Our Markov chain is defined by

X0 = U0; Xj = ϕ(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

where Uj ∼ U(0, 1). Then, Xj ∼ (0, 1).

We also define cj(Xj) = Xj

Condition holds with K = 1 if θ ≥ 1/2,

and K = θ2/(1− θ)2 < 1 if θ < 1/2.
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log Dj as a function of j, for n = 4093 ≈ 212
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log2 Dj as a function of log2 n
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log2 Var[µ̂rqmc,j ,n] as a function of log2 n
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Example 2

Markov chain:

Y0 = Z0, Yj = (ρYj−1 + Zj)/
√
ρ2 + 1, j ≥ 1,

where Zj ∼ N(0, 1). Then, Yj ∼ N(0, 1) and Xj = Φ(Yj) ∼ U(0, 1).

We define also, cj(Xj) = Xj .
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log2 Var[µ̂rqmc,j ,n] as a function of log2 n
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Example 3: Asian Option
Given observation times t1, t2, . . . , ts = T , we define

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Uj ∼ U[0, 1) and S(t0) = s0 is fixed.

State is (S(tj), S̄j), where S̄j = 1
j

∑j
i=1 S(ti ).

Transition:

(S(tj), S̄j) = ϕ(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
,

Payoff is
max

[
0,
(
S̄s

)
− K

]
.

For the example, we used S(0) = 100, K = 90, T = 240/360,
tj − tj−1 = 1/365, r = ln 1.09, σ = 0.2 and s = 10, 60.

Here, we use the two-dimensional sort at each step; we first sort in
n1 packets based on S(tj), then sort the packets based on S̄j .



log2 Var[µ̂rqmc,j ,n] as a function of log2 n, for s = 10
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log2 Var[µ̂rqmc,j ,n] as a function of log2 n, for s = 60
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log2 Var as a function of log2 n, for s = 10, state = (S̄j , S(tj))
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Future Work

Convergence proof in the multidimensional case. Choice of
discrepancy.

More experiments : larger examples, sorting strategies, etc.

Applications.


