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Monte Carlo for Markov Chains

Setting: A Markov chain with state space X C RY, evolves as
XO = X0, )<J = L}Qj()<j—1a UJ)7 ./ > 17

where the U; are i.i.d. uniform r.v.’s over (0,1)7.
We want to estimate
p=E[Y] where Y =) c(X))
j=1

and 7 is a stopping time w.r.t. F{(j, Xj), j > 0}.
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where the U; are i.i.d. uniform r.v.’s over (0,1)7.
We want to estimate

p=E[Y] where Y =) c(X))
j=1
and 7 is a stopping time w.r.t. F{(j, Xj), j > 0}.

Ordinary MC: For i =0,...,n— 1, generate X; ; = ¢;(Xjj—1,Uj;),
j=1,...,7, where the U, ;s are i.i.d. U(0,1)9. Estimate u by

fin = %ZZC(XM‘) = %Z Yi.
i=1

i=1 j=1



Classical RQMC for Markov Chains

Put V,' = (U,"l, U,'72, A )
Estimate u by
1 T
//)rqmc,n = ; Zl Zl C(Xi,j)
i=1 j=

where P, = {Vo,...,Vp_1} C (0,1)° has the following properties:
(a) each point V; has the uniform distribution over (0,1)%;
(b) P, has low discrepancy.

Dimension is s = inf{s’ : P[dT < §'] = 1}.
For a Markov chain, the effective dimension often remains very large!



Array-RQMC for Markov Chains

Simulate n chains in parallel. At each step, use an RQMC point set
Pp to advance all the chains by one step, while inducing global
negative dependence across the chains.

Intuition: The empirical distribution of Xpj, ..., Xp—1, should be a
very accurate approximation of the theoretical distribution of X, for
each j. The discrepancy between these two distributions should be
as small as possible.
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Then, we will have small error in the estimates:

1 n—1 1 n—1
E[CJ(X,)] ~ ; . Cj(X,'yj) and o=~ ; Z Y,
i=0 i=0
How can we preserve low-discrepancy of Xpj, ..., X,_1; when j

increases? Can we quantify the variance improvement?



Select some measure of discrepancy D for a point set in the unit
cube, together with RKHS of functions, and corresponding variation
V.

Let D; = D(Xo,,---,Xn—1;), the discrepancy of the states at step j
and

. 1
Hrgme,j,n = ; Z C(XIJ)
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Select some measure of discrepancy D for a point set in the unit
cube, together with RKHS of functions, and corresponding variation
V.

Let D; = D(Xo,,---,Xn—1;), the discrepancy of the states at step j
and

. 1
Hrgme,j,n = ; Z C(XIJ)

i=1
We have
Var[:arqmc,j,n] < E[D_j2] V2(Cj)'

We would like to show, by induction on j, that
E[D?] < kjn~*Te,

for some o > 1, where «; does not depend on n and grows only very
slowly (or not at all) with j.



Array-RQMC algorithm

For simplicity, assume X; ~ U0, 1);
Roughly speaking, we will view IE[DJ?] as a (¢ + d)-dimensional
integral and estimate it by randomized quasi-Monte Carlo.

1. Select an (¢ + d)-dimensional low-discrepancy point set

én = {(Wo, l-hiO)a ey (Wn—ly l’jn—l)}y

where w; € [0,1)¢ and ii; € [0,1)7.

Define a randomization of P, = {Gg, ..., 01}

Let P, = (uo,...,u,_1) denote its realization and @, the
randomized (5,,. This randomization must satisfy:

(a) each u; is U[0,1)9 and

(b) Qn has low discrepancy (in some sense).



2. Simulate (in parallel) n copies of the chain, as follows:

For j=1,2,.. .Nuntil all stopping times are reached
Randomize P, afresh into P, = {ug,...,up_1};
For i = 0, e, N — 1, do X,‘_J' = QOj(Xi,j—la u,-);
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Map the n chains to the n points, and renumber the chains
accordingly, so that X;; is “close” to w; for each i



2. Simulate (in parallel) n copies of the chain, as follows:

For j =1,2,... until all stopping times are reached
Randomize P, afresh into P, = {ug, ..., up_1};
For i = 0, e, N — 1, do X,‘_J' == QOj(Xi,j—la u,-);
Map the n chains to the n points, and renumber the chains
accordingly, so that X;; is “close” to w; for each i

3. Estimate u by the average Y, of the n values of Y.

Replicate m times to estimate variance and compute confidence
interval on p.

Idea: Would like to estimate E[c;(X;)] = E[c;j(¢;(Xj-1,U))] by
RQMC using Q,. But we replace w; by X;;_;.



Proposition (unbiasedness):

(a) The average Y, is an unbiased estimator of y and

(b) the empirical variance of its m copies is an unbiased estimator of
Var[Y,].



Mapping chains to points
Multivariate sort:
Sort the states (the chains) by their first coordinate, in n; packets
of size n/n;.

Then sort each packet by the second coordinate, in n, packets of
size n/nyny.

At the last level, sort each packet of size n; by the last coordinate.

Choice of ny, ny, ...



Mapping chains to points
Multivariate sort:
Sort the states (the chains) by their first coordinate, in n; packets
of size n/n;.

Then sort each packet by the second coordinate, in n, packets of
size n/nyny.

At the last level, sort each packet of size n; by the last coordinate.

Choice of ny, ny, ...

Generalization:
Define a sorting function v : X — [0,1)¢ and apply the multivariate
sort (in ¢ dimensions) to the transformed points v(Xj ;).

Choice of v: Two states mapped to nearby values of v should be
approximately equivalent.



Mapping chains to points
Multivariate sort:
Sort the states (the chains) by their first coordinate, in n; packets
of size n/n;.

Then sort each packet by the second coordinate, in n, packets of
size n/nyny.

At the last level, sort each packet of size n; by the last coordinate.

Choice of ny, ny, ...

Generalization:
Define a sorting function v : X — [0,1)¢ and apply the multivariate
sort (in ¢ dimensions) to the transformed points v(Xj ;).

Choice of v: Two states mapped to nearby values of v should be
approximately equivalent.

In L. Lécot, Tuffin (2004, 2008), we had v : X — R.



A (4,4) mapping

States of the chains
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A (4,4) mapping
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A (4,4) mapping
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A (16,1) mapping, sorting along the first coordinate
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A (8,2) mapping
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A (2,8) mapping
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A (1,16) mapping, sorting along the second
coordinate
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O(n?) convergence for { =d =1

Suppose D is the L5 star discrepancy, whose square is the CvM

statistic
n—1

1 1
W? = ot > (wi —xi)

i=0

where w; = (i +1/2)/n. At best, W2 = O(n™2).
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O(n?) convergence for { =d =1

Suppose D is the L5 star discrepancy, whose square is the CvM

statistic
1 1 n—1
2 _ , 32
W2 = +n,§;(w' — ;)
1=

where w; = (i +1/2)/n. At best, W2 = O(n™2).
Suppose
E [sup |0¢(x, u)/8x\2} <K.

Induction proof: We assume that

_E[ ] < ki

— the states at step j — 1 are sorted by increasing order,
— Xij=p(Xij-1,Uij),  Xij=p(w,U;),

— Wo,...,Wp_1 IS a permutation~of WO, -« .y Wpn—1

that matches the ordering of Xp,...,X,—1;. Then,
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Observe that IE[DJZ] is the mean square discrepancy obtained when
we integrate (w, u) over [0,1]?> by an RQMC point set.

If ¢ is smooth enough, we can find an RQMC point set
{(wi, Ui;), 0 < i < n} such that E[D7] = O(n~2%°).

Then, E[Djz] < kn—2%€ for some k, and therefore
IE[DJZ] < (k+ Krj_1)n~ 2" = kjn=2Te

with

1— KJ
1-K

/@j:/{—l—K/-;j_l:(1+K+---—|—Kj_1)/£:

K.

For j — oo, this bound converges if and only if K < 1.



Example 1

Let Y =60U+ (1 —0)V, where U,V indep. U(0,1) and 6 € [0,1).
This Y has distribution function Gy.

Our Markov chain is defined by
Xo = Uo; Xi = o(Xj—1,Uj) = Go(6X;—1 + (1 = 0)U)),j > 1
where U; ~ U(0,1). Then, X; ~ (0,1).
We also define ¢;( X)) = X;
Condition holds with K =1if § > 1/2,
and K =0?/(1-0)><1iff<1/2.



log D; as a function of j, for n = 4093 ~ 212
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log D; as a function of j, for n = 4093 ~ 212
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log D; as a function of j, for n = 4093 ~ 212
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log, D; as a function of log, n
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log, Var[firqme,j,n] as a function of log, n
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Example 2

Markov chain:

YOZZO, YJ:(p\/J*]-+ZJ)/Vp2+17J217

where Z; ~ N(0,1). Then, Y; ~ N(0,1) and X; = ®(Y;) ~ U(0,1).
We define also, ¢;(X;) = X;.



log, D; as a function of j, for n = 4093
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log, D; as a function of log, n
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log, Var[firqme,j,n] as a function of log, n

log2(Variance)
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Example 3: Asian Option
Given observation times ty, t,...,ts = T, we define
5(t7) = S(tj-1) expl(r — 02/2)(t; — tj-1) + o (t — 1) /2O H(U))],
where U; ~ U[0,1) and S(to) = sp is fixed.
State is (S(j), ), where 5, = 137 S(#).

Transition:

U—1)S-1+ S(tj)>
j )

(5(1),5) = ¢(S(tj-1), 51, Uj) = (5(13')7

Payoff is B
max [O, (55) — K] .

For the example, we used S(0) = 100, K =90, T = 240/360,
tj —tj_1 =1/365, r =1In1.09, 0 = 0.2 and s = 10, 60.

Here, we use the two-dimensional sort at each step; we first sort in
ny packets based on 5(t;), then sort the packets based on S;.



log, Var[firqme.j,n] @as a function of log, n, for s = 10
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log, Var[firqme.j,n] @as a function of log, n, for s = 60

log, Var[/jr”qmc,s,‘"]
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log, Var as a function of log, n, for s = 10, state = (S;, 5(t;))
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Future Work

Convergence proof in the multidimensional case. Choice of
discrepancy.

More experiments : larger examples, sorting strategies, etc.

Applications.



