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Monte Carlo (MC) simulation is widely used to estimate the expectation E[X] of a random
variable X and compute a confidence interval on E[X]. MSE = Var[X,] = O(n™1).

But simulation usually provides information to do much more! The output data can be
used to estimate the entire distribution of X, e.g., the cumulative distribution function
(cdf) F of X, defined by F(x) = P[X < x], or its density f defined by f(x) = F'(x).

If X1,..., X, are n indep. realizations of X, the empirical cdf
. 1
Fal) = 5 21X <

is unbiased for F(x) at all x, and Var[F,(x)] = O(n~1).

For a continuous r.v. X, the density  provides a better visual idea of the distribution.
Here we focus on estimating the density f of X over [a, b] C R.
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Setting

Classical density estimation in statistics was developed in the context where X1, ..., X, are
given independent observations of X and one estimates the density 7 of X from that.
Leading method: kernel density estimator (KDE); MSE[7,(x)] = O(n=*/%).

In this talk, we assume that Xq, ..., Xp are generated by simulation from a model.
We can choose n and we have some freedom on how the simulation is performed.

Questions:

1. Is it possible to obtain unbiased density estimators whose variance converges as O(n 1)
or better, using clever sampling strategies? How?

2. How can we benefit from RQMC to estimate density? Can we improve the convergence
rate of the error?



Six-course menu
1. What happens if we combine a KDE with RQMC?

2. Using conditional Monte Carlo (CI\/IC) can provide an unbiased conditional density
estimator (CDE) #, for which E[f,(x) — f(x)]? = O(n™1).

3. Under appropriate conditions, CDE + RQMC can give E[f,(x) — f(x)]? = O(n 2"¢) or
even better.

4. An unbiased density estimator can also be obtained via the likelihood ratio (LR)
method for derivative estimation. Is this LRDE RQMC-friendly?

5. Another density estimator was proposed very recently based on a generalized likelihood
ratio (GLR) method. Is it RQMC-friendly?

6. Numerical examples and comparisons.



Small example: a stochastic activity network (SAN)

Precedence relations between activities. Activity k has random duration Y} (length of arc
k) with known cdf Fi(y) = P[Y, < y].

Project duration X = (random) length of longest path from source to sink.

Specific case (Avramidis and Wilson 1998): sink

Y ~ N(ug, 03) for k =1,2,4,11,12; @T’
11

Yx ~ Expon(1/ux) otherwise;
Wi, ..., wi3: 13.0,5.5,7.0,5.2,16.5, 14.7, Y10 Y13
10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5;
Ok = bk /4. Y5<4) Ye G)
Y;
; Ye Yio
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Precedence relations between activities. Activity k has random duration Y} (length of arc
k) with known cdf Fi(y) = P[Y, < y].

Project duration X = (random) length of longest path from source to sink.

Specific case (Avramidis and Wilson 1998): sink

Y ~ N(ug, 03) for k =1,2,4,11,12; @T’
11

Yx ~ Expon(1/ux) otherwise;

Wi, ..., wi3: 13.0,5.5,7.0,5.2,16.5, 14.7, Y10 Yi3

10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5;

Ok = bk /4. Y5<4) Ye G)
Y-

Mean E[X] ~ 64.2 ’ Ye Yio

C.I. for E[X] could be, e.g., [64.05, 64.32].

0
That’s all? source




Results of an experiment with n = 100000 independent runs.
The histogram gives an idea of the density of X.
Much more information than a C.I. on E[X]. How can we do better?
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Density estimation

Want to estimate the density of X = h(Y) = h(Y1,..., Ys), assuming we know how to get
Monte Carlo samples of Y from its multivariate distribution.

Suppose we estimate the density f over a finite interval [a, b].
Let f,(x) denote the density estimator at x, with sample size n.



Density estimation

Want to estimate the density of X = h(Y) = h(Y1,..., Ys), assuming we know how to get
Monte Carlo samples of Y from its multivariate distribution.

Suppose we estimate the density f over a finite interval [a, b].
Let f,(x) denote the density estimator at x, with sample size n.

We use simple error measures:

b ~
MISE = mean integrated squared error :/ E[(f(x) — f(x))?]dx
a

= IV+ISB
b ~
IV = integrated variance:/ Var[f,(x)]dx
a
b ~
ISB = integrated squared bias :/ (E[,(x)] = f(x))%dx
a

To minimize the MISE, we may need to balance the IV and ISB.



Density estimation

Histogram: Partition [a, b] in m intervals of size h = (b — a)/m and define

f,,(x):% for x € [j=[a+(—1)ha+jh), j=1,..m

where 11; is the number of observations X; that fall in interval j.

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

fn(x>:1z”:k<x—hx,->_

nh i=1
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Example of a KDE in s = 1 dimension

KDE (blue) vs true density (red) with n = 21°:
Here we take Uy, ..., U, in (0,1) and put X; = F~(U;).

midpoint rule for the U;’s stratified sample for the U;'s
(1079) (1079)
80 + 80 +
70 + 70 +
60 + 60 +
50 + 50 +
40 + 40 +
30 + 30 +
20 + 20 +
10 + 10 +
0 A ! —  o+—A | —

-5.1 -4.6 -4.1 -3.6 -5.1 -4.6 -4.1 -3.6



Asymptotic convergence with Monte Carlo for smooth 1

Here we assume independent random samples (Monte Carlo or given data).

For histograms and KDEs, when n — oo and h — O:

AMISE = AIV + AISB ~ % + Bh* .

The asymptotically optimal h is

C \Y(a+D)
h = =—
(Ban)

and it gives AMISE = Kn~o/(1+a),

11
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For any g : R — R, define

o0

b
R(g):/a (9(x))%dx. ur(g):merg(x)dx, for r=0.1.2, ...
C B o h* AMISE
. R(f")
Histogram B 2 (nR(f")/6) /3 O(n2/3)
(ua2(K))? R(F") wo(k2) Mo )
KDE | ho(k?) Z ! ((uz(k))2R(f")n> O(n *17)

To estimate h*, one can estimate R(f') and R(f") via KDE (plugin).

This is true under the simplifying assumption that h must be the same all over [a, b].
One may also vary the bandwidth over [a, b].
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Randomized quasi-Monte Carlo (RQMC)

Suppose X = h(Y) = g(U) € R where U = (Uy, ..., Us) ~ U(0, 1)°.
Monte Carlo: X; = g(U;) for Uy, ..., U, independent U(0, 1)°. Estimate the mean E[X] by

i 9(Uy).
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Randomized quasi-Monte Carlo (RQMC)

Suppose X = h(Y) = g(U) € R where U = (Uy, ..., Us) ~ U(0, 1)°.
Monte Carlo: X; = g(U;) for Uy, ..., U, independent U(0, 1)°. Estimate the mean E[X] by

RQMC: Take U4, ..., U, as RQMC points and compute again
1 n—1
,an,rqmc = E Z g(Ui)-
i=0

Both unbiased. Var[fi,] = O(1/n). Var[i, qmc] is often O(n=27€) or even O(n=37¢).
QMC point sets: integration lattices, polynomial lattices, digital nets, ...

Randomizations: random shift mod 1, random digital shift, scrambles, ...
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RQMC variance bounds

There are various Cauchy-Shwartz-type inequalities of the form
Var[/j'n,rqmc] < Vz(g) : D2(Pn)

for all g in some Hilbert space or Banach space 7, where V/(g) = ||g — u||% is the variation
of g, and D(FP,) is the discrepancy of P, = {Ug, . .., U, 1} (defined by an expectation in
the RQMC case).
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RQMC variance bounds

There are various Cauchy-Shwartz-type inequalities of the form
Var[/j'n,rqmc] < Vz(g) : D2(Pn)

for all g in some Hilbert space or Banach space 7, where V/(g) = ||g — u||% is the variation
of g, and D(FP,) is the discrepancy of P, = {Ug, . .., U, 1} (defined by an expectation in
the RQMC case).

Classical Koksma-Hlawka: D(P,) = D*(P,) is the star discrepancy and

Alvl

~—9(uy, 1)

duy, (Hardy-Krause (HK) variation)
Ouy

Vi) =Viw(e)= 3 [

0#£0CS

Variance bounds are conservative; RQMC often works well empirically, sometimes even
when VHK(f) = OoQ.



Combining RQMC with the KDE

KDE density estimator at a single point x:

A= 13- dk (X290 Z ().

i=1

With RQMC points U;, this is an RQMC estimator of E[§(U)] = E[f,(x)].
RQMC does not change the bias, but may reduce Var[f,(x)], and then the IV and MISE.

15
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A= 13- dk (X290 Z ().

i=1

With RQMC points U;, this is an RQMC estimator of E[§(U)] = E[f,(x)].

RQMC does not change the bias, but may reduce Var[f,(x)], and then the IV and MISE.

To prove RQMC variance bounds, we need bounds on the variation of §.
Partial derivatives:

ol 100k /x—g(u)
—du)=———k|— ).
w9 = 1 3uy < h )
We assume they exist and are uniformly bounded. E.g., Gaussian kernel k.
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Combining RQMC with the KDE

KDE density estimator at a single point x:

A= 13- dk (X290 Z ().

i=1

With RQMC points U;, this is an RQMC estimator of E[§(U)] = E[f,(x)].
RQMC does not change the bias, but may reduce Var[f,(x)], and then the IV and MISE.

To prove RQMC variance bounds, we need bounds on the variation of §.
Partial derivatives:

ol 100k /x—g(u)
—du)=———k|— ).
ou, 7™ = 5 ouy < h )

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k.

But when expanding via the chain rule, we obtain terms in h™ for j =2, ..., lo| + 1.

The term for || = s grows as h=*" k() ((g(u) — x)/h) [T;—; g;(u) = O(h===*) when h — 0.
Can make it O(h™°) via a change of variables.
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An AlV upper bound that we were able to prove

Assumption. Let g : [0,1]* — R be piecewise monotone in each coordinate u; when the
other coordinates are fixed. Assume that all first-order partial derivatives of g are
continuous and that ||gw, Gw, * - * G, |[1 < oo for all selections of non-empty, mutually
disjoint index sets to,, . . ., w, CS={1,..., s}.

Proposition Then the Hardy-Krause variation of g satisfies

Vik(9) < ¢h™ + O(h™sth) for each j.

Corollary. With RQMC point sets having D*(P,) = O(n 1*€) for all € > 0 when n — oo,
we obtain
AlV = O(n=2T€h=2%)  for all € > 0.

By picking h to minimize the AMISE bound, we get AMISE = O(n~#/(2+s)+e) |

Worse than MC when s > 4. The factor h=2° hurts! But this is only an upper bound.
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Assumption. Let g : [0,1]* — R be piecewise monotone in each coordinate u; when the
other coordinates are fixed. Assume that all first-order partial derivatives of g are
continuous and that ||gw, Gw, * - * G, |[1 < oo for all selections of non-empty, mutually
disjoint index sets to,, . . ., w, CS={1,..., s}.

Proposition Then the Hardy-Krause variation of g satisfies

Vik(9) < ¢h™ + O(h™sth) for each j.

Corollary. With RQMC point sets having D*(P,) = O(n 1*€) for all € > 0 when n — oo,
we obtain

AlV = O(n=2T€h=2%)  for all € > 0.
By picking h to minimize the AMISE bound, we get AMISE = O(n~#/(2+s)+e) |

Worse than MC when s > 4. The factor h=2° hurts! But this is only an upper bound.

Questions?



Why not take the sample derivative of an estimator of ?

We want to estimate the density f(x) = F'(x).

A simple unbiased estimator of F is the empirical cdf
~ 1<
Frn(x) = ;ZH[X" < x].
i=1
However dF,(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!

We need a smoother estimator of .

17



18

Conditional Monte Carlo (CMC) for density estimation

Idea: Replace indicator I[.X; < x| by its conditional cdf given filtered information:

F(x|6) ¥ PX<x|g]

where the sigma-field G contains not enough information to reveal X but enough to
compute F(x | G), and is chosen so that the following holds:
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F(x|6) ¥ PX<x|g]

where the sigma-field G contains not enough information to reveal X but enough to
compute F(x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F(x | G) is a continuous function of x over [a, b],
differentiable except perhaps over a denumerable set of points D(G) C [a, b], and for which
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Conditional Monte Carlo (CMC) for density estimation

Idea: Replace indicator I[.X; < x| by its conditional cdf given filtered information:

F(x|6) ¥ PX<x|g]

where the sigma-field G contains not enough information to reveal X but enough to
compute F(x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F(x | G) is a continuous function of x over [a, b],
differentiable except perhaps over a denumerable set of points D(G) C [a, b], and for which
f(x]G)=F'(x|G)=dF(x|G)/dx (when it exists) is bounded uniformly in x by a
random variable [ such that E[[?] < K, < o0.

Proposition CDE: Under Ass. 1, for x € [a, b], E[f(x | G)] = f(x) and Var[f(x | G)] < K.

Proposition: If G C G both satisfy Assumption 1, then Var[f(x | G)] < Var[f(x | §)].
Conditional density estimator (CDE) with sample size n: fege n(x) = L 320, f(x | G1))

where g G are nindependent “realizations” of G. Var[foge n(x)] = O(n71) .
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Babx/ example: a sum of independent random variables _
X =Y1+---+ Yy where the Y} are independent and continuous with cdf /; and density f;,

and G is defined by hiding Yy for an arbitrary k:

XEYVidor v+ 1Y
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Babx/ example: a sum of independent random variables _
X =Y1+---+ Yy where the Y} are independent and continuous with cdf /; and density f;,

and G is defined by hiding Yy for an arbitrary k:

Y+t W+ Y

G=G k=5«
We have F(X | g_k) = ]P)[X <x | S_k] = ]P)[Yk <x—- S_k] = Fk(X - S_k).

The CDE for X becomes f(x | G ) = F'(x| G x) = fu(x — S_x). Shifted density of Y.
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G=G k=S«
We have F(X | g_k) = ]P)[X <x | S_k] = P[Yk <x—- S_k] = Fk(X - S_k).
The CDE for X becomes f(x | G ) = F'(x| G x) = fu(x — S_x). Shifted density of Y.

Asmussen (2018) proposed and studied the CDE for this special case, with k = d and same
F; for all j.
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Babx/ example: a sum of independent random variables _
X =Y1+---+ Yy where the Y} are independent and continuous with cdf /; and density f;,

and G is defined by hiding Yy for an arbitrary k:

def

G=G k=S« =Y1+-+ WN+-+Yy

We have F(X | g_k) = ]P)[X <x | S_k] = ]P)[Yk <x—- S_k] = Fk(X - S_k).
The CDE for X becomes f(x | G ) = F'(x| G x) = fu(x — S_x). Shifted density of Y.

When the Y; have different distributions, we usually want to hide the one with largest
variance, but not always. We have examples where the optimal choice of k depends on x.
Even better: hide more than one if possible.
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Babx/ example: a sum of independent random variables _
X =Y1+---+ Yy where the Y} are independent and continuous with cdf /; and density f;,

and G is defined by hiding Yy for an arbitrary k:

G=0_ k=5« déle—i—----F W4+ Yy

We have F(X | g_k) = ]P)[X <x | S_k] = P[Yk <x—- S_k] = Fk(X - S_k).

The CDE for X becomes f(x | G ) = F'(x| G x) = fu(x — S_x). Shifted density of Y.
Asmussen (2018) proposed and studied the CDE for this special case, with k = d and same
Fj for all j.

When the Y; have different distributions, we usually want to hide the one with largest

variance, but not always. We have examples where the optimal choice of k depends on x.
Even better: hide more than one if possible.

Interpretation: The (random) conditional density replaces the kernel in the KDE.
No bias and no need to choose a kernel and a bandwidth.



Example: displacement of cantilever beam (Bingham 2017)

Ys? Y52
= h(%.Ye.Ys) = {0\ La + 54
where k =5 x 10°, w =4, t =2, Y, Y2, Y5 independent normal, Y; ~ N (u;, o )
Description Symbol L o
Young's modulus Yi 2.9x 10" 1.45x 10°
Horizontal load Y5 500 100
Vertical load Y3 1000 100

We estimate the density of X over [3.1707, 5.6675], which covers about 99% of the
density (it clips 0.5% on each side).

20



CDE estimator

21

Conditioning on G 1 = {Y5, Y3} means hiding Y;. We have

X=" RERG

. K 22 2 def
‘ 2L i > Y2 4 3¢
Yl\’ ' 4 <x ifandonlyif Y;> x\/w“i—i_t“ Wi (x).
For x > 0,
F(x|G-1) =PY1 > Wi(x) | Wi(x)] =1 = d((Wi(x) — u1)/01)
and

fx]G-1) =F'(x]G-1) =

01

_A(Wa(x) — p1)/o)Wi(x) _ o((Wai(x) — p1)/o)Wa(x)

X011



Suppose we condition on G_»> = {Y7, Y3} instead, i.e., hide Y2. We have

def

X <x ifandonlyif Y2 <wt((xi/k)? —Y2/t) E W

22
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Suppose we condition on G_»> = {Y7, Y3} instead, i.e., hide Y2. We have

X <x ifandonlyif Y2 <wt((xi/k)? —Y2/t) E W
If W5 <0, then F/(x| G 2)=0. If Wr >0,
F(x | G-2) =Pl—VWa < Yo < VW [ Wo] = O((VWa — p2)/02) — D(—(VWa + p2)/02)

and

S(VWa — p2)/02) + ¢(—(VWa + p2)/02)

A >0

fx[G2)=F'(x]|G-2) =
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Suppose we condition on G_»> = {Y7, Y3} instead, i.e., hide Y2. We have
X <x ifandonlyif Y2 <wt((xi/k)? —Y2/t) E W
If W5 <0, then F/(x| G 2)=0. If Wr >0,
F(x | G-2) =Pl—VWa < Yo < VW [ Wo] = O((VWa — p2)/02) — D(—(VWa + p2)/02)

and

S(VWa — p2)/02) + ¢(—(VWa + p2)/02)

f(x|G-2)=F'(x]|G-2) = wix(Y1/k)?/(02v/W2)

> 0.

For conditioning on G_3, same analysis as for G_», by symmetry, and we get

d((VW3 — uz)/o3) + ¢(— (F+M3)/U3)
t4x(Y1/K)? /(o3 W3)

for W53 > 0, where W3 is defined in a similar way as W».

f(x]G3)=F(x|G3)=
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Instead of choosing a single conditioning k, we can take a convex combination:
F(x) = arf(x | Go1) + aof (x | G-2) + azf(x | G-3),

where a1 + a» + a3 = 1. This is equivalent to taking f(x | G_1) as the main estimator and
the differences f(x |G 2) — f(x | G_1) and f(x |G 3) — f(x | G_1) as control variates
(CV). We can use CV theory (least-squares regression) to optimize the a;'s.
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Instead of choosing a single conditioning k, we can take a convex combination:
F(x) = arf(x | Go1) + aof (x | G-2) + azf(x | G-3),

where a1 + a» + a3 = 1. This is equivalent to taking f(x | G_1) as the main estimator and
the differences f(x |G 2) — f(x | G_1) and f(x |G 3) — f(x | G_1) as control variates
(CV). We can use CV theory (least-squares regression) to optimize the a;'s.

1 el9
KDE g,l gfg g73 comb. KDE g,l gfg gfg comb.
0.80 | 0.97 098 099 0.98 19.3 145 22.8 225
For n = 219, the MISE is about for the usual KDE+MC and 2 228 for the CDE

with G_3; the MISE is divided by about 28 = 256.
We observe the MISE rate going from O(n~*/%) to around @(n~1) with the CDE.
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17 ]
2 -4 30 .
20 |- f
s | 0.5 | f
10 | f
O | | O | | O | |
4 5 4 5 4 5
X X X

Five realizations of conditional density f(- | G_x) (blue),

their average (red), and true density (thick black),
for k =1 (left), k = 2 (middle), and k = 3 (right).

Why is that?
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Example: discontinuity issues

Let X = max(Y1, Y2) where Y7 and Y5 are independent and continuous.
With G = G_5 (we hide Y5):

PYa<x|Yi=y)=F(x) ifx>y;

PX<x|Y = =
X=xiv=y) {o if x < y.

If Fo(y) > 0, this function is discontinuous at x = y, so Assumption 1 does not hold.
The method does not work in this case.



24

Example: discontinuity issues

Let X = max(Y1, Y2) where Y7 and Y5 are independent and continuous.
With G = G_5 (we hide Y5):
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PX<x|Y = =
X=xiv=y) {o if x < y.

If Fo(y) > 0, this function is discontinuous at x = y, so Assumption 1 does not hold.
The method does not work in this case.

One possible trick: generate both Y7 and Y5, hide the maximum, and take the density of
the max, conditional on the min.
If Y1 = y1 is the min, the CDE will be f(x | G) = fa(y2 | Y2 > y1).
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Example: discontinuity issues

Let X = max(Y1, Y2) where Y7 and Y5 are independent and continuous.
With G = G_5 (we hide Y5):

PYa<x|Yi=y)=F(x) ifx>y;

PX<x|Y = =
X=xiv=y) {o if x < y.

If Fo(y) > 0, this function is discontinuous at x = y, so Assumption 1 does not hold.
The method does not work in this case.

One possible trick: generate both Y7 and Y5, hide the maximum, and take the density of
the max, conditional on the min.

If Yy = yi is the min, the CDE will be f(x | G) = fa(yz | Yo > y1).

Same problem and same trick for X = min(Y1, Y2).
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CMC for the SAN Example
X = length of longest path. CMC estimator of P[X < x]:
Pick a minimal cut £ between source and sink, and let F(x | G) =P[X <x|{Y;. j & L}] .

Ex.: £L=1{5,6,7,9,10} and Y} = Fj’l(Uj). This estimator continuous in the U;’s and in x.
(Erasing a singe Y; does not work: it does not make the conditional cdf continuous.)

source

Y1



Another minimal cut: £={2,3,5,6,9, 13}.

@/ET’”
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For each j € L, let F; be the length of the longest path that goes through arc j when we
exclude Y; from that length. Then

Fix19) =P X <x|{Y;:j¢Ly] =]]Fx-PF)
JEL

and

fix1G)=>_filx=pF) [ Fx—F).

Jjec I€L, 1#]
if f; exists for all j € L.

Under this conditioning, the cdf of every path length is continuous in x, and so is F(- | G),
and Assumption 1 holds, so f(x | G) is an unbiased density estimator.
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For each j € L, let F; be the length of the longest path that goes through arc j when we
exclude Y; from that length. Then

Fix19) =P X <x|{Y;:j¢Ly] =]]Fx-PF)
JEL

and

fix1G)=>_filx=pF) [ Fx—F).

Jjec I€L, 1#]
if f; exists for all j € L.

Under this conditioning, the cdf of every path length is continuous in x, and so is F(- | G),
and Assumption 1 holds, so f(x | G) is an unbiased density estimator.

When we replace a KDE by the CDE in our example, empirically, the MISE rate goes from
O(n=*%) to O(n~1) and the MISE for n = 219 is divided by about 25 to 30.



Waiting-time distribution in a single-server queue

FIFO queue, arbitrary arrival process, independent service times with cdf G and density g.

The system starts empty and evolves over a day of length 7.
T; = arrival time of customer j, Tg =0,

A; = T;—T;_1 = jth interarrival time,

S; = service time of customer J,

IV; = waiting time of customer ;.
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Waiting-time distribution in a single-server queue

FIFO queue, arbitrary arrival process, independent service times with cdf G and density g.

The system starts empty and evolves over a day of length 7.
T; = arrival time of customer j, Tg =0,

A; = T;—T;_1 = jth interarrival time,

S; = service time of customer J,

IV; = waiting time of customer ;.

Lindley recurrence: Wi = 0 and W; = max(0, Wj_1 + S;-1 — A;) for j > 2.
Random number of customers in the day: N =max{j >1:T; <T}.

Let W be the waiting time of a “random” customer.
Want to estimate pp = P[W = 0] (easy) and density f of W over (0, 00).
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For a random customer over an infinite number of days, we have (renewal reward theorem)?

E Wy <x]+---+1[Wy < x]]
E[N] '

F(x) =PW < x] = E[I(W < x)] =

The density f(x) is the derivative of the numerator with respect to x, divided by E[N].
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E Wy <x]+---+1[Wy < x]]
E[N] '

F(x) =PW < x] = E[I(W < x)] =

The density f(x) is the derivative of the numerator with respect to x, divided by E[N].

Cannot take the derivative inside the expectation.
CMC: hide the service time S;_; of the previous customer. Replace I[W; < x] by

:DJ(X) :]P)[VVJ <x | VVJ'_l—AJ'] :]P)[Sj_l SX—FAJ'—VVJ'_l] = G(X+AJ—VVJ'_1) for x > 0.



For a random customer over an infinite number of days, we have (renewal reward theorem)?

ElW < x]+ - +1Wy < x]I
E[N]

F(x) =PW < x] = E[I(W < x)] =

The density f(x) is the derivative of the numerator with respect to x, divided by E[N].

Cannot take the derivative inside the expectation.
CMC: hide the service time S;_; of the previous customer. Replace I[W; < x] by

:DJ(X) :]P)[VVJ <x | VVJ'_l—AJ'] :]P)[Sj_l SX—FAJ'—VVJ'_l] = G(X+AJ—VVJ'_1) for x > 0.

For x > 0, we have P/(x) = dPF(x)/dx = g(x + A; — W;_1) and

R 1 N
f(x) = 7/\/2

This is extended CMC: we condition on different information for different customers.
We replicate this for n days and take the average. Often, we already know E[N].

Other possibilities: Can also hide A; for customer j, etc. Steady-state case.
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Applying RQMC to the CDE
Now we want to sample the CDE using RQMC points.

For this, we must rewrite the CDE as a function of u € [0, 1)°:

Fix1G) = d(xu),
f(x1G) = §(xu)=dj(x u)/dx

for some g : [a, b] x [0, 1)® for which §'(x, -) has bounded variation for each x.
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Fix1G) = d(xu),
f(x1G) = §(xu)=dj(x u)/dx

for some g : [a, b] x [0, 1)® for which §'(x, -) has bounded variation for each x.
CDE sample: §'(x,U1),..., g'(x,U,) where {Uq, ..., U,} is an RQMC point set.

If §'(x,-) has bounded variation, then we can get an O(n=2%¢) rate for the MISE, and
sometimes better. This holds in several examples that we tried.
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If §'(x,-) has bounded variation, then we can get an O(n=2%¢) rate for the MISE, and
sometimes better. This holds in several examples that we tried.

If §'(x,-) has unbounded variation, RQMC may still reduce the IV, but no guarantee.
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Applying RQMC to the CDE
Now we want to sample the CDE using RQMC points.

For this, we must rewrite the CDE as a function of u € [0, 1)°:

Fix1G) = d(xu),
f(x1G) = §(xu)=dj(x u)/dx

for some g : [a, b] x [0, 1)® for which §'(x, -) has bounded variation for each x.
CDE sample: §'(x,U1),..., g'(x,U,) where {Uq, ..., U,} is an RQMC point set.

If §'(x,-) has bounded variation, then we can get an O(n=2%¢) rate for the MISE, and
sometimes better. This holds in several examples that we tried.

If §'(x,-) has unbounded variation, RQMC may still reduce the IV, but no guarantee.

Questions?
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A likelihood ratio density estimator (LRDE)

Back to X = h(Y) where Y has known density f, over R?. We have

FeO =EIh(Y) <x] = [ | Th(y) <] fr(y)dy.

Want to change the integrand into a continuous function of x, so we can take the
derivative w.r.t. x inside the integral.
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A likelihood ratio density estimator (LRDE)
Back to X = h(Y) where Y has known density f, over R?. We have

FeO =EIh(Y) <x] = [ | Th(y) <] fr(y)dy.

Want to change the integrand into a continuous function of x, so we can take the
derivative w.r.t. x inside the integral.

Main idea: Make a change of variable y — z = z(x) of the form y = ,(z), with Jacobian
|Jx(z)], so that h(z) = h(px(z))/x no longer depends on x for given z. Then rewrite

FO0 = [ Th(@) < 1 Rlex@) 4 (@) dz



Take a given x = xo. In a small open neighborhood of xo, 2

Fx) = /R [A(z) < 1] L(Z: X, %0) £ (920(2)) o (2)] 2

where
v (0x(2))]Jx(2)]

K (9x(2)) ] dx (2)]
is the likelihood ratio between the density of z at x and at xg. Under appropriate conditions:

Fly = o [ TA(@) < 1) L@ix %) (s (2)) o (2) 2

/Rdﬂ[ﬁ(z) <1] (dci(L(Z;X,XO)) A (00 (2))]Jx (2)dz

. d, f (0x(2))| Jx(2)]
Adﬂ[h(z)§1]<wL(z,x,xO)> Lzxx)

[ 1) < 1](dd n L(z;x,xO>)fy(wx<z)>|Jx<z>|dz
Rd X

[, Tih(y) < AS(y. ) f(v)dy

L(z;x,x0) =




where

dlIn L(Z;X,Xo) _ d |n(fY((px(Z))|JX(Z)|)
dx dx

= (V(n/)(y)) - (Vxox(z)) + W

Sy x) = S(ex(z).x) =

is the score function associated with L.

This gives the unbiased likelihood ratio density estimator (LRDE)
f(x) =T[n(Y) < x] S(Y, x)

where Y ~ /. Here, Y can have a multivariate distribution for which conditioning is hard.
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where

dlIn L(Z;X,Xo) _ d |n(fY((px(Z))|JX(Z)|)
dx dx

= (V(n/)(y)) - (Vxox(z)) + W

Sy x) = S(ex(z).x) =

is the score function associated with L.

This gives the unbiased likelihood ratio density estimator (LRDE)
f(x) =T[n(Y) < x] S(Y, x)
where Y ~ /. Here, Y can have a multivariate distribution for which conditioning is hard.

This LR approach has been widely used to estimate the derivative of E[h(Y)] with respect
to a parameter of the distribution of Y (Glynn 1987, Asmussen and Glynn 2007).
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Assumption LR. With probability 1 over realizations of Y = ¢, (Z), K (@x(Z))|Ix(Z)]| is
continuous in x over [a, b] and is differentiable in x except perhaps at a countable set of
points D(Y) C [a, b]. There is also a random variable I' defined over the same probability
space as Y, such that E[[?] < K., for some constant K, < oo, and for which

sup  [I[ACY) < x]S(Y. x)| <T.
x€[a,b]\D(Y)
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Assumption LR. With probability 1 over realizations of Y = ¢, (Z), K (@x(Z))|Ix(Z)]| is

continuous in x over [a, b] and is differentiable in x except perhaps at a countable set of

points D(Y) C [a, b]. There is also a random variable I' defined over the same probability
space as Y, such that E[[?] < K., for some constant K, < oo, and for which

sup  [I[ACY) < x]S(Y. x)| <T.
x€[a,b]\D(Y)

Proposition LR. Under Assumption LR, I[A(Y) < x] S(Y, x) is an unbiased estimator of
f(x) at almost all x € [a, b], with variance bounded uniformly by K.
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Example. Let X = h(Y)=Y1+---+Y,; =1-Y where Y has multivariate density f,. Take
y = ¢x(z) = xz, which gives h(z) = h(y)/x =1-y/x =1-z, |J(z)| = x9, and

5@y, x) = (d+ (V(n&)(y)) - y) /x.

Laub, Salomone, Botev (2019) proved that T[1-Y < x] S(Y, x) is an unbiased estimator of
the density of X for this special case. Their paper motivated our more general LRDE.
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y = ¢x(z) = xz, which gives h(z) = h(y)/x =1-y/x =1-z, |J(z)| = x9, and

5@y, x) = (d+ (V(n&)(y)) - y) /x.

d (.,
S(y.x) = d+V(n~R)(y) -y _ % (d+z G.(yj)) _

X
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Example. Let X = h(Y)=Y1+---+Y,; =1-Y where Y has multivariate density f,. Take
y = ¢x(z) = xz, which gives h(z) = h(y)/x =1-y/x =1-z, |J(z)| = x9, and

5@y, x) = (d+ (V(n&)(y)) - y) /x.

fy...., Yy are independent with Y; ~ f;, then Infy (y) = Zle In £ (y;) and

d (.,
S(y,x):d+v(|an)(y)'y:)1<(d+ ’;(YJ))_

x = i)

In this independent case, an alternative (simpler) transformation is
y=0x(2)=(z1+x, 2, ..., Z4). Then, Vyox(z) =(1,0,..., 0)t, | (z)] =1, and
S(y, x) = f{(»1)/fi(y1), giving the estimator I[1-Y < x] - S(Y, x).
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A GLR density estimator
Peng et al. (2020) proposed an adaptation of a generalized likelihood ratio (GLR) method of Peng
et al. (2018) to density estimation.

Suppose X = h(Y) = h(Y1,..., Yy) where Y1, ..., Yy are independent continuous random variables,
and Yj has cdf F; and density . Forj=1,..., d, let h;(y) := 8h(y)/dy;, hy(y) := 82h(y)/dy}, and

Olog £i(y;)/0y; — hjj(y)/hi(y)
hi(y) '

Vily) =

Assumption GLR. (a) The Lebesgue measure of h™1((x — €, x 4+ €)) in R? goes to 0 when € — 0
(this means essentially that the density is bounded around x).

(b) The set P(x) = {y € R? : h(y) < x} is measurable, the functions h;, h;;, and V; are well defined
over it, and E[I[X < x] - W2(Y)] < oc.

Proposition GLR. Under Assumption GLR, I[X < x] - W;(Y) is an unbiased and finite-variance
estimator of the density f(x) at x.

Proof and more details: see Peng et al (2020). Take a linear combination of the W;(Y)’s.



Experimental setting for numerical experiments

We tested the methods on some examples.
For each n considered, we compute each estimator with n samples,
evaluate it at a set of n. = 128 evaluation points over |[a, b],

repeat this n, = 100 times, compute the variance at each evaluation point to estimate the
V. For the KDE, we also estimated the ISB.
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log-log scale. We report 2 and also the MISE for n = 219 which is 27¢19.
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Experimental setting for numerical experiments

We tested the methods on some examples.
For each n considered, we compute each estimator with n samples,
evaluate it at a set of n. = 128 evaluation points over |[a, b],

repeat this n, = 100 times, compute the variance at each evaluation point to estimate the
V. For the KDE, we also estimated the ISB.

We repeat this for n =214 .| 219 and fit the model MISE = kn~" by linear regression in
log-log scale. We report 2 and also the MISE for n = 219 which is 27¢19.

MC and RQMC Point sets:

» MC: Independent points,

> Lat+s: lattice rule with a random shift modulo 1,

> Lat+s+b: lattice rule with a random shift modulo 1 + baker’s transformation,
> LMS: Sobol’ points with left matrix scrambling (LMS) + digital random shift.



Cantilever beam example

Estimated MISE = Kn—?.

D el9
KDE G 3 CDE-c LRDE GLR | KDE G 3; CDE-¢c LRDE GLR
MC 0.76 0.99 0.98 1.03 1.02 | 158 228 225 16.8 14.1
Lat+s 1.03 2.06 2.04 1.55 1.38 | 21.9 416 419 26.4 234
Lat+s+b 0.93 227 2.25 1.25 1.37 | 21.0 46.8 47.0 24.7 23.3
Sob+LMS | 0.97 221 2.21 1.31 1.32 | 21.5 457 46.1 25.6 23.4

The MISE decreases roughly as O(n~2) or better for CDE+RQMC.
For n = 219 the MISE is about 2 '°% for the usual KDE+MC and 2=*7 for the new

CDE+RQMC: i.e., MISE is divided by more than 23! & 2 billions.
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SAN Example

Estimated MISE = Kn~7.

1% el9

MC 0.78 20.9

KDE | Lat+s 0.95 22.7
Sob+LMS | 0.74 21.9

MC 096 25.6

CDE | Lat+s 1.31 309
Sob+LMS | 1.27 29.9

MC 1.00 20.5
LRDE | Lat+s 1.22 235
Sob+LMS | 1.16 24.6

With CDE+RQMC, we observe a convergence rate near O(n=12) for the MISE.

For n =219, by using the new CDE+RQMC rather than the usual KDE4+MC,
the MISE is divided by about 500 to 1000.

LRDE does not perform as well as CDE. GLR does not apply to this example.
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Waiting-time distribution in a single-server queue

Take Poisson arrivals at rate A = 1 over 60 time units. This gives E[N] = 60.

Service times S; lognormal(p, 0?) = (—0.7,0.4).

This gives E[S;] = e %® » 0.6065 and Var[S;] = e *(e%* — 1) ~ 0.18093.

Here the dimension s is random and unbounded, so we used only Korobov lattices, since
they naturally provide unbounded dimension.

1 el9
MC 1.00 2438
CDE | Lat+s 099 323
Lat+s+b | 1.02 32.3
MC 1.00 15.8
GLR | Lat+s 1.03 246
Lat+s+b | 1.08 25.0

In terms of MISE for n = 219, CDE beats GLR by a factor of about 2° = 512 with MC and
by a factor of about 27 = 128 with the randomly-shifted Korobov lattice.
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Conclusion

» Combining a KDE with RQMC can reduce the MISE and sometimes improve its
convergence rate, even though our MISE bounds converge faster only when the
dimension is very small.

> The CDE is an unbiased density estimator with better convergence rate. Combining it
with RQMC can provide an even better rate, and sometimes huge MISE reductions.

» When we cannot find G for which Assumption 1 holds and f(x | G) is easy to compute,
the LRDE and the GLR can be good unbiased alternatives.
Drawback: they do not get along so well with RQMC because they are often
discontinuous in U. Maybe in some cases, one can add CMC to them before applying
RQMC.

> Extensions: Density estimation for a function of the state of a Markov chain, using
Array-RQMC. Generalization to multivariate output.
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