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What this talk is about
Monte Carlo (MC) simulation is widely used to estimate the expectation E[X] of a random

variable X and compute a con�dence interval on E[X]. MSE = Var[ �Xn] = O(n�1).

But simulation usually provides information to do much more! The output data can be

used to estimate the entire distribution of X, e.g., the cumulative distribution function

(cdf) F of X, de�ned by F (x) = P[X � x ], or its density f de�ned by f (x) = F 0(x).

If X1; : : : ; Xn are n indep. realizations of X, the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi � x ]

is unbiased for F (x) at all x , and Var[F̂n(x)] = O(n�1).
For a continuous r.v. X, the density f provides a better visual idea of the distribution.

Here we focus on estimating the density f of X over [a; b] � R.

(Density is with respect to Lebesgue measure.)
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Setting

Classical density estimation in statistics was developed in the context where X1; : : : ; Xn are

given independent observations of X and one estimates the density f of X from that.

Leading method: kernel density estimator (KDE); MSE[f̂n(x)] = O(n�4=5).

In this talk, we assume that X1; : : : ; Xn are generated by simulation from a model.

We can choose n and we have some freedom on how the simulation is performed.

Questions:

1. Is it possible to obtain unbiased density estimators whose variance converges as O(n�1)
or better, using clever sampling strategies? How?

2. How can we bene�t from RQMC to estimate density? Can we improve the convergence

rate of the error?
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Six-course menu

1. What happens if we combine a KDE with RQMC?

[Lunchtime discussion with Owen and Hickernell at workshop in Ban� in 2015.]

2. Using conditional Monte Carlo (CMC) can provide an unbiased conditional density

estimator (CDE) f̂n for which E[f̂n(x)� f (x)]2 = O(n�1).

3. Under appropriate conditions, CDE + RQMC can give E[f̂n(x)� f (x)]2 = O(n�2+�) or

even better.

4. An unbiased density estimator can also be obtained via the likelihood ratio (LR)

method for derivative estimation. Is this LRDE RQMC-friendly?

5. Another density estimator was proposed very recently based on a generalized likelihood

ratio (GLR) method. Is it RQMC-friendly?

6. Numerical examples and comparisons.
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Small example: a stochastic activity network (SAN)

Precedence relations between activities. Activity k has random duration Yk (length of arc

k) with known cdf Fk(y) := P[Yk � y ]:

Project duration X = (random) length of longest path from source to sink.

Speci�c case (Avramidis and Wilson 1998):

Yk � N(�k ; �
2
k) for k = 1; 2; 4; 11; 12;

Yk � Expon(1=�k) otherwise;

�1; : : : ; �13: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7,

10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5;

�k = �k=4.

Mean E[X] � 64:2

C.I. for E[X] could be, e.g., [64:05; 64:32].

That's all?

0

source
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Results of an experiment with n = 100 000 independent runs.

The histogram gives an idea of the density of X.

Much more information than a C.I. on E[X]. How can we do better?

X
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

Xdet = 48:2

mean = 64:2

�̂0:99 = 131:8
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Density estimation
Want to estimate the density of X = h(Y) = h(Y1; : : : ; Ys), assuming we know how to get

Monte Carlo samples of Y from its multivariate distribution.

Suppose we estimate the density f over a �nite interval [a; b].

Let f̂n(x) denote the density estimator at x , with sample size n.

We use simple error measures:

MISE = mean integrated squared error =

∫ b

a
E[(f̂n(x)� f (x))2]dx

= IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]� f (x))2dx

To minimize the MISE, we may need to balance the IV and ISB.
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Density estimation

Histogram: Partition [a; b] in m intervals of size h = (b � a)=m and de�ne

f̂n(x) =
nj
nh

for x 2 Ij = [a + (j � 1)h; a + jh); j = 1; :::; m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at

0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

f̂n(x) =
1

nh

n∑
i=1

k

(
x �Xi

h

)
:
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n = 6

n = 100
Credit: Drleft at English Wikipedia / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

https://commons.wikimedia.org/w/index.php?curid=73892711 https://commons.wikimedia.org/wiki/File:Comparison of 1D histogram and KDE.png
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Example of a KDE in s = 1 dimension
KDE (blue) vs true density (red) with n = 219:

Here we take U1; : : : ; Un in (0; 1) and put Xi = F
�1(Ui).

midpoint rule for the Ui 's strati�ed sample for the Ui 's
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Asymptotic convergence with Monte Carlo for smooth f

Here we assume independent random samples (Monte Carlo or given data).

For histograms and KDEs, when n !1 and h ! 0:

AMISE = AIV + AISB � C

nh
+ Bh� :

The asymptotically optimal h is

h� =

(
C

B�n

)1=(�+1)
and it gives AMISE = Kn��=(1+�).
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For any g : R! R, de�ne

R(g) =

∫ b

a
(g(x))2dx; �r (g) =

∫ 1

�1
x rg(x)dx; for r = 0; 1; 2; : : :

C B � h� AMISE

Histogram 1
R(f 0)

12
2 (nR(f 0)=6)�1=3 O(n�2=3)

KDE �0(k
2)

(�2(k))
2 R(f 00)

4
4

(
�0(k

2)

(�2(k))2R(f 00)n

)1=5

O(n�4=5)

To estimate h�, one can estimate R(f 0) and R(f 00) via KDE (plugin).

This is true under the simplifying assumption that h must be the same all over [a; b].

One may also vary the bandwidth over [a; b].
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Randomized quasi-Monte Carlo (RQMC)

Suppose X = h(Y) = g(U) 2 R where U = (U1; : : : ; Us) � U(0; 1)s .

Monte Carlo: Xi = g(Ui) for U1; : : : ;Un independent U(0; 1)s . Estimate the mean E[X] by

�̂n =
1

n

n�1∑
i=0

g(Ui):

RQMC: Take U1; : : : ;Un as RQMC points and compute again

�̂n;rqmc =
1

n

n�1∑
i=0

g(Ui):

Both unbiased. Var[�̂n] = O(1=n). Var[�̂n;rqmc] is often O(n�2+�) or even O(n�3+�).

QMC point sets: integration lattices, polynomial lattices, digital nets, . . .

Randomizations: random shift mod 1, random digital shift, scrambles, . . .
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RQMC variance bounds

There are various Cauchy-Shwartz-type inequalities of the form

Var[�̂n;rqmc] � V 2(g) �D2(Pn)

for all g in some Hilbert space or Banach space H, where V (g) = kg � �kH is the variation

of g, and D(Pn) is the discrepancy of Pn = fU0; : : : ;Un�1g (de�ned by an expectation in

the RQMC case).

Classical Koksma-Hlawka: D(Pn) = D�(Pn) is the star discrepancy and

V (g) = VHK(g) =
∑

;6=v�S

∫
[0;1]jvj

∣∣∣∣∣ @jvj@uv
g(uv; 1)

∣∣∣∣∣ duv; (Hardy-Krause (HK) variation)

Variance bounds are conservative; RQMC often works well empirically, sometimes even

when VHK(f ) =1.
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Combining RQMC with the KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x � g(Ui)

h

)
=

1

n

n∑
i=1

~g(Ui):

With RQMC points Ui , this is an RQMC estimator of E[~g(U)] = E[f̂n(x)].

RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV and MISE.

To prove RQMC variance bounds, we need bounds on the variation of ~g.

Partial derivatives:
@jvj

@uv
~g(u) =

1

h

@jvj

@uv
k

(
x � g(u)

h

)
:

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .

But when expanding via the chain rule, we obtain terms in h�j for j = 2; : : : ; jvj+ 1.
The term for jvj = s grows as h�s�1k(s) ((g(u)� x)=h)

∏s
j=1 gj(u) = O(h�s�1) when h ! 0.

Can make it O(h�s) via a change of variables.
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An AIV upper bound that we were able to prove
Assumption. Let g : [0; 1]s ! R be piecewise monotone in each coordinate uj when the

other coordinates are �xed. Assume that all �rst-order partial derivatives of g are

continuous and that kgw1gw2 � � � gw`
k1 <1 for all selections of non-empty, mutually

disjoint index sets w1; : : : ;w` � S = f1; : : : ; sg.
Proposition Then the Hardy-Krause variation of ~g satis�es

VHK(~g) � cjh
�s +O(h�s+1) for each j .

Corollary. With RQMC point sets having D�(Pn) = O(n�1+�) for all � > 0 when n !1,

we obtain

AIV = O(n�2+�h�2s) for all � > 0:

By picking h to minimize the AMISE bound, we get AMISE = O(n�4=(2+s)+�) .

Worse than MC when s � 4. The factor h�2s hurts! But this is only an upper bound.

Questions?
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Why not take the sample derivative of an estimator of F?

We want to estimate the density f (x) = F 0(x).

A simple unbiased estimator of F is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi � x ]:

However dF̂n(x)=dx = 0 almost everywhere, so this cannot be a useful density estimator!

We need a smoother estimator of F .
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Conditional Monte Carlo (CMC) for density estimation
Idea: Replace indicator I[Xi � x ] by its conditional cdf given �ltered information:

F (x j G) def
= P[X � x j G]

where the sigma-�eld G contains not enough information to reveal X but enough to

compute F (x j G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x j G) is a continuous function of x over [a; b],

di�erentiable except perhaps over a denumerable set of points D(G) � [a; b], and for which

f (x j G) = F 0(x j G) = dF (x j G)=dx (when it exists) is bounded uniformly in x by a

random variable � such that E[�2] � K <1.

Proposition CDE: Under Ass. 1, for x 2 [a; b], E[f (x j G)] = f (x) and Var[f (x j G)] < K .

Proposition: If G � ~G both satisfy Assumption 1, then Var[f (x j G)] � Var[f (x j ~G)].
Conditional density estimator (CDE) with sample size n: f̂cde;n(x) =

1
n

∑n
i=1 f (x j G(i))

where G(1); : : : ;G(n) are n independent \realizations" of G. Var[f̂cde;n(x)] = O(n�1) .
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Conditional Monte Carlo (CMC) for density estimation
Idea: Replace indicator I[Xi � x ] by its conditional cdf given �ltered information:

F (x j G) def
= P[X � x j G]

where the sigma-�eld G contains not enough information to reveal X but enough to

compute F (x j G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x j G) is a continuous function of x over [a; b],

di�erentiable except perhaps over a denumerable set of points D(G) � [a; b], and for which

f (x j G) = F 0(x j G) = dF (x j G)=dx (when it exists) is bounded uniformly in x by a

random variable � such that E[�2] � K <1.
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Baby example: a sum of independent random variables
X = Y1 + � � �+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,

and G is de�ned by hiding Yk for an arbitrary k :

G = G�k = S�k

X
def
= Y1 + � � �+

6 n

Yk + � � �+ Yd :

We have F (x j G�k) = P[X � x j S�k ] = P[Yk � x � S�k ] = Fk(x � S�k):

The CDE for X becomes f (x j G�k) = F 0(x j G�k) = fk(x � S�k). Shifted density of Yk .

Asmussen (2018) proposed and studied the CDE for this special case, with k = d and same

Fj for all j .

When the Yj have di�erent distributions, we usually want to hide the one with largest

variance, but not always. We have examples where the optimal choice of k depends on x .

Even better: hide more than one if possible.

Interpretation: The (random) conditional density replaces the kernel in the KDE.

No bias and no need to choose a kernel and a bandwidth.
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Example: displacement of cantilever beam (Bingham 2017)

X = h(Y1; Y2; Y3) =
�

Y1

√
Y2

2

w4
+
Y3

2

t4

where � = 5� 105, w = 4, t = 2, Y1, Y2, Y3 independent normal, Yj � N (�j ; �
2
j ),

Description Symbol �j �j
Young's modulus Y1 2:9� 107 1:45� 106

Horizontal load Y2 500 100

Vertical load Y3 1000 100

We estimate the density of X over [3:1707; 5:6675], which covers about 99% of the

density (it clips 0:5% on each side).
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CDE estimator

Conditioning on G�1 = fY2; Y3g means hiding Y1. We have

X =
�

Y1

√
Y 2
2

w4
+
Y 2
3

t4
� x if and only if Y1 � �

x

√
Y 2
2

w4
+
Y 2
3

t4
def
= W1(x):

For x > 0,

F (x j G�1) = P[Y1 � W1(x) j W1(x)] = 1��((W1(x)� �1)=�1)

and

f (x j G�1) = F 0(x j G�1) = ��((W1(x)� �1)=�1)W
0
1(x)

�1
=

�((W1(x)� �1)=�1)W1(x)

x�1
:
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Suppose we condition on G�2 = fY1; Y3g instead, i.e., hide Y2. We have

X � x if and only if Y 2
2 � w4

(
(xY1=�)

2 � Y 2
3 =t

4
)

def
= W2:

If W2 � 0, then F 0(x j G�2) = 0. If W2 > 0,

F (x j G�2) = P[�
√
W2 � Y2 �

√
W2 j W2] = �((

√
W2 � �2)=�2)��(�(

√
W2 + �2)=�2)

and

f (x j G�2) = F 0(x j G�2) = �((
p
W2 � �2)=�2) + �(�(pW2 + �2)=�2)

w4x(Y1=�)2=(�2
p
W2)

> 0:

For conditioning on G�3, same analysis as for G�2, by symmetry, and we get

f (x j G�3) = F 0(x j G�3) = �((
p
W3 � �3)=�3) + �(�(pW3 + �3)=�3)

t4x(Y1=�)2=(�3
p
W3)

> 0:

for W3 > 0, where W3 is de�ned in a similar way as W2.
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Instead of choosing a single conditioning k , we can take a convex combination:

f̂ (x) = �1f (x j G�1) + �2f (x j G�2) + �3f (x j G�3);

where �1 + �2 + �3 = 1. This is equivalent to taking f (x j G�1) as the main estimator and

the di�erences f (x j G�2)� f (x j G�1) and f (x j G�3)� f (x j G�1) as control variates
(CV). We can use CV theory (least-squares regression) to optimize the �j 's.

�̂ (MISE � Kn��̂) e19 (MISE = 2�e19 for n = 219)

KDE G�1 G�2 G�3 comb. KDE G�1 G�2 G�3 comb.

0.80 0.97 0.98 0.99 0.98 14.7 19.3 14.5 22.8 22.5

For n = 219, the MISE is about 2�14:7 for the usual KDE+MC and 2�22:8 for the CDE

with G�3; the MISE is divided by about 28 = 256.

We observe the MISE rate going from O(n�4=5) to around O(n�1) with the CDE.
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x

Five realizations of conditional density f (� j G�k) (blue),

their average (red), and true density (thick black),

for k = 1 (left), k = 2 (middle), and k = 3 (right).

Why is that? Hint: w4 = 256 whereas t4 = 16.
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Example: discontinuity issues

Let X = max(Y1; Y2) where Y1 and Y2 are independent and continuous.

With G = G�2 (we hide Y2):

P[X � x j Y1 = y) =

{
P[Y2 � x j Y1 = y) = F2(x) if x � y ;

0 if x < y:

If F2(y) > 0, this function is discontinuous at x = y , so Assumption 1 does not hold.

The method does not work in this case.

One possible trick: generate both Y1 and Y2, hide the maximum, and take the density of

the max, conditional on the min.

If Y1 = y1 is the min, the CDE will be f (x j G) = f2(y2 j Y2 > y1).

Same problem and same trick for X = min(Y1; Y2).
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CMC for the SAN Example
X = length of longest path. CMC estimator of P[X � x ]:

Pick a minimal cut L between source and sink, and let F (x j G) = P[X � x j fYj ; j 62 Lg] .
Ex.: L = f5; 6; 7; 9; 10g and Yj = F�1j (Uj). This estimator continuous in the Uj 's and in x .

(Erasing a singe Yj does not work: it does not make the conditional cdf continuous.)

0source 1
Y1

2

Y2
Y3

3
Y4

4

Y8

5

Y10

Y5

Y6

6
Y7

7

Y12

Y9

8 sink

Y13

Y11
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Another minimal cut: L = f2; 3; 5; 6; 9; 13g.

0source 1
Y1

2

Y2
Y3

3
Y4

4

Y8

5

Y10

Y5

Y6

6
Y7

7

Y12

Y9

8 sink

Y13

Y11
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For each j 2 L, let Pj be the length of the longest path that goes through arc j when we

exclude Yj from that length. Then

F (x j G) = P
[
X < x j fYj : j 62 Lg

]
=
∏
j2L

Fj(x � Pj)

and

f (x j G) =
∑
j2L

fj(x � Pj)
∏

l2L; l 6=j

Fl(x � Pj);

if fj exists for all j 2 L.
Under this conditioning, the cdf of every path length is continuous in x , and so is F (� j G),
and Assumption 1 holds, so f (x j G) is an unbiased density estimator.

When we replace a KDE by the CDE in our example, empirically, the MISE rate goes from

O(n�4=5) to O(n�1) and the MISE for n = 219 is divided by about 25 to 30.
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Waiting-time distribution in a single-server queue

FIFO queue, arbitrary arrival process, independent service times with cdf G and density g.

The system starts empty and evolves over a day of length � .

Tj = arrival time of customer j , T0 = 0,

Aj = Tj � Tj�1 = jth interarrival time,

Sj = service time of customer j ,

Wj = waiting time of customer j .

Lindley recurrence: W1 = 0 and Wj = max(0; Wj�1 + Sj�1 � Aj) for j � 2.

Random number of customers in the day: N = maxfj � 1 : Tj < �g.
Let W be the waiting time of a \random" customer.

Want to estimate p0 = P[W = 0] (easy) and density f of W over (0;1).
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For a random customer over an in�nite number of days, we have (renewal reward theorem):

F (x) = P[W � x ] = E[I(W � x)] =
E [I[W1 � x ] + � � �+ I[WN � x ]]

E[N]
:

The density f (x) is the derivative of the numerator with respect to x , divided by E[N].

Cannot take the derivative inside the expectation.

CMC: hide the service time Sj�1 of the previous customer. Replace I[Wj � x ] by

Pj(x) = P[Wj � x j Wj�1�Aj ] = P[Sj�1 � x +Aj �Wj�1] = G(x +Aj �Wj�1) for x � 0:

For x > 0, we have P 0
j (x) = dPj(x)=dx = g(x + Aj �Wj�1) and

f̂ (x) =
1

E[N]

N∑
j=1

P 0
j (x):

This is extended CMC: we condition on di�erent information for di�erent customers.

We replicate this for n days and take the average. Often, we already know E[N].

Other possibilities: Can also hide Aj for customer j , etc. Steady-state case.
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E[N]

N∑
j=1

P 0
j (x):

This is extended CMC: we condition on di�erent information for di�erent customers.

We replicate this for n days and take the average. Often, we already know E[N].

Other possibilities: Can also hide Aj for customer j , etc. Steady-state case.
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Applying RQMC to the CDE
Now we want to sample the CDE using RQMC points.

For this, we must rewrite the CDE as a function of u 2 [0; 1)s :

F (x j G) = ~g(x;u);

f (x j G) = ~g0(x;u) = d~g(x;u)=dx

for some ~g : [a; b]� [0; 1)s for which ~g0(x; �) has bounded variation for each x .

CDE sample: ~g0(x;U1); : : : ; ~g
0(x;Un) where fU1; : : : ;Ung is an RQMC point set.

If ~g0(x; �) has bounded variation, then we can get an O(n�2+�) rate for the MISE, and

sometimes better. This holds in several examples that we tried.

If ~g0(x; �) has unbounded variation, RQMC may still reduce the IV, but no guarantee.

Questions?
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A likelihood ratio density estimator (LRDE)

Back to X = h(Y) where Y has known density fY over Rd . We have

F (x) = P[h(Y) � x ] =

∫
Rd

I[h(y) � x ] fY(y)dy:

Want to change the integrand into a continuous function of x , so we can take the

derivative w.r.t. x inside the integral.

Main idea: Make a change of variable y 7! z = z(x) of the form y = 'x(z), with Jacobian

jJx(z)j, so that ~h(z) = h('x(z))=x no longer depends on x for given z. Then rewrite

F (x) =

∫
Rd

I[~h(z) � 1] fY('x(z))jJx(z)j dz:
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Take a given x = x0. In a small open neighborhood of x0,

F (x) =

∫
Rd

I[~h(z) � 1] L(z; x; x0) fY('x0(z))jJx0(z)jdz

where

L(z; x; x0) =
fY('x(z))jJx(z)j
fY('x0(z))jJx0(z)j

is the likelihood ratio between the density of z at x and at x0. Under appropriate conditions:

F 0(x) =
d

dx

∫
Rd

I[~h(z) � 1] L(z; x; x0) fY('x0(z))jJx0(z)jdz

=

∫
Rd

I[~h(z) � 1]

(
d

dx
L(z; x; x0)

)
fY('x0(z))jJx0(z)jdz

=

∫
Rd

I[~h(z) � 1]

(
d

dx
L(z; x; x0)

)
fY('x(z))jJx(z)j

L(z; x; x0)
dz

=

∫
Rd

I[~h(z) � 1]

(
d

dx
lnL(z; x; x0)

)
fY('x(z))jJx(z)jdz

=

∫
Rd

I[h(y) � x ]S(y; x)fY(y)dy
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where

S(y; x) = S('x(z); x) =
d lnL(z; x; x0)

dx
=

d ln(fY('x(z))jJx(z)j)
dx

= (r(ln fY)(y)) � (rx'x(z)) +
d ln jJx(z)j

dx

is the score function associated with L.

This gives the unbiased likelihood ratio density estimator (LRDE)

f̂ (x) = I[h(Y) � x ]S(Y; x)

where Y � fY. Here, Y can have a multivariate distribution for which conditioning is hard.

This LR approach has been widely used to estimate the derivative of E[h(Y)] with respect

to a parameter of the distribution of Y (Glynn 1987, Asmussen and Glynn 2007).
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Assumption LR. With probability 1 over realizations of Y = 'x(Z), fY('x(Z))jJx(Z)j is
continuous in x over [a; b] and is di�erentiable in x except perhaps at a countable set of

points D(Y) � [a; b]. There is also a random variable � de�ned over the same probability

space as Y, such that E[�2] � K for some constant K <1, and for which

sup
x2[a;b]nD(Y)

jI[h(Y) � x ]S(Y; x)j � �:

Proposition LR. Under Assumption LR, I[h(Y) � x ]S(Y; x) is an unbiased estimator of

f (x) at almost all x 2 [a; b], with variance bounded uniformly by K .
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Example. Let X = h(Y) = Y1 + � � �+ Yd = 1 �Y where Y has multivariate density fY. Take

y = 'x(z) = xz, which gives ~h(z) = h(y)=x = 1 � y=x = 1 � z, jJx(z)j = xd , and

S(y; x) = (d + (r(ln fY)(y)) � y) =x:

Laub, Salomone, Botev (2019) proved that I[1 � Y � x ]S(Y; x) is an unbiased estimator of

the density of X for this special case. Their paper motivated our more general LRDE.

If Y1; : : : ; Yd are independent with Yj � fj , then ln fY(y) =
∑d

j=1 ln fj(yj) and

S(y; x) =
d +r(ln fY)(y) � y

x
=

1

x

d +
d∑

j=1

f 0j (yj)

fj(yj)

 :

In this independent case, an alternative (simpler) transformation is

y = 'x(z) = (z1 + x; z2; : : : ; zd). Then, rx'x(z) = (1; 0; : : : ; 0)t, jJx(z)j = 1, and

S(y; x) = f 01(y1)=f1(y1), giving the estimator I[1 � Y � x ] � S(Y; x).
This matches Example VII.5.7 of Asmussen and Glynn (2007).
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A GLR density estimator
Peng et al. (2020) proposed an adaptation of a generalized likelihood ratio (GLR) method of Peng

et al. (2018) to density estimation.

Suppose X = h(Y) = h(Y1; : : : ; Yd) where Y1; : : : ; Yd are independent continuous random variables,

and Yj has cdf Fj and density fj . For j = 1; : : : ; d , let hj(y) := @h(y)=@yj , hj j(y) := @2h(y)=@y2j , and

	j(y) =
@ log fj(yj)=@yj � hj j(y)=hj(y)

hj(y)
:

Assumption GLR. (a) The Lebesgue measure of h�1((x � �; x + �)) in Rd goes to 0 when �! 0

(this means essentially that the density is bounded around x).

(b) The set P (x) = fy 2 R
d : h(y) � xg is measurable, the functions hj , hj j , and 	j are well de�ned

over it, and E[I[X � x ] �	2
j (Y)] <1.

Proposition GLR. Under Assumption GLR, I[X � x ] �	j(Y) is an unbiased and �nite-variance

estimator of the density f (x) at x .

Proof and more details: see Peng et al (2020). Take a linear combination of the 	j(Y)'s.
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Experimental setting for numerical experiments

We tested the methods on some examples.

For each n considered, we compute each estimator with n samples,

evaluate it at a set of ne = 128 evaluation points over [a; b],

repeat this nr = 100 times, compute the variance at each evaluation point to estimate the

IV. For the KDE, we also estimated the ISB.

We repeat this for n = 214; : : : ; 219 and �t the model MISE = �n�� by linear regression in

log-log scale. We report �̂ and also the MISE for n = 219 which is 2�e19.

MC and RQMC Point sets:

I MC: Independent points,

I Lat+s: lattice rule with a random shift modulo 1,

I Lat+s+b: lattice rule with a random shift modulo 1 + baker's transformation,

I LMS: Sobol' points with left matrix scrambling (LMS) + digital random shift.
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Cantilever beam example

Estimated MISE = Kn��̂ .

�̂ e19

KDE G
�3 CDE-c LRDE GLR KDE G

�3 CDE-c LRDE GLR

MC 0.76 0.99 0.98 1.03 1.02 15.8 22.8 22.5 16.8 14.1

Lat+s 1.03 2.06 2.04 1.55 1.38 21.9 41.6 41.9 26.4 23.4

Lat+s+b 0.93 2.27 2.25 1.25 1.37 21.0 46.8 47.0 24.7 23.3

Sob+LMS 0.97 2.21 2.21 1.31 1.32 21.5 45.7 46.1 25.6 23.4

The MISE decreases roughly as O(n�2) or better for CDE+RQMC.

For n = 219, the MISE is about 2�15:8 for the usual KDE+MC and 2�47 for the new

CDE+RQMC; i.e., MISE is divided by more than 231 � 2 billions.
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SAN Example

Estimated MISE = Kn��̂ .
�̂ e19

KDE

MC 0.78 20.9

Lat+s 0.95 22.7

Sob+LMS 0.74 21.9

CDE

MC 0.96 25.6

Lat+s 1.31 30.9

Sob+LMS 1.27 29.9

LRDE

MC 1.00 20.5

Lat+s 1.22 23.5

Sob+LMS 1.16 24.6

With CDE+RQMC, we observe a convergence rate near O(n�1:3) for the MISE.

For n = 219, by using the new CDE+RQMC rather than the usual KDE+MC,

the MISE is divided by about 500 to 1000.

LRDE does not perform as well as CDE. GLR does not apply to this example.
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Waiting-time distribution in a single-server queue
Take Poisson arrivals at rate � = 1 over 60 time units. This gives E[N] = 60.

Service times Sj lognormal(�; �2) = (�0:7; 0:4).
This gives E[Sj ] = e�0:5 � 0:6065 and Var[Sj ] = e�1(e0:4 � 1) � 0:18093.

Here the dimension s is random and unbounded, so we used only Korobov lattices, since

they naturally provide unbounded dimension.

�̂ e19

CDE

MC 1.00 24.8

Lat+s 0.99 32.3

Lat+s+b 1.02 32.3

GLR

MC 1.00 15.8

Lat+s 1.03 24.6

Lat+s+b 1.08 25.0

In terms of MISE for n = 219, CDE beats GLR by a factor of about 29 = 512 with MC and

by a factor of about 27 = 128 with the randomly-shifted Korobov lattice.
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Conclusion

I Combining a KDE with RQMC can reduce the MISE and sometimes improve its

convergence rate, even though our MISE bounds converge faster only when the

dimension is very small.

I The CDE is an unbiased density estimator with better convergence rate. Combining it

with RQMC can provide an even better rate, and sometimes huge MISE reductions.

I When we cannot �nd G for which Assumption 1 holds and f (x j G) is easy to compute,

the LRDE and the GLR can be good unbiased alternatives.

Drawback: they do not get along so well with RQMC because they are often

discontinuous in U. Maybe in some cases, one can add CMC to them before applying

RQMC.

I Extensions: Density estimation for a function of the state of a Markov chain, using

Array-RQMC. Generalization to multivariate output.
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