
1

Software Design for
Random Numbers and
Quasi-Random Numbers

Pierre L’Ecuyer
Université de Montréal, Canada

seed x0,
transition xn = f (xn−1),
output un = g(xn)

SIAM UQ 2024, Trieste, February 2024

2

Random number generators (RNGs) with multiple streams

▶ For simulation, a single RNG object that produces all the required random numbers in a
single sequence is inadequate.

▶ We want the ability to create objects that produce independent streams of random
numbers and act as virtual independent RNGs. We may need just a few, or perhaps
millions of them.

▶ It could be to run simulations on parallel processors. Using a single stream of random
numbers brings too much overhead in that setting, and the results are also non
reproducible.

▶ Multiple streams are also useful to compare systems with well synchronized common
random numbers (CRNs), even on a single processor.

3

Breaking a single recurrence-based RNG into multiple streams

Partition the sequence of a long-period RNG into disjoint streams (segments) of length ν:

stream 1 stream 2 stream 3 stream 4 stream 5
. . .

x0 xν x2ν x3ν x4ν x5ν
where xn = state of the RNG at step n.

Jumping ahead by ν steps is easy when f is linear; if xn is a vector and A a matrix:

xn+1 = f (xn) = Axn mod m

xn+ν = (Aν mod m)xn mod m

with the matrix (Aν mod m) precomputed once for all.

Alternative: pick the starting points of streams at random. Possibility of overlap.

3

Breaking a single recurrence-based RNG into multiple streams

Partition the sequence of a long-period RNG into disjoint streams (segments) of length ν:

stream 1 stream 2 stream 3 stream 4 stream 5
. . .

x0 xν x2ν x3ν x4ν x5ν
where xn = state of the RNG at step n.

Jumping ahead by ν steps is easy when f is linear; if xn is a vector and A a matrix:

xn+1 = f (xn) = Axn mod m

xn+ν = (Aν mod m)xn mod m

with the matrix (Aν mod m) precomputed once for all.

Alternative: pick the starting points of streams at random. Possibility of overlap.

3

Breaking a single recurrence-based RNG into multiple streams

Partition the sequence of a long-period RNG into disjoint streams (segments) of length ν:

stream 1 stream 2 stream 3 stream 4 stream 5
. . .

x0 xν x2ν x3ν x4ν x5ν
where xn = state of the RNG at step n.

Jumping ahead by ν steps is easy when f is linear; if xn is a vector and A a matrix:

xn+1 = f (xn) = Axn mod m

xn+ν = (Aν mod m)xn mod m

with the matrix (Aν mod m) precomputed once for all.

Alternative: pick the starting points of streams at random. Possibility of overlap.

4

RNGs with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams.
The streams are further partitioned in substreams (which are not objects).

One stream:
current
state
⇓

start start next
stream substream substream

One stream:

current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

RngStream stream1 = createStream();

double u = randU01(stream1); int i = randInt(stream1, 1, 6);
ResetStartSubstream(stream1); ResetNextSubstream(stream1);
ResetStartStream(stream1);

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length δ = 276.
It is available in C, C++, FORTRAN, Java, Python, Julia, R, Matlab, Cuda, etc.

This design was introduced earlier in SIMOD (a Modula-2 library) (L and Giroux 1987).

4

RNGs with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams.
The streams are further partitioned in substreams (which are not objects).

One stream:
current
state
⇓

start start next
stream substream substream

One stream:

current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

RngStream stream1 = createStream();

double u = randU01(stream1); int i = randInt(stream1, 1, 6);
ResetStartSubstream(stream1); ResetNextSubstream(stream1);
ResetStartStream(stream1);

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length δ = 276.
It is available in C, C++, FORTRAN, Java, Python, Julia, R, Matlab, Cuda, etc.

This design was introduced earlier in SIMOD (a Modula-2 library) (L and Giroux 1987).

4

RNGs with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams.
The streams are further partitioned in substreams (which are not objects).

One stream:
current
state
⇓

start start next
stream substream substream

One stream:

current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

RngStream stream1 = createStream();

double u = randU01(stream1); int i = randInt(stream1, 1, 6);
ResetStartSubstream(stream1); ResetNextSubstream(stream1);
ResetStartStream(stream1);

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length δ = 276.
It is available in C, C++, FORTRAN, Java, Python, Julia, R, Matlab, Cuda, etc.

This design was introduced earlier in SIMOD (a Modula-2 library) (L and Giroux 1987).

4

RNGs with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams.
The streams are further partitioned in substreams (which are not objects).

One stream:
current
state
⇓

start start next
stream substream substream

One stream:

current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

RngStream stream1 = createStream();

double u = randU01(stream1); int i = randInt(stream1, 1, 6);
ResetStartSubstream(stream1); ResetNextSubstream(stream1);
ResetStartStream(stream1);

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length δ = 276.
It is available in C, C++, FORTRAN, Java, Python, Julia, R, Matlab, Cuda, etc.

This design was introduced earlier in SIMOD (a Modula-2 library) (L and Giroux 1987).

4

RNGs with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams.
The streams are further partitioned in substreams (which are not objects).

One stream:
current
state
⇓

start start next
stream substream substream

One stream:

current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

RngStream stream1 = createStream();

double u = randU01(stream1); int i = randInt(stream1, 1, 6);
ResetStartSubstream(stream1); ResetNextSubstream(stream1);
ResetStartStream(stream1);

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length δ = 276.
It is available in C, C++, FORTRAN, Java, Python, Julia, R, Matlab, Cuda, etc.

This design was introduced earlier in SIMOD (a Modula-2 library) (L and Giroux 1987).

4

RNGs with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams.
The streams are further partitioned in substreams (which are not objects).

One stream:
current
state
⇓

start start next
stream substream substream

One stream:

current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

One stream:
current
state
⇓.

start start next
stream substream substream

1

RngStream stream1 = createStream();

double u = randU01(stream1); int i = randInt(stream1, 1, 6);
ResetStartSubstream(stream1); ResetNextSubstream(stream1);
ResetStartStream(stream1);

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length δ = 276.
It is available in C, C++, FORTRAN, Java, Python, Julia, R, Matlab, Cuda, etc.

This design was introduced earlier in SIMOD (a Modula-2 library) (L and Giroux 1987).

5

Stochastic Simulation in Java: SSJ Library
Offers different types of RandomStream objects. Each type must implement at least:

public interface RandomStream {

public void resetStartStream();

Resets the stream to its initial state.

public void resetStartSubstream();

Resets the stream to the beginning of its current substream.

public void resetNextSubstream();

Resets the stream to the beginning of its next substream.

public double nextDouble();

Returns a uniform random number over (0, 1) and moves ahead by one step.

public int nextInt(int i, int j);

Returns a uniform random integer over {i , i + 1, . . . , j} and moves ahead.

public void nextArrayOfDouble(double[] u, int start, int n);
public void nextArrayOfInt(int i, int j, int[] u, int start, int n);

}

6

public class MRG32k3a implements RandomStream

One particular implementation, based on the 32-bit MRG32k3a generator.

public MRG32k3a(); // Constructs and returns a new stream object.

public class LFSR113 implements RandomStream

Another (faster) 32-bit implementation, based on a combined LFSR with period near 2113.

public LFSR113(); // Constructs and returns a new stream object.

public class LFSR258 implements RandomStream

A 64-bit implementation, based on a combined LFSR with period near 2258.

public LFSR258(); // Constructs and returns a new stream object.

RandomStream stream1 = new LFSR113();
RandomStream stream2 = new LFSR113();
RandomStream stream3 = new LFSR258();

double u = stream2.nextDouble(); // Uniform over (0, 1)
int i = stream1.nextInt (1, 6); // Uniform over {1, 2, 3, 4, 5, 6} (a die)
int j = stream2.nextInt (1, 6);
int k = stream2.nextInt (0, 1); // Uniform over {0, 1} (a coin)

7

Non-uniform random variates in SSJ

Probability distributions are represented by Distribution types of objects, classified in
subtypes DiscreteDistribution, ContinuousDistribution,
ContinuousDistributionMulti (multivariate), StochasticProcess, etc.
Each subtype has several subclasses (Poisson, binomial, normal, Student, gamma, . . .).

Non-uniform random variate generators are objects of type RandomVariateGen. The most
general way to define one is to match a Distribution object with a RandomStream object.
See the Online Doc. By default, the generator will use inversion: X = F−1(U).

public class RandomVariateGen

public RandomVariateGen (RandomStream s, Distribution dist)

Creates a generator for distribution dist with stream s.

public double nextDouble()

Generates a new variate from distribution dist with this generator.

7

Non-uniform random variates in SSJ

Probability distributions are represented by Distribution types of objects, classified in
subtypes DiscreteDistribution, ContinuousDistribution,
ContinuousDistributionMulti (multivariate), StochasticProcess, etc.
Each subtype has several subclasses (Poisson, binomial, normal, Student, gamma, . . .).

Non-uniform random variate generators are objects of type RandomVariateGen. The most
general way to define one is to match a Distribution object with a RandomStream object.
See the Online Doc. By default, the generator will use inversion: X = F−1(U).

public class RandomVariateGen

public RandomVariateGen (RandomStream s, Distribution dist)

Creates a generator for distribution dist with stream s.

public double nextDouble()

Generates a new variate from distribution dist with this generator.

8
We have specialized subclasses of RandomVariateGen, for many distributions.
Some have static methods, in case we do not want to create an object.
public class NormalGen extends RandomVariateGen

public NormalGen (RandomStream s, double mu, double sigma);

Creates a normal generator.

public static double nextDouble (RandomStream s, double mu, double sigma);

Generates a new normal variate.

Several ways of creating (or not) a normal or Poisson generator:
RandomVariateGen ng1 = new RandomVariateGen (stream3, new NormalDist (mu, sigma));
RandomVariateGen ng2 = new NormalGen (stream3, mu, sigma); // Accurate inversion
RandomVariateGen ng3 = new NormalACRGen (stream3, mu, sigma); // Fast rejection method
RandomVariateGen ng4 = new NormalBoxMullerGen (stream3, mu, sigma);

double x = ng1.nextDouble(); // Use a generator object
double x = NormalGen.nextDouble (stream3, mu, sigma); // Static method, no object

RandomVariateGenInt pg1 = new PoissonGen (stream1, new PoissonDist (lambda));
RandomVariateGenInt pg2 = new PoissonGen (stream1, lambda); // Precomputes tables

int n = pg1.nextInt(); // Uses the pg1 object (with precomputed tables
int n = PoissonGen.nextInt(stream1, lambda); // Static method, no object

8
We have specialized subclasses of RandomVariateGen, for many distributions.
Some have static methods, in case we do not want to create an object.
public class NormalGen extends RandomVariateGen

public NormalGen (RandomStream s, double mu, double sigma);

Creates a normal generator.

public static double nextDouble (RandomStream s, double mu, double sigma);

Generates a new normal variate.

Several ways of creating (or not) a normal or Poisson generator:
RandomVariateGen ng1 = new RandomVariateGen (stream3, new NormalDist (mu, sigma));
RandomVariateGen ng2 = new NormalGen (stream3, mu, sigma); // Accurate inversion
RandomVariateGen ng3 = new NormalACRGen (stream3, mu, sigma); // Fast rejection method
RandomVariateGen ng4 = new NormalBoxMullerGen (stream3, mu, sigma);

double x = ng1.nextDouble(); // Use a generator object
double x = NormalGen.nextDouble (stream3, mu, sigma); // Static method, no object

RandomVariateGenInt pg1 = new PoissonGen (stream1, new PoissonDist (lambda));
RandomVariateGenInt pg2 = new PoissonGen (stream1, lambda); // Precomputes tables

int n = pg1.nextInt(); // Uses the pg1 object (with precomputed tables
int n = PoissonGen.nextInt(stream1, lambda); // Static method, no object

9

Comparing systems with common random numbers:
a simple inventory example

Xj = inventory level in morning of day j ;

Dj = demand (random) on day j , uniform over {0, 1, . . . , L};
min(Dj ,Xj) sales on day j ;
Yj = max(0,Xj − Dj) inventory at end of day j ;

Orders follow a (s, S) policy : If Yj < s, order S − Yj items.

Each order arrives (random) for next morning with probability p.

Revenue for day j : sales − inventory costs − order costs
= c ·min(Dj ,Xj)− h · Yj − (K + k · (S − Yj)) · I[an order arrives].

We want to compare several policies (s,S), using the same random numbers for the same
purpose for all policies. But the number of calls to RNG for order arrivals is random! To have
“same purpose”, we use two streams of random numbers, and one substream per run.

10

Inventory example: code to simulate m days with two streams

// Simulates inventory model for m days, with the (s,S) policy.

double simulateOneRun (int m, int s, int S,

RandomStream streamDemand, RandomStream streamOrderArrive) {

int Xj = S, Yj; // Stock Xj in morning and Yj in evening.

double profit = 0.0; // Cumulated profit.

for (int j = 0; j < m; j++) {

// Generate and subtract the demand for the day.

Yj = Xj - streamDemand.nextInt (0, L);

if (Yj < 0) Yj = 0; // Lost demand.

profit += c * (Xj - Yj) - h * Yj;

if ((Yj < s) && (streamOrderArrive.nextDouble() < p)) {

// The order has arrived, we pay for it.

profit -= K + k * (S - Yj);

Xj = S;

} else

Xj = Yj; // Order not received.

}

return profit / m; // Average profit per day.

}

11

Comparing p policies with CRNs (using a single processor)

// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...,p-1.

RandomStream streamDemand = new MRG32k3a();

RandomStream streamOrderArrive = new MRG32k3a();

for (int k = 0; k < p; k++) { // for each policy

for (int i = 0; i < n; i++) { // perform n runs

statProfit[k, i] = simulateOneRun (m, s[k], S[k], streamDemand, streamOrderArrive);

// Realign starting points so they are the same for all policies

streamDemand.resetNextSubstream();

streamOrderArrive.resetNextSubstream();

}

streamDemand.resetStartStream();

streamOrderArrive.resetStartStream();

}

// Print and plot results ...

...

Only two streams suffice for the entire simulation experiment. If we use different streams for
the n different runs, we would need 2n stream objects instead. Would be less efficient.

11

Comparing p policies with CRNs (using a single processor)

// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...,p-1.

RandomStream streamDemand = new MRG32k3a();

RandomStream streamOrderArrive = new MRG32k3a();

for (int k = 0; k < p; k++) { // for each policy

for (int i = 0; i < n; i++) { // perform n runs

statProfit[k, i] = simulateOneRun (m, s[k], S[k], streamDemand, streamOrderArrive);

// Realign starting points so they are the same for all policies

streamDemand.resetNextSubstream();

streamOrderArrive.resetNextSubstream();

}

streamDemand.resetStartStream();

streamOrderArrive.resetStartStream();

}

// Print and plot results ...

...

Only two streams suffice for the entire simulation experiment. If we use different streams for
the n different runs, we would need 2n stream objects instead. Would be less efficient.

12
Comparison with common random numbers

156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888 37.95166 37.95319 37.95274 37.95318 37.94887 37.94584 37.94361 37.94074 37.93335 37.92832

51 37.9574 37.96169 37.96379 37.96524 37.96546 37.96379 37.96293 37.95726 37.95295 37.94944 37.94536 37.93685

52 37.96725 37.97117 37.97402 37.97476 37.97492 37.97387 37.971 37.96879 37.96184 37.95627 37.95154 37.94626

53 37.97356 37.97852 37.98098 37.98243 37.98187 37.98079 37.97848 37.97436 37.97088 37.96268 37.95589 37.94995

54 37.97593 37.98241 37.98589 37.98692 37.98703 37.98522 37.9829 37.97931 37.97397 37.96925 37.95986 37.95186

55 37.97865 37.98235 37.9874 37.9894 37.98909 37.9879 37.98483 37.98125 37.97641 37.96992 37.96401 37.95343

56 37.97871 37.98269 37.98494 37.98857 37.98917 37.98757 37.98507 37.98073 37.97594 37.96989 37.96227 37.95519

57 37.97414 37.98035 37.98293 37.98377 37.98603 37.98528 37.98239 37.97858 37.97299 37.96703 37.95981 37.95107

58 37.96869 37.97207 37.97825 37.97944 37.97895 37.97987 37.97776 37.97358 37.96848 37.9617 37.95461 37.94622

59 37.95772 37.96302 37.9663 37.97245 37.97234 37.97055 37.9701 37.96664 37.96122 37.95487 37.94695 37.93871

60 37.94434 37.94861 37.95371 37.95691 37.96309 37.96167 37.9586 37.95678 37.95202 37.9454 37.93785 37.92875

61 37.922 37.93169 37.93591 37.94085 37.94401 37.95021 37.94751 37.94312 37.94 37.93398 37.92621 37.91742

50

52

54

56

58

60

37.88

37.9

37.92

37.94

37.96

37.98

38

156 157 158 159 160 161 162 163 164 165 166 167

CRN

37.88-37.9 37.9-37.92 37.92-37.94 37.94-37.96 37.96-37.98 37.98-38

13
Comparison with independent random numbers

156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888 37.94736 37.95314 37.95718 37.97194 37.95955 37.95281 37.96711 37.95221 37.95325 37.92063

51 37.9574 37.9665 37.95732 37.97337 37.98137 37.94273 37.96965 37.97573 37.95425 37.96074 37.94185 37.93139

52 37.96725 37.96166 37.97192 37.99236 37.98856 37.98708 37.98266 37.94671 37.95961 37.97238 37.95982 37.94465

53 37.97356 37.96999 37.97977 37.97611 37.98929 37.99089 38.00219 37.97693 37.98191 37.97217 37.95713 37.95575

54 37.97593 37.9852 37.99233 38.00043 37.99056 37.9744 37.98008 37.98817 37.98168 37.97703 37.97145 37.96138

55 37.97865 37.9946 37.97297 37.98383 37.99527 38.00068 38.00826 37.99519 37.96897 37.96675 37.9577 37.95672

56 37.97871 37.9867 37.97672 37.9744 37.9955 37.9712 37.96967 37.99717 37.97736 37.97275 37.97968 37.96523

57 37.97414 37.97797 37.98816 37.99192 37.9678 37.98415 37.97774 37.97844 37.99203 37.96531 37.97226 37.93934

58 37.96869 37.97435 37.9625 37.96581 37.97331 37.95655 37.98382 37.97144 37.97409 37.96631 37.96764 37.94759

59 37.95772 37.94725 37.9711 37.97905 37.97504 37.96237 37.98182 37.97656 37.97212 37.96762 37.96429 37.93976

60 37.94434 37.95081 37.94275 37.95515 37.98134 37.95863 37.96581 37.95548 37.96573 37.93949 37.93839 37.9203

61 37.922 37.93006 37.92656 37.93281 37.94999 37.95799 37.96368 37.94849 37.954 37.92439 37.90535 37.93375

50

52

54

56

58

60

37.84

37.86

37.88

37.9

37.92

37.94

37.96

37.98

38

38.02

156 157 158 159 160 161 162 163 164 165
166

167

IRN

37.84-37.86 37.86-37.88 37.88-37.9 37.9-37.92 37.92-37.94 37.94-37.96 37.96-37.98 37.98-38 38-38.02 38.02-38.02

14

22 24 26 28 30 32 160

165
26.2

26.4

22 24 26 28 30 32 160

165

26.2

26.4

26.6

15

Larger and more complicated systems

May require thousands of different streams, even for a simulation on a single CPU.

Substreams can be used for the independent replications, as we saw. Very convenient.

We have used that successfully for simulation and optimization of service systems such as call
centers, reliability models, and financial contracts and systems.

One may also think of factories, transportation networks, logistic systems, supply chains, etc.

Multiple streams for parallel processors

This would be a separate talk. Some references at the end.

16

Highly-uniform point sets (LHS, QMC, RQMC, ...)

See the hups package in SSJ. Some of the object types:
abstract class PointSet // A set of n points in [0, 1)s

int getDimension() // Dimension s
int getNumPoints() // Number n of points
double getCoordinate(int i, int j) // Coordinate j of point i
PointSetIterator iterator() // To enumerate the points
...

abstract class PointSetIterator implements RandomStream

This is a RandomStream for which each substream represents one point and nextDouble()

computes and returns the next coordinate of the current point.
The points are usually (re)computed on the fly, not stored.

class PointSetRandomization // A randomization that can be applied to a point set

void randomize(PointSet p) // Generates a fresh randomization

RQMCPointSet(PointSet p, PointSetRandomization rand)

A point set matched with a randomization.

17
More point sets (partial tree)
DigitalNet

DigitalNetBase2
DigitalSequenceBase2

SobolSequence
NiedXingSequenceBase2

Rank1Lattice
KorobovLattice

HaltonSequence

CycleBasedPointSet
LCGPointSet
LFSRPointSet
CycleBasedPointSetBase2

ContainerPointSet
BakerTransformedPointSet
AntitheticPointSet

CachedPointSet
LatinHypercube
StratifiedUnitCube
IndependentCachedPoints Same as Monte Carlo

Each type has a specialized method to construct one (or more) iterator(s) that acts as a
RandomStream to generate the points.

18

Randomizations

RandomShift // Random shift mod 1 or random digital shift

NestedUniformScrambling // Owen’s scrambling

LeftMatrixScrambling // Matoušek linear scrambling

LMSScrambleShift // LMS + random digital shift

Etc.

19

Fast generation of the points, examples

Rank-1 lattice with generating vector a = (a1, . . . , as), n points.
u0 = 0; ui = (ui−1 + a/n) mod 1; The factor 1/n is precomputed

Korobov lattice: a = (1, a, . . . , as−1 mod n).
ui = (ui ,1, . . . , ui ,s−1, ui ,s) = (ui−1,2, . . . , ui−1,s , aui−1,s mod 1);

Digital net in base 2, n = 2k points with w bits of accuracy.
The k columns of generating matrix Cj represented by k w -bit integers Cj ,1, . . . ,Cj ,k .
To compute coordinate j of point i :

x = 0; // integer
for c = 0 to k − 1

x = x ⊕ ((i >> c) & 1) · Cj ,k ;
ui ,j = x · 2−r . The factor 2−r is precomputed.

Random shift U = (U1, . . . ,Us) ∈ (0, 1)s :
ui ,j = (ui ,j + Uj) mod 1 (lattice) or ui ,j = ui ,j ⊕ Uj (digital net base 2).

19

Fast generation of the points, examples

Rank-1 lattice with generating vector a = (a1, . . . , as), n points.
u0 = 0; ui = (ui−1 + a/n) mod 1; The factor 1/n is precomputed

Korobov lattice: a = (1, a, . . . , as−1 mod n).
ui = (ui ,1, . . . , ui ,s−1, ui ,s) = (ui−1,2, . . . , ui−1,s , aui−1,s mod 1);

Digital net in base 2, n = 2k points with w bits of accuracy.
The k columns of generating matrix Cj represented by k w -bit integers Cj ,1, . . . ,Cj ,k .
To compute coordinate j of point i :

x = 0; // integer
for c = 0 to k − 1

x = x ⊕ ((i >> c) & 1) · Cj ,k ;
ui ,j = x · 2−r . The factor 2−r is precomputed.

Random shift U = (U1, . . . ,Us) ∈ (0, 1)s :
ui ,j = (ui ,j + Uj) mod 1 (lattice) or ui ,j = ui ,j ⊕ Uj (digital net base 2).

19

Fast generation of the points, examples

Rank-1 lattice with generating vector a = (a1, . . . , as), n points.
u0 = 0; ui = (ui−1 + a/n) mod 1; The factor 1/n is precomputed

Korobov lattice: a = (1, a, . . . , as−1 mod n).
ui = (ui ,1, . . . , ui ,s−1, ui ,s) = (ui−1,2, . . . , ui−1,s , aui−1,s mod 1);

Digital net in base 2, n = 2k points with w bits of accuracy.
The k columns of generating matrix Cj represented by k w -bit integers Cj ,1, . . . ,Cj ,k .
To compute coordinate j of point i :

x = 0; // integer
for c = 0 to k − 1

x = x ⊕ ((i >> c) & 1) · Cj ,k ;
ui ,j = x · 2−r . The factor 2−r is precomputed.

Random shift U = (U1, . . . ,Us) ∈ (0, 1)s :
ui ,j = (ui ,j + Uj) mod 1 (lattice) or ui ,j = ui ,j ⊕ Uj (digital net base 2).

19

Fast generation of the points, examples

Rank-1 lattice with generating vector a = (a1, . . . , as), n points.
u0 = 0; ui = (ui−1 + a/n) mod 1; The factor 1/n is precomputed

Korobov lattice: a = (1, a, . . . , as−1 mod n).
ui = (ui ,1, . . . , ui ,s−1, ui ,s) = (ui−1,2, . . . , ui−1,s , aui−1,s mod 1);

Digital net in base 2, n = 2k points with w bits of accuracy.
The k columns of generating matrix Cj represented by k w -bit integers Cj ,1, . . . ,Cj ,k .
To compute coordinate j of point i :

x = 0; // integer
for c = 0 to k − 1

x = x ⊕ ((i >> c) & 1) · Cj ,k ;
ui ,j = x · 2−r . The factor 2−r is precomputed.

Random shift U = (U1, . . . ,Us) ∈ (0, 1)s :
ui ,j = (ui ,j + Uj) mod 1 (lattice) or ui ,j = ui ,j ⊕ Uj (digital net base 2).

20

Basic tools for MC and RQMC experiments

interface MonteCarloModel<OutType> // Interface for a simple simulation model

void simulate(RandomStream stream) // Simulate the model once
OutType getPerformance() // Returns the simulation output (e.g., a double)

static class MonteCarloExperiment // Methods to perform simulation experiments

static void simulateRuns (MonteCarloModel model, int n, RandomStream stream,
Tally statValue)

Performs n simulation runs, returns results in statValue.

static class RQMCExperiment // Methods to perform RQMC experiments

static void simulReplicatesRQMC (MonteCarloModel model, PointSet p,
PointSetRandomization rand, int m, Tally statReps)

Performs m RQMC replicates with given model and point set, put results in statReps.

21

// Performs n simulation runs
simulateRuns (MonteCarloModel model, int n, RandomStream stream, Tally statValue)

statValue.init();
for (int i = 0; i < n; i++)

model.simulate(stream); // Simulate the model with this stream
statValue.add(model.getPerformance());
stream.resetNextSubstream(); // One substream per simulation run

// Performs m RQMC replicates
simulReplicatesRQMC (MonteCarloModel model, PointSet p, PointSetRandomization rand,

int m, Tally statReps)
statReps.init();
int n = p.getNumPoints();
Tally statValue = new Tally(); // Internal collector for stats, for each replication
PointSetIterator stream = p.iterator();
for (int rep = 0; rep < m; rep++) {

rand.randomize(p);
stream.resetStartStream(); // Reset to first point
simulateRuns(model, n, stream, statValue); // Simulate n runs with RQMC points
statReps.add(statValue.average()); // For the estimator of the mean

22

Code snippets for an example
// A simulation model. Exact same code for MC and RQMC.
public class FinancialOption implements MonteCarloModelDouble

public void simulate(RandomStream stream) . . .
public double getPerformance() . . .

...
MonteCarloModelDouble model = new FinancialOption (. . .);
RandomStream noise = new LFSR113();
simulateRuns (model, n, stream, statValue); Monte Carlo, n runs

DigitalNet p1 = new SobolSequence(16, 31, s); // n = 216 points in s dim
PointSetRandomization rand1 = new LMScrambleShift(noise);
simulReplicatesRQMC (model, p1, rand1, m, statReps); m RQMC replicates

KorobovLattice pkor = new KorobovLattice(16381, 5693, s); // n = 16381 points in s dim
BakerTransformedPointSet p2 = new BakerTransformedPointSet(pkor);
PointSetRandomization rand2 = new RandomShift(noise);
System.out.println (simulReplicatesRQMCDefaultReport (model, p2, rand2, m, statReps));

// statReps will contain the m independent RQMC estimates.
// The last function also prints statistics and a confidence interval.

23

Conclusion

▶ SSJ offers an integrated framework for Monte Carlo and quasi-Monte Carlo. It has RNGs
with multiple streams, many distributions and stochastic processes, and a variety of tools
for RQMC. The software runs pretty fast.

▶ It was developed over 20 years ago for 32-bit processors and a single CPU. I plan to
make a 64-bit version that also better exploits multicore CPUs in the code.

▶ Similar frameworks can be done easily in C++, Python, Julia, etc.

▶ Similar tools for highly-parallel computing systems (GPUs, TPUs, etc.) would require a
different design in some parts. For example, the way we create the RNG streams in SSJ
is inherently sequential (one after the other). On GPUs, we would like to create them in
parallel. This is a separate (interesting) topic.

23
Self-references related to my software and RNG/RQMC work

Most are available at http://www.iro.umontreal.ca/~lecuyer/papers.html

L’Ecuyer, P. 2000. “SIMOD-99: Définition fonctionnelle et guide d’utilisation”.
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-simod-2000.pdf.

L’Ecuyer, P. 2006. “Uniform Random Number Generation”. In Simulation, Edited by S. G. Henderson and
B. L. Nelson, Handbooks in Operations Research and Management Science, 55–81. Amsterdam, The
Netherlands: Elsevier. Chapter 3.

L’Ecuyer, P. 2015. “Random Number Generation with Multiple Streams for Sequential and Parallel
Computers”. In Proceedings of the 2015 Winter Simulation Conference, 31–44: IEEE Press.

L’Ecuyer, P. 2017. “History of Uniform Random Number Generation”. In Proceedings of the 2017 Winter
Simulation Conference, 202–230: IEEE Press.

L’Ecuyer, P. 2023. “SSJ: Stochastic Simulation in Java”. https://github.com/umontreal-simul/ssj.

L’Ecuyer, P., and E. Buist. 2005. “Simulation in Java with SSJ”. In Proceedings of the 2005 Winter
Simulation Conference, 611–620: IEEE Press.

http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-simod-2000.pdf
https://github.com/umontreal-simul/ssj

23

L’Ecuyer, P., and N. Giroux. 1987. “A process-oriented simulation package based on Modula-2”. In
Proceedings of the 1987 Winter Simulation Conference, 165–174: IEEE Press.

L’Ecuyer, P., P. Marion, M. Godin, and F. Puchhammer. 2022. “A Tool for Custom Construction of QMC
and RQMC Point Sets”. In Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2020, Edited by
A. Keller, 51–70. Berlin: Springer. https://arxiv.org/abs/2012.10263.

L’Ecuyer, P., D. Munger, and N. Kemerchou. 2015. “clRNG: A Random Number API with Multiple
Streams for OpenCL”. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/clrng-api.pdf.

L’Ecuyer, P., D. Munger, B. Oreshkin, and R. Simard. 2017. “Random Numbers for Parallel Computers:
Requirements and Methods, with Emphasis on GPUs”. Mathematics and Computers in
Simulation 135:3–17.

L’Ecuyer, P., O. Nadeau-Chamard, Y.-F. Chen, and J. Lebar. 2021. “Multiple Streams with
Recurrence-Based, Counter-Based, and Splittable Random Number Generators”. In Proceedings of the
2021 Winter Simulation Conference, 1–16: IEEE Press.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002. “An Object-Oriented Random-Number
Package with Many Long Streams and Substreams”. Operations Research 50 (6): 1073–1075.

https://arxiv.org/abs/2012.10263
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/clrng-api.pdf

