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A static network reliability problem

A system has m components, in state 0 (failed) or 1 (operating).
System state: X = (X1, . . . ,Xm)t .
Complementary structure function: Φ : {0, 1}m → {0, 1}.
System failed iff Φ(X) = 1. Unreliability: u = P[Φ(X) = 1].

If we know P[X = x] for all x ∈ {0, 1}m, in theory we can compute

u =
∑

x∈D={X:Φ(X)=1}

P[X = x].

But the cost of enumerating D is generally exponential in m.

Monte Carlo: Generate n i.i.d. realizations of X, say X1, . . . ,Xn, compute
Wi = Φ(Xi ) for each i , and estimate u by W̄n = (W1 + · · ·+ Wn)/n.
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Suppose Φ is defined via a graph. Link i “works” iff Xi = 1.
The system works if all the nodes in a given set V0 are connected.
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The Xi ’s can be independent or not.
Given the Xi ’s, W = Φ(X) is easy to evaluate by graph algorithms
(e.g., minimal spanning tree).
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But the failure probability u is often very close to 0 (failure is a rare
event). For example, if u = 10−10, the system will fail only once per 10
billion runs on average.

In fact, W = Φ(X) is Bernoulli with E[W ] = u, Var[W ] = u(1− u), and

MSE[W̄n]
here
= Var[W̄n] =

u(1− u)

n
≈ u

n
.

We want at least to beat the trivial estimator Y = 0, for which
MSE[Y ] = bias2[Y ] = u2.

When u is small, a relevant quality measure is the relative error

RE[W̄n]
def
=

√
MSE[W̄n]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, we need n ≈ 1012 to have RE[W̄n] ≤ 10%.
We need much more efficient methods than crude MC!
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A framework for asymptotic analysis

We parameterize the distribution of X by some rarity parameter ε in a way
that u = u(ε) = P[W (ε) = 1]→ 0 when ε→ 0.

For example, one can have

P[Xi = 0] = qi = aiε
bi + o(εbi )

for each link i , with independent Xi ’s.

We study the asymptotic behavior when ε→ 0 to understand what
happens when ε is very small.

With standard MC, RE[W (ε)]→∞ when ε→ 0.
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Robustness of estimator W (ε) in a rare-event setting
An estimator W (ε) with mean µ0(ε) has bounded relative variance, or
bounded relative error (BRE) if

lim
ε→0

Var[W (ε)]

µ2
0(ε)

<∞.

Then the relative size of a confidence interval on the mean remains
bounded when ε→ 0.

Can we do better?

W (ε) has vanishing relative variance, or relative error (VRE), if

lim sup
ε→0

σ(ε)

µ0(ε)
= 0.

Then the rare event difficulty is reversed! May seem unachievable at first
sight, but does happen.

Challenge in rare-event simul.: build estimators with these properties.
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Conditional MC with auxiliary variables
[Elperin, Gertsbach, Lomonosov 1974, 1991, 1992, etc.]
Special case: the Xi ’s are independent with P[Xi = 0] = qi .

Conceptually, suppose each link i is initially failed and gets repaired at time
Yi ∼ Expon(µi ) where µi = − ln(qi ). Then P[Yi > 1] = P[Xi = 0] = qi .
Let Y = (Y1, . . . ,Ym) and π the permutation s.t. Yπ(1) < · · · < Yπ(m).

Conditional on π, we can forget the Yi ’s, add the (non-redundant) links one by
one until the graph is operational, say at step C .
Data structure: forest of spanning trees. Adding a link may merge two trees.

Permutation Monte Carlo (PMC) estimator: conditional probability that the total
time for these repairs is larger than 1:

P [A1 + · · ·+ Ac > 1 | π, C = c] .

At step j , the time Aj to next repair is exponential with rate Λj , the sum of repair
rates of all links not yet repaired. Sum is an hypoexponential.
Theorem [Gertsback and Shpungin 2010]. Gives BRE when the qj → 0.

Improvement: turnip; at each step, discard redundant unrepaired links.
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P [A1 + · · ·+ Ac > t | π, C = c] = e1e
Dt1 = e1

∞∑
k=0

Dk tk

k!
1,

where

D =


−Λ1 Λ1 0 . . . 0

0 −Λ2 Λ2 . . . 0
...

...
. . .

. . .
...

0 . . . 0 −Λc−1 Λc−1

0 . . . 0 0 −Λc

 .

Can be developed as

P [A1 + · · ·+ Ac > t | π, C = c] =
c∑

j=1

e−Λj t
c∏

k=1, k 6=j

Λk

Λk − Λj
.

This formula can quickly becomes unstable when some Λk − Λj are small.

But Higham (2009) recently proposed a stable method for matrix
exponential. Significantly slower but reliable.
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A dodecahedron network
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Turnip method for dodecahedron graph: n = 106, V0 = {1, 20}
qi = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.881e-3 2.065e-6 2.006e-9 1.992e-12 1.999e-15 2.005e-18
RE[W̄n] 0.00302 0.00421 0.00433 0.00436 0.00435 0.00434
T (sec) 15.6 15.5 15.5 15.5 15.5 15.5
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Three dodecahedron graphs in parallel.

A dodec. 1

dodec. 2
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Turnip for three dodecahedrons in parallel: n = 108, V0 = {1, 20}
qi = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.39e-8 8.80e-18 8.20e-27 8.34e-36 8.07e-45 7.92e-54
RE[W̄n] 0.0074 0.0194 0.0211 0.0210 0.0212 0.0215
T (sec) 6236 6227 6229 6546 6408 6289

Beats ZVA when ε is not too small.



D
ra

ft

13

Dependent Links: A Marshall-Olkin Copula Model
Goal: Define a model where the Xi ’s may have positive dependence.

Suppose all links are initially operational. For each s ⊆ {1, . . . ,m}, a
shock that takes down all links in s occurs at an exponential time with
rate λs. Let L = {s : λs > 0} = {s(1), . . . , s(κ)}, where κ = |L|.
Denote λj = λs(j), let Yj be the shock time for subset s(j), and
Y = (Y1, . . . ,Yκ) (the latent state of the system).

Component i fails at time

Wi = min{Yj : i ∈ s(j) and 1 ≤ j ≤ κ},

so Xi = I[Wi > 1] the indicator that component i is operational at time 1.

We have P[Xi = 1] = P[min{Yj : i ∈ s(j)} > 1] = exp
[
−
∑
{j :i∈s(j)} λj

]
.

Can have cascading shocks, to model cascading failure.

Problem: previous PMC and turnip methods do not apply directly.
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PMC method, now a destruction process

Generate the shock times Yj , sort them by increasing order to get
Yπ(1) < · · · < Yπ(κ), and retain only the permutation π.

PMC estimator: P[graph is failed at time 1 |π].

To compute it, add the shocks π(1), π(2), . . . , and remove corresponding
links i ∈ s(j), until the system fails, say at shock C ∗ (the critical number).

Data structure: forest of spanning trees.
When removing a link: breath-first search for alternative path (costly).

The time Aj = Yπ(j) − Yπ(j−1) between two successive shocks is
exponential with rate Λj equal to the sum of rates of all forthcoming
shocks. That is, Λ1 = λ1 + · · ·+ λκ and Λj+1 = Λj − λπ(j) for j ≥ 1.
PMC estimator of u: P [A1 + · · ·+ Ac ≤ 1 | π,C ∗ = c].
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Adapting the turnip method

Generate the shocks in increasing order of occurrence and at each step j ,
remove from consideration the future shocks that can no longer contribute
to system failure.

For instance, when removing a link, if there are nodes that become
disconnected from V0, those nodes can be removed for further
consideration. And future shocks k that only affect removed links can be
discarded, and their rate λk subtracted from Λj .

Drawback remains: Removing links from the graph is more time
consuming than adding links.
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Scanning shocks in reverse order
(construction process)

Once we have π, we can assume that all the shocks have occurred, go
backward in time and remove them one by one, until the network is
operational. This gives another way of computing C ∗.

For each link i , initialize a counter f (i) to the total number ci of shocks
that can can affect link i . Decrease the counter by 1 each time we remove
a shock that affects link i . Link i is repaired when f (i) reaches 0.

The network gets connected when removing (say) the C -th shock. Let
C ∗ = κ+ 1− C and compute the PMC estimator exactly as before.
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PMC and turnip with antishocks (construction)

Here, to generate the permutation π, we generate the shock times directly
in reverse order, i.e., we generate antishocks in increasing order.

Antishock j occurs at exponential time Rj with rate µj . We must have
1− e−µj = P[Rj ≤ 1] = P[Yj > 1] = e−λj , therefore µj = − ln(1− e−λj ).

If the system gets connected at the C -th antishock, the PMC estimator is
P [A1 + · · ·+ Ac > 1 | π,C = c] where each Aj is exponential with rate
Λj = µπ(j) + · · ·+ µπ(κ).

Turnip version: eliminate antishocks that become useless. Adds overhead.
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Dodecahedron, shocks on links only, qj = q = 10−3, V0 = {1, 20},
n = 106.

Algo: PMC PMC turnip turnip turnip GS
shocks reverse shocks reverse anti shocks

W̄n 2.009e-9 2.009e-9 1.9603e-9 2.067e-9 1.800e-9 2.020e-9
S2
n/(W̄n)2 1932.68 1932.68 1980.71 1881.09 2153.01 58.4304

RE[W̄n] 0.04396 0.04396 0.04450 0.04337 0.0464 0.00764
C 13.28 13.28 13.279 13.2789 17.72 —
T (sec) 29.2 20.2 26.3 20.5 8.4 176.5
WNRV[W̄n] 0.0565 0.0390 0.0520 0.0385 0.0181 0.0103

WRNV = Work-normalized relative variance.
For turnip-anti, we use (and give) C ∗ instead of C .
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Complete graph with 50 nodes.
One shock per node, kills all links connected to that node.
Rate λj = 10−3, V0 = {1, 50}, n = 105.

Algo: PMC PMC turnip turnip turnip GS
shocks reverse shocks reverse anti shocks

W̄n 0.001968 0.001968 0.002020 0.001988 0.001991 0.001939
S2
n/(W̄n)2 23.2138 23.2138 22.5845 22.9627 22.9417 17.5215

RE[W̄n] 0.015236 0.015236 0.015028 0.015153 0.015147 0.013237
C 16.99 16.99 16.94 16.98 34.00 —
T (sec) 199.3 7.1 189.1 9.9 7.5 343.0
WNRV[W̄n] 0.0463 0.00166 0.0427 0.00228 0.00173 0.0601
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A lattice graph
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20× 20 square lattice graph
400 nodes and 760 links. One shock per node at rate λ = 10−5 and one
shock per link at rate 10λ = 10−4. V0 = {1, 400}, n = 104.

Algo: PMC PMC turnip turnip turnip GS
shocks reverse shocks reverse anti shocks

W̄n 1.5999e-5 1.5999e-5 1.5999e-5 1.5999e-5 1.7198e-5 2.0056e-5
S2
n/(W̄n)2 248.055 248.055 248.055 248.055 230.699 24.7837

RE[W̄n] 0.157498 0.157498 0.157498 0.157498 0.151888 0.049783
T (sec) 48.1 12.4 48.8 12.6 8.1 93.2
WNRV[W̄n] 1.19 0.306 1.21 0.312 0.188 0.231

In this example, whenever we decrease λ or increase the number of nodes,
PMC and turnip fail totally (they give wrong estimates). Similar results if
we put shocks only on links. Here, C is near 240 on average.

The important permutations π become rare and often not seen.
We will use an adaptive learning algorithm (GS) to find them.
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A generalized splitting (GS) algorithm
Uses latent variables Y. Let

S̃(Y) = inf{γ ≥ 0 : Ψ(X(γ)) = 0},

the time at which the network fails, and S(Y) = 1/S̃(Y).

Choose real numbers 0 = γ0 < γ1 < · · · < γτ = 1 for which

ρt
def
= P[S(Y) > γt | S(Y) > γt−1] ≈ 1/2

for t = 1, . . . , τ .

For each level γt , construct (via MCMC) a Markov chain {Yt,j , j ≥ 0}
with transition density κt and whose stationary density is the density of Y
conditional on S(Y) > γt :

ft(y)
def
= f (y)

I[S(y) > γt ]

P[S(Y) > γt ]
.
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GS algorithm

Generate Y from density f
if S(Y) > γ1 then X1 ← {Y} else return U ← 0
for t = 2 to τ do
Xt ← ∅ // set of states that have reached level γt
for all Y0 ∈ Xt−1 do

for ` = 1 to 2 do
sample Y` from density κt−1(· | Y`−1)
if S(Y`) > γt then add Y` to Xt

return U ← |Xτ |/2τ−1 as an unbiased estimator of u.



D
ra

ft

24

Defining κt−1 via Gibbs sampling:

Require: Y for which S(Y) > γt−1 and a permutation π of {1, . . . , κ}
for k = 1 to κ do

j ← π(k)
if S(Y1, . . . ,Yj−1, 0,Yj+1, . . . ,Yκ) < γt−1 then

// removing shock j would connect V0

resample Yj from its density truncated to (0, 1/γt−1)
else

resample Yj from its original density
return Y as the resampled vector.

How to estimate appropriate levels γt? Adaptive (pilot) phase.

Data structure: forest of spanning trees.
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GS for the dodecahedron, shocks on links only: n = 106, V0 = {1, 20}
qj = ε 10−1 10−2 10−3 10−4 10−5 10−6

τ 9 19 29 39 49 59
W̄n 0.002877 2.054e-6 2.022e-9 2.01e-12 1.987e-15 1.969e-18
RE[W̄n] 0.00403 0.0062 0.00769 0.0089 0.00992 0.0112
T (sec) 93 167 224 278 334 376

GS
for the three dodecahedrons in parallel, shocks on links only: n = 106, V0 = {1, 20}
qj = ε 10−1 10−2 10−3 10−4 10−5 10−6

τ 26 57 87 117 147 176
W̄n 2.377e-8 8.874e-18 8.182e-27 8.088e-36 8.237e-45 7.931e-54
RE[W̄n] 0.00712 0.0109 0.0137 0.0158 0.0185 0.0208
T (sec) 1202 2015 2362 2820 3041 3287
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Dodecahedron: distribution of states at last level

Histograms of log10(U) for GS (middle), turnip (left), and for the
conditional prob. of failure for the permutations π obtained by GS (right),
for three dodecahedrons in parallel, with q = 10−2.
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Square lattice graph, shocks on links only

GS for a 50× 50 lattice graph, with 2500 nodes, 4900 links,
P[Xi = 0] = ε, n = 104.

qj = ε 10−2 10−3 10−4 10−5 10−6

τ 13 19 26 33 39
W̄n 2.148e-4 2.085e-6 2.179e-8 2.156e-10 1.932e-12
RE[W̄n] 0.0466 0.0604 0.0678 0.0785 0.0909
T (sec) 19818 19283 18413 17967 17851

PMC and turnip are useless in this case.
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20× 20 square lattice graph

400 nodes and 760 links. One shock per node at rate λ = 10−5 and one
shock per link at rate 10λ = 10−4. V0 = {1, 400}, n = 104.

Algo: PMC PMC turnip turnip turnip GS
shocks reverse shocks reverse anti shocks

W̄n 1.5999e-5 1.5999e-5 1.5999e-5 1.5999e-5 1.7198e-5 2.0056e-5
S2
n/(W̄n)2 248.055 248.055 248.055 248.055 230.699 24.7837

RE[W̄n] 0.157498 0.157498 0.157498 0.157498 0.151888 0.049783
T (sec) 48.1 12.4 48.8 12.6 8.1 93.2
WNRV[W̄n] 1.19 0.306 1.21 0.312 0.188 0.231
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One shock per node at rate λ and one shock per link at rate 10λ.
V0 = {1, 400}, GS with shocks, n = 104.

λ W̄n RE[W̄n] T (sec)

10−2 4.66e-2 0.0283 102
10−3 2.16e-3 0.0480 133
10−4 2.00e-4 0.0624 122
10−5 1.95e-5 0.0629 153
10−6 2.17e-6 0.0653 168
10−7 2.14e-7 0.0634 184
10−8 2.05e-8 0.1203 105
10−9 1.97e-9 0.1093 150
10−10 1.94e-10 0.0696 266
10−11 1.97e-11 0.0819 187
10−12 2.16e-12 0.0629 359
10−18 1.93e-18 0.0712 811

PMC and turnip do not work here when λ is too small.
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Extensions

PMC, turnip, and GS could be adapted to rare-event simulation in even
more general shock-based reliability models, e.g., where shocks only alter
the state of the system, may change the future shock rates, etc. Several
applications in sight.


