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Sampling Conditional on a Rare Event

Random vector Y in Rd , with density f . Suppose we know how to sample Y from f .

We want to sample it from f conditional on Y ∈ B, for some B ⊂ Rd for which p = P[Y ∈ B]
is very small.

What for?
It could be to estimate the conditional expectation E[h(Y) | Y ∈ B] for some real-valued cost
function h, or to estimate E[h(Y)I(Y ∈ B)] or to estimate the conditional density, for
example.

There are many applications (CVaR, approximate zero-variance importance sampling, etc.).

In Bayesian statistics, Y may represent a vector of parameters with given prior distribution
and we may want to sample it from the posterior distribution given the data.
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Rejection sampling

Algorithm 1: Standard rejection

while true do
Sample Y from its unconditional density f
if Y ∈ B then

return Y

To get an independent sample of size n, we can repeat n times independently.

But if p = P[Y ∈ B] is very small, i.e., {Y ∈ B} is a rare event, this is too inefficient.
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Markov chain Monte Carlo (MCMC)

Suppose we can construct an artificial Markov chain whose stationary distribution is the target
one, i.e., the distribution of Y conditional on Y ∈ B.

We can start this Markov chain at some arbitrary state y0 ∈ B, run it for n0 + n steps for
some large enough n0, and retain the last n visited states as our sample.

But many issues arise. How large should be n0? Convergence to the stationary distribution
may be very slow and the n retained states are typically highly dependent.
Sometimes, we may also not know how to pick a valid state y0 from B.
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Generalized splitting (GS)
Botev and Kroese (2012) proposed a generalized splitting approach as an alternative, to
sample approximately from the conditional density. To apply GS, we need to choose:

1. an importance function S for which {y : S(y) > γ∗} = B for some γ∗ > 0,

2. an integer splitting factor s ≥ 2, and

3. a number τ > 0 of levels 0 = γ0 < γ1 < · · · < γτ = γ∗ for which

P[S(Y) > γt | S(Y) > γt−1] ≈ 1/s, for t = 1, . . . , τ − 1.

4. For each level t, an artificial Markov chain with transition density κt(y | x) and whose
stationary density ft is the density of Y conditional on S(Y) > γt :

ft(y) := f (y)
I(S(y) > γt)

P[S(Y) > γt ]
.

There are many ways of constructing these chains.
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Algorithm 2: Generalized splitting

Require: s, τ, γ1, . . . , γτ
Generate Y from its unconditional density f
if S(Y) ≤ γ1 then

return Yτ = ∅ and M = 0 // state Y does not reach first level; return empty list
else

Y1 ← {Y} // state Y has reached at least the first level
for t = 2 to τ do

Yt ← ∅ // list of states that have reached level γt
for all Y ∈ Yt−1 do

set Y0 = Y // we will simulate this chain for s steps
for j = 1 to s do

sample Yj from the density κt−1(· | Yj−1)
if S(Yj) > γt then

add Yj to Yt // this state has reached the next level
return the list Yτ and its cardinality M = |Yτ |. // list of states that have reached B

At each step, Yt is the set of states that have reached level t.
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Generalized Splitting
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Choice of parameters

In many applications there is a natural choice for the importance function S .

Good values for s, τ , and the levels {γt} can typically be found adaptively via an
(independent) pilot experiment.

Based on our experience, taking s = 2 is usually best.
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Some questions left partially open in the 2012 paper

I Are the final states of the set of trajectories exactly or approximately distributed
according according to the density f conditional on B?
In empirical experiments with rare events, we observed that the empirical was very close
to the conditional, and it was unclear if there was bias or not.

I Does GS provide an unbiased estimator of the conditional expectation of a function of Y ,
given Y ∈ B?

I Let M = |Yτ | be the number of particles that end up in B. If we pick at random one of
those M terminal particles from a given run of GS, assuming that M > 1, is this particle
distributed according to fτ (·) = f (· | Y ∈ B)?

I If we run GS r times, independently, and collect the terminal states of all the trajectories
that have reached the rare event over the r runs, does their empirical distribution
converge to the conditional distribution given B, and how fast?
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Unbiasedness for each fixed potential branch

To study the previous questions, we will consider an imaginary version of the GS algorithm in
which all sτ−1 potential trajectories are considered. For those that do not reach the next level
in the GS algorithm, we assume that there are phantom trajectories that are continued at all
levels.

For t = 1, 2, . . . , τ , denote by Yt the corresponding set of st−1 states at step t.

Let Y(1, j2, . . . , jt) ∈ Yt denote the state coming from the branch going through the j2th
state of step 2, j3th state of step 3, . . . , and currently the jtth state at step t, where each
ji ∈ {1, . . . , s}.
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Unbiasedness for each fixed potential branch

The trajectories that are kept alive up to level t in the original algorithm are those for which
the following event occurs:

Et(1, j2, . . . , jt) := {Y(1) > γ1, . . . ,Y(1, j2, . . . , jt) > γt}.

Proposition 1. For any fixed level t and index (1, j2, . . . , jt), conditional on
Et(1, j2, . . . , jt), the state Y(1, j2, . . . , jt) has density ft (exactly).
For t = τ , this is the density of Y conditional on {Y ∈ B}.

This can be proved by induction on t.
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Unbiasedness for expectation

GS provides an unbiased estimator of E[h(Y)I(Y ∈ A)]:

Proposition 2. For any (measurable) function h and subset A ⊆ B, we have

E

s1−τ ∑
Y∈Yτ

h(Y)I(Y ∈ A)

 = E[h(Y)I(Y ∈ A)],

where the left expectation is with respect to Yτ and the one on the right is with respect
to the original density f of Y.

By taking A = B and h = 1 we find that E[M] = P(Y ∈ B)sτ−1.
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Sampling from the Conditional Density and Estimating the
Conditional Expectation

Each run of the GS algorithm returns a sample Y1, . . . ,YM of random size M, taking values
in B. In view of the previous unbiasedness results, one may expect that if we pick Y∗ at
random uniformly from Y1, . . . ,YM , conditional on M ≥ 1 (if M = 0 we just retry), then this
Y∗ will have the conditional density fτ (·) = f (· | Y ∈ B) and that h(Y∗) will be an unbiased
estimator of the conditional expectation E[h(Y) | Y ∈ B].

Unfortunately, this is not true.

The problem is that Y∗ and M are not independent!
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Formulation as a ratio of expectations

To see what goes on, let H =
∑

Y∈Yτ h(Y). We can write

E[h(Y) | Y ∈ B] =
E[h(Y)I(Y ∈ B)]

P[Y ∈ B]
=

E[h(Y)I(Y ∈ B)]sτ−1

E[M]
=

E[H]

E[M]
:= ν,

which is a ratio of expectations.

For Y∗ picked uniformly from {Y1, . . . ,YM}, we have

E[h(Y∗)] = E

 1

M

∑
Y∗∈Yτ

h(Y∗)

 = E[H/M],

which is the expectation of a ratio.

Special case: h(Y) = I(Y ∈ A) to stimate P(A), for any A ⊆ B.
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How to estimate ν consistently?

We can estimate ν = E[h(Y) | Y ∈ B] via standard techniques for ratios of expectations.

Classical approach:

1. Simulate n independent replicates of the GS estimator, let Yτ,1, . . . ,Yτ,n be the n sets Yτ
obtained from these realizations, and let Mi = |Yτ,i | and Hi =

∑
Y∈Yτ,i h(Y) be the

realizations of M and H for replicate i , for i = 1, . . . , n.

2. Return the ratio estimator

ν̂n =
H1 + · · ·+ Hn

M1 + · · ·+ Mn
.

This estimator is asymptotically normal and standard formulas are available to compute a
confidence interval on ν. Can also use bootstrap.
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Sampling from the Conditional Distribution

To generate independent realizations of Y approximately from its conditional distribution given B, we
can pick the realizations at random with replacement from Y∪ = Yτ,1 ∪ · · · ∪ Yτ,n. Let

Q̂n[A] = |Y∪ ∩ A|/|Y∪| (empirical dist.); Qn[A] = E[Q̂n[A]]; Q[·] = P[· | B] (true cond. dist.).

The empirical distribution Q̂n converges to Q in the following large-deviation sense:

Proposition 4. For any ε ∈ (0, p/2], we have sup
A⊆B

P
[∣∣∣Q̂n[A]−Q[A]

∣∣∣ > 2ε/p
]
≤ 4e−2nε

2

.

The proof uses Hoeffding’s inequality for numerator and denominator of Q̂n[A] = H̄n(A)/M̄n.

We also have convergence of Qn (but not of Q̂n) to Q in total variation (proof in the paper).

Corollary 5. lim
n→∞

sup
A⊆B
|Qn[A]−Q[A]| =

2

p

∫ ∞
0

4e−2nε
2

dε =
2
√

2π

p
√
n
→ 0.



D
ra

ft

16

Sampling from the Conditional Distribution

To generate independent realizations of Y approximately from its conditional distribution given B, we
can pick the realizations at random with replacement from Y∪ = Yτ,1 ∪ · · · ∪ Yτ,n. Let

Q̂n[A] = |Y∪ ∩ A|/|Y∪| (empirical dist.); Qn[A] = E[Q̂n[A]]; Q[·] = P[· | B] (true cond. dist.).

The empirical distribution Q̂n converges to Q in the following large-deviation sense:

Proposition 4. For any ε ∈ (0, p/2], we have sup
A⊆B

P
[∣∣∣Q̂n[A]−Q[A]

∣∣∣ > 2ε/p
]
≤ 4e−2nε

2

.

The proof uses Hoeffding’s inequality for numerator and denominator of Q̂n[A] = H̄n(A)/M̄n.

We also have convergence of Qn (but not of Q̂n) to Q in total variation (proof in the paper).

Corollary 5. lim
n→∞

sup
A⊆B
|Qn[A]−Q[A]| =

2

p

∫ ∞
0

4e−2nε
2

dε =
2
√

2π

p
√
n
→ 0.



D
ra

ft

16

Sampling from the Conditional Distribution

To generate independent realizations of Y approximately from its conditional distribution given B, we
can pick the realizations at random with replacement from Y∪ = Yτ,1 ∪ · · · ∪ Yτ,n. Let

Q̂n[A] = |Y∪ ∩ A|/|Y∪| (empirical dist.); Qn[A] = E[Q̂n[A]]; Q[·] = P[· | B] (true cond. dist.).

The empirical distribution Q̂n converges to Q in the following large-deviation sense:

Proposition 4. For any ε ∈ (0, p/2], we have sup
A⊆B

P
[∣∣∣Q̂n[A]−Q[A]

∣∣∣ > 2ε/p
]
≤ 4e−2nε

2

.

The proof uses Hoeffding’s inequality for numerator and denominator of Q̂n[A] = H̄n(A)/M̄n.

We also have convergence of Qn (but not of Q̂n) to Q in total variation (proof in the paper).

Corollary 5. lim
n→∞

sup
A⊆B
|Qn[A]−Q[A]| =

2

p

∫ ∞
0

4e−2nε
2

dε =
2
√

2π

p
√
n
→ 0.



D
ra

ft

17

A simple bivariate uniform (counter)example

We illustrate the convergence behavior on a baby example, initially designed as a
counter-example to show that the sampling is not exact. We have:

I Y = (Y1,Y2) uniform over [0, 1]2, so f is the uniform density.

I B = {y ∈ Y : S(y) > γ2}.
I S(y) = S(y1, y2) = max(y1, y2)

I Number of levels τ = 2.

I Two splitting level cases: s = 2 and s = 10.

I Level parameters γ1 =
√

1− s−1 and γ2 =
√

1− s−2.

I The true conditional density on B is constant, equal to s2, for s = 2, 10.

We want to compare the true conditional density with the density obtained from GS.
We consider two choices of Markov chain kernel κt : Two-way and one-way resampling.
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Bivariate Uniform Example

0 1

1

γ1

γ2

γ1 γ2

B1

B3

B2 B4 B5
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Two-way resampling

Here we use a symmetric Gibbs sampling: always resample the two coordinates one after the
other, in random order, conditional on S(Y) > γt−1.

Specifically, whenever Y1 is resampled, if Y2 > γt−1 we resample Y1 uniformly over (0, 1),
otherwise we resample Y1 uniformly over (γt−1, 1). And similarly for Y2.

This produces a Markov chain trajectory over s steps, in the colored region. We retain the
particles that fall in the set B = S(Y) > γ2 and they form the multiset Y2.

This GS procedure is repeated n times independently and the n realizations of Y2 (in case
τ = 2) are merged in a single multiset Y∪.

We wish to compare the density of Qn with that of the true conditional density in each region
Bi ⊂ B, i = 1, . . . , 5.
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Two-way resampling

We replicate the following experiment r = 107 times, independently:

I Perform n independent runs of GS and construct the random multiset Y∪.

I If Y∪ is empty, this replicate has no contribution and we move to the next replicate.

I Otherwise, we compute the proportion of states in Y∪ that fall in each of the five regions
B1, . . . ,B5, and divide each proportion by the area of the corresponding region, to obtain
a conditional density given Y∪.

To estimate the exact densities d(B1), . . . , d(B5) over the five regions for the distribution of
the retained state under in this setting, we simulated this process r times and averaged the
conditional densities over the R0 replications for which Y∪ was nonempty. We did this with
n = 1, 10, 100, 1000.
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Two-way resampling

Density estimates in each region with r = 107 independent replicates, with n independent
runs of GS per replicate, for s = 2 and 10.

s n R0 B1 B2 B3 B4 B5

2 1 3756298 3.98 3.98 4.06 4.06 4.05
2 10 9909982 3.994 3.995 4.016 4.019 4.017
2 100 10000000 4.000 3.999 4.001 4.002 4.001
2 1000 10000000 4.000 4.000 4.000 4.000 4.000

10 1 651966 99.8 100.1 101.2 100.5 99.2
10 10 4902162 100.0 100.0 99.8 100.3 100.0
10 100 9987952 100.0 100.0 100.0 100.0 100.0
10 1000 10000000 100.0 100.0 100.0 100.0 99.9

Qn converges to Q very quickly with n and is already quite close even with n = 1.
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One-way resampling

Now we resample only the first coordinate Y1 conditional on S(Y) > γ1.
We do not resample Y2.

In this case, all points Y ∈ Yτ returned by GS on a given run have the same value of Y2.

We repeated the same simulation experiment with this poor resampling scheme, still with
r = 107.

Although the bias is now much larger, we still observe convergence to the uniform density
when n increases and this convergence is slower when s is larger.
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Density estimates in each region, with r = 107 independent replicates and n independent runs
of GS per replicate, for the one-way resampling, for s = 2 and 10.

s n R0 B1 B2 B3 B4 B5

2 1 3199391 4.82 3.12 5.84 3.13 3.13
2 10 9788291 4.30 3.68 4.67 3.68 3.68
2 100 10000000 4.022 3.977 4.049 3.978 3.978
2 1000 10000000 4.002 3.998 4.005 3.998 3.998

10 1 385940 170.5 25.9 254 25.9 26.4
10 10 3251227 167.8 28.9 244 28.9 29.2
10 100 9803488 140.8 58.1 166.7 58.1 57.9
10 1000 10000000 104.3 95.7 105.2 95.7 95.6

The bias in Qn is now much larger than for the two-way case, and is larger for s = 10 than for
s = 2. A larger s amplifies the bias because it creates more dependence.
The density is higher in B1 and B3.
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Conclusions

I GS returns a random-sized sample of points such that unconditionally on the sample size,
each point is distributed exactly according to the original distribution conditional on the
rare event.

I For any measurable cost function which is nonzero only when the rare event occurs, the
method provides an unbiased estimator of the expected cost.

I However, if we select at random one of the returned points, its distribution differs in
general from the exact conditional distribution given the rare event.

I But if we repeat the algorithm n times and select one of the returned points at random,
the distribution of the selected point converges to the exact one in total variation.

I The empirical distribution of the set of all points returned over all n replicates also
converges to the conditional distribution given the rare event.
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