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Context

Monte Carlo (MC) simulation is widely used to estimate the expectation E[X] of an output
random variable X from a model, and compute a confidence interval on E[X].

But simulation can provides information to do much more! The output data can be used to

estimate the entire distribution of X, e.g., the cumulative distribution function (cdf)

F (x) = P[X ≤ x ], or (for better visualization) its density f (x) = F ′(x). Here we assume
that X has a density f and we want to estimate f over a finite interval [a, b] ⊂ R.

Classical density estimation in statistics was developed in the context where X1, . . . , Xn are

given independent observations of X and one estimates the density f of X from that.

Leading methods: histogram: MSE[f̂n(x)] = O(n−2/3);
kernel density estimator (KDE); MSE[f̂n(x)] = O(n−4/5).

In this talk, we assume that X1, . . . , Xn are generated by simulation from a model.

We can choose n and we have some freedom on how the simulation is performed.

Unbiased density estimators can then be defined, under certain conditions.
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Density estimation

Want to estimate the density of X = h(Y) = h(Y1, . . . , Ys), assuming we know how to get

Monte Carlo samples of Y from its multivariate distribution.

Let f̂n(x) denote the density estimator at x , with sample size n, for x ∈ [a, b].

We use simple error measures:

MISE = mean integrated squared error =

∫ b
a
E[(f̂n(x)− f (x))2]dx = IV + ISB

IV = integrated variance =

∫ b
a

Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b
a
(E[f̂n(x)]− f (x))2dx

To minimize the MISE, we may need to balance the IV and ISB.
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Conditional Monte Carlo (CMC) for density estimation
Estimate the density f (x) by a conditional density estimator (CDE) f (x | G), given partial
information G. This G must hide enough information so that X | G has a density f (x | G)
(no mass point) and yet contain enough information so f (x | G) is easy to compute.
This corresponds to applying CMC + IPA to the cdf:

f (x) =
d

dx
F (x) =

d

dx
E[P[X ≤ x | G]] ?= E

[
d

dx
P[X ≤ x | G]

]
= E[f (x | G)].

Assumption CDE. For all realizations of G, F (x | G) is a continuous function of x over
[a, b], differentiable except perhaps over a denumerable set of points D(G) ⊂ [a, b], and
f (x | G) = F ′(x | G) = dF (x | G)/dx (when it exists) is bounded uniformly in x by a
random variable Γ such that E[Γ2] <∞.
Proposition CDE: Under Ass. CDE, for x ∈ [a, b], E[f (x | G)] = f (x) and Var[f (x | G)] < E[Γ2].

The CDE f (x | G) is then unbiased with uniformly bounded variance, so MISE = O(n−1).

However, finding a G that satisfies the CDE conditions is not always easy.
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A likelihood ratio density estimator (LRDE)
This is another way to estimate the derivative of the cdf F , based on usual LR (not GLR).

Suppose X = h(Y) where Y has known density fY over R ⊆ Rd . We have

F (x) = P[h(Y) ≤ x ] =
∫
R

I[h(y) ≤ x ] fY(y)dy.

To differentiate, we want to change the integrand into a continuous function of x .

Main idea: Make a change of variable y 7→ z = z(x) of the form y = ϕ(z; x), for a family of
one-to-one functions {ϕ(·; x), x ∈ [a, b]} such that I[h(y) ≤ x ] = {h(ϕ(z; x)) ≤ x} ≡ {h̃(z) ≤ 1}
for a function h̃ independent of x when z is given.

In case R̃ = ϕ−1(R)
def
= ϕ−1(R; x) is independent of x , the integration domain remains

independent of x after the change of variable, and we can rewrite

F (x) =

∫
R̃

I[h̃(z) ≤ 1] fY(ϕ(z; x))|Jϕ(z; x)| dz,

where |Jϕ(z; x)| is the Jacobian of the transformation y = ϕ(z; x).
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F (x) =

∫
R̃

I[h̃(z) ≤ 1] L(z; x, x0) fY(ϕ(z; x0))|Jϕ(z; x0)|dz

where

L(z; x, x0) =
fY(ϕ(z; x))|Jϕ(z; x)|
fY(ϕ(z; x0))|Jϕ(z; x0)|

is the likelihood ratio between the density of z at x and at x0. Under appropriate conditions:

f (x) = F ′(x) =
d

dx

∫
R̃

I[h̃(z) ≤ 1]L(z; x, x0)fY(ϕ(z; x0))|Jϕ(z; x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]
(
d

dx
L(z; x, x0)

)
fY(ϕ(z; x0))|Jϕ(z; x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]
(
d

dx
L(z; x, x0)

)
fY(ϕ(z; x))|Jϕ(z; x)|

L(z; x, x0)
dz

=

∫
R̃

I[h̃(z) ≤ 1]
(
d

dx
lnL(z; x, x0)

)
fY(ϕ(z; x))|Jϕ(z; x)|dz

=

∫
R

I[h(y) ≤ x ]S(y, x)fY(y)dy = E[I[h(Y) ≤ x ]S(Y, x)]
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where

S(y, x) =
d

dx
lnL(z; x, x0) =

(
(∇(ln fY)(y))t · ∇xϕ(z; x) +

d ln |Jϕ(z; x)|
dx

) ∣∣∣
z=ϕ−1(y;x)

is the score function associated with L.

This gives the unbiased likelihood ratio density estimator (LRDE)

f̂ (x) = I[h(Y) ≤ x ]S(Y, x)

where Y ∼ fY. Here, Y can have a multivariate distribution for which conditioning is hard.

This LR approach was proposed long ago to estimate the derivative of E[h(Y)] with
respect to a parameter of the distribution of Y; see, e.g., Glynn (1987), L’Ecuyer (1990),

and Asmussen and Glynn (2007). Here we just add a change of variable.
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Assumption LRDE. For all x ∈ [a, b], the mapping ϕ(·; x) has continuous partial
derivatives and |Jϕ(·; x)| ≠ 0. With probability 1 over the realizations of Y = ϕ(Z; x),
fY(ϕ(Z; x))|Jϕ(Z; x)| is a continuous function of x over [a, b], and is differentiable except
perhaps at a countable set of points D(Y). There is also a random variable Γ defined over

the same probability space as Y with E[Γ2] <∞ and

sup
x∈[a,b]

|I[h(Y) ≤ x ]S(Y, x)| ≤ Γ.

Theorem LRDE. Suppose R̃ = ϕ−1(R; x) is independent of x . Under Assumption LRDE,

the LRDE is unbiased for the density f (x) at x , and its variance is uniformly bounded by

E[Γ2], for all x ∈ [a, b].

The proof is a direct application of Theorem 1 of L’Ecuyer (1990).
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Simple illustration: a sum of random variables
Let R = Rd or R = [0,∞)d , Y = (Y1, . . . , Yd)t have a differentiable density fY over R, and
X = h(Y) = Y1 + Y2 + · · ·+ Yd . We want to estimate the density of X at x ∈ R.

Consider first the change of variable:

y = ϕ(z; x) = x z.

This gives h(y) = h(xz) = xh(z) ≤ x iff h̃(z) def= h(z) ≤ 1.
Both h̃ and ϕ−1(R; x) = R do not depend on x , and Theorem LRDE applies.

We have |Jϕ(z; x)| = xd , ∇xϕ(z; x) = z, S(y, x) = (d + (∇(ln fY)(y)) · y) /x .

If Y1, . . . , Yd are independent and Yj has density fj , then ln fY(y) =
∑d
j=1 ln fj(yj) and

S(y, x) =
1

x

d + d∑
j=1

yj
f ′j (yj)

fj(yj)

 .
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An alternative change of variable:

y = ϕ(z; x) = z+ x ej .

Here, h(y) = h(ϕ(z; x)) = h(z) + x ≤ x iff h(z) ≤ 0, so we can take h̃ = h + 1.
We have ∇xϕ(z) = ej and |Jϕ(z; x)| = 1.

If R = Rd , then ϕ−1(R; x) = R independent of x , Theorem LRDE applies, and we have an
unbiased LRDE.

If the Yj are independent and fj is differentiable, then S(y, x) = f
′
j (yj)/fj(yj).

A similar estimator was obtained by Peng et al. (2020) via GLR.

But if R = [0,∞)d , then ϕ−1(R; x) = [−x,∞)× [0,∞)d−1 depends on x , so Theorem
LRDE does not apply. The LRDE is biased in this case.
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Example: a stochastic activity network (SAN)
Activity k has random duration Yk (length of arc k) with known cdf Fk .

Project duration X = (random) length of longest path from source to sink.

In the network below, the are six paths, Π1 = {1, 4, 10}, Π2 = {1, 4, 8, 11}, . . . ,Π6.
We want to estimate the density of X = h(Y) = max1≤l≤6

∑
j∈Πl Yj .

0source 2
Y2

1
Y1

3

Y3

4

Y4

Y5

5

Y6

Y7
6

Y8

Y9

7 sink

Y10

Y11

Suppose the Yj are independent with Weibull(α, λ) density fj , with shape α > 0 and scale

λ = 1. For α < 1, fj is unbounded at 0.
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LRDE for the SAN

Let R = (0,∞)11, fix x > 0, and take y = ϕ(z; x) = xz.
Then h(y) = h(ϕ(z; x)) = xh(z) ≤ x iff h̃(z) def= h(z) ≤ 1.
Here, R̃(x) = ϕ−1(R; x) = (0,∞)11 is independent of x ,

Since f ′j (y)/fj(y) = (α− 1− αyα)/y , we get

f̂ (x) =
I[h(Y) ≤ x ]

x

11 + 11∑
j=1

Yj f
′
j (Yj)/fj(Yj)

 = I[h(Y) ≤ x ]α
x

11− 11∑
j=1

Y αj

 ,
and E[f̂ (x)] = f (x) for any x > 0 and all α > 0.

Note that y = ϕ(z; x) = z+ x ej is not a proper change of variable here (not one-to-one).
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The LRDE with boundary terms

What if R̃(x) = ϕ−1(R; x) depends on x?

Let ∂R̃(x) be the boundary of R̃(x), and b(z(x), x) the rate of displacement of ∂R̃(x) as a

function of x at z(x) ∈ ∂R̃(x), in the normal direction pointing outward of R̃(x). We have

F ′(x) =
d

dx

∫
R̃(x)
[· · · ]dz =

∫
R̃(x)

d

dx
[· · · ]dz+

∫
∂R̃(x)

[· · · ]b(z(x), x)dz

=

∫
R̃(x)

d

dx
[· · · ]dz+

∫
∂R
I[h(y) ≤ x ]b(ϕ−1(y, x), x)fY(y)dy.

Common special case: R =
∏d
j=1(αj , βj), a rectangular box.

Let ∂R−j and ∂R
+
j denote the boundary panels on which yj = αj and yj = βj , respectively.

The rate of outward displacement at y ∈ ∂R+j [y ∈ ∂R
−
j ] is

rj(y, x)
def
= b(z(x), x) = [−1](∇xz(x)) · ej = [−1](∇xϕ−1(y; x)) · ej .
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Let R−j =
∏
k ̸=j(αk , βk), y−j be y with its jth coordinate removed, and Y

−
−j [Y

+
−j ] be Y

with Yj replaced by αj [βj ]. We then have∫
∂R+
j

I[h(y) ≤ x ]b(ϕ−1(y, x), x)fY(y)dy

=

∫
∂R+
j

I[h(y) ≤ x ]rj(y, x)fY−j (y−j)fYj |Y−j (yj | y−j)dy

=

∫
R−j

I[h(y) ≤ x ]rj(y, x)fY−j (y−j)fYj |Y−j (βj | y−j)dy−j

= E[I[h(Y+−j) ≤ x ]rj(Y
+
−j , x)fYj |Y−j (βj | Y−j)]

and similarly for ∂R−j with αj and Y
−
−j .

By summing over all boundary panels, we get∫
∂R I[h(y) ≤ x ]b(ϕ−1(y, x), x)fY(y)dy = E[B(Y, x)] where

B(y, x) =

d∑
j=1

(
I[h(y+−j) ≤ x ]rj(y

+
−j , x)fYj |Y−j (βj | y−j)− I[h(y

−
−j) ≤ x ]rj(y

−
−j , x)fYj |Y−j (αj | y−j)

)
.
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The LRDE with boundary terms

Assumption LRDE-B. Let Assumption LRDE hold. Let R = (α,β) and suppose fY is

continuous on the closure of R. For each y ∈ R, ϕ−1(y; x) is differentiable in x on [a, b],
and each term in B(y, x) is well-defined, w.p.1.

Theorem LRDE-B. Under Assumption LRDE-B,

f̂ (x) = I[h(Y) ≤ x ]S(Y, x) + B(Y; x).

is and unbiased estimator for f (x) for all x ∈ [a, b].
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Simple illustration with a sum of random variables.

Let X = Y1 + · · ·+ Yd = 1 · Y. We saw that if ϕ(z; x) = z+ x ej and R = [0,∞)d , then
ϕ−1(R; x) = [−x,∞)× [0,∞)d−1. That is, the left boundary panel ∂R−j depends on x .
We have rj(y, x) = −1 for y ∈ ∂R−j and the other rk ’s are zero.

Suppose the Yj are independent exponential with rate λj .

Theorem LRDE-B applies and we obtain the following unbiased estimator for f (x):

f̂ (x) = I[1 · Y ≤ x ]S(Y, x) + B(Y, x)
= −I[1 · Y ≤ x ]λj − I[1 · Y−j ≤ x ](−λj)
= I[1 · Y−j ≤ x < 1 · Y]λj
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Alternate density estimator for the SAN. Select a directed minimal cut C, such as
C1 = {10, 11}, C2 = {1, 2, 3}, C3 = {3, 4, 5, 6}, etc. The change of variable
y = ϕC(z; x) = z+ x

∑
j∈C ej satisfies h(y) = h(z) + x ≤ x iff h̃(z)

def
= h(z) + 1 ≤ 1.

This gives ∇xϕC(z; x) =
∑
j∈C ej and |Jϕ| = 1, so S(y; x) =

∑
j∈C f

′
j (yj)/fj(yj). Here,

ϕ−1C (y; x) = y − x
∑
j∈C ej , so R̃(x) = ϕ

−1
C (R; x) depends on x in the dimensions j ∈ C.

We have rj(y, x) = −1 for j ∈ C and y ∈ ∂R−j , rj(y, x) = 0 otherwise.

The LRDE-B for an arbitrary directed minimal cut C and Weibull Yj is then

f̂C(x) = I[h(Y) ≤ x ]
∑
j∈C

(
α− 1− αY αj

)
/Yj +

∑
j∈C

fj(0)I[h(Y−−j) ≤ x ].

For α ≥ 1 and x > 0, this estimator is unbiased by Theorem LRDE-B. For α < 1, the
terms fj(0) are infinite and Theorem LRDE-B does not apply.
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Minimal directed cuts in SAN

0source 2
Y2

1
Y1

3

Y3

4

Y4

Y5

5

Y6

Y7
6

Y8

Y9

7 sink

Y10

Y11

C1 = {10, 11}, C2 = {1, 2, 3}
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Minimal directed cut in SAN

0source 2
Y2

1
Y1

3

Y3

4

Y4

Y5

5

Y6

Y7
6

Y8

Y9

7 sink

Y10

Y11

C3 = {3, 4, 5, 6}
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Numerical illustration

Integrated variance (IV) of density estimator over [a, b] which contains the central 95% of

the density of X. Each Yj is Weibull(α, λ = 1).

The LRDE f̂ uses the change of variable y = ϕ(z; x) = xz. This is the winner here.

Each LRDE-B f̂C uses ϕC(z; x) = z+ x
∑
j∈C ej .

The variance tends to be larger when there are more arcs in the cut.

Estimator C α = 0.5 α = 1.0 α = 1.5 α = 2.0 α = 3.0

LRDE f̂ 2.28E-7 9.08E-7 1.73E-6 2.62E-6 4.48E-6

LRDE-B f̂C {10, 11} – 4.31E-6 1.65E-3 7.57E-5 2.43E-5

LRDE-B f̂C {1, 2, 3} – 9.69E-6 8.63E-4 7.88E-5 3.52E-5

LRDE-B f̂C {3, 4, 5, 6} – 1.72E-5 2.49E-3 1.25E-4 4.72E-5
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GLR density estimators

Peng et al. (2020) proposed an adaptation of a generalized likelihood ratio (GLR) method

of Peng et al. (2018) to density estimation. Peng et al. (2021) give an improved version.

The estimators are often similar to our LRDEs, but the assumptions are stronger and

harder to verify.

The cdf of X is assumed to have the form

F (x) = E[I[h(Y) ≤ x ]] = E[ψ(g(Y, x))],

where g : Rd × [a, b]→ Rd is smooth and ψ : Rd → R is independent of x but can be
discontinuous.

Our setting fits this framework by taking g = ϕ−1 and ψ(z) = I[h̃(z) < 1].
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Original GLRDE form Peng et al. (2018): f̂ (x) = I[h(Y) ≤ x ]S(Y, x) with

S(y, x) = − trace
(
J−1g (y, x)∇xJg(y, x)

)
+
d∑
j=1

et
jJ
−1
g (y, x)

(
∇yjJg

)
J−1g (y, x)∇xg(y, x)

−
(
J−1g (y, x)∇xg(y, x)

)t
∇ ln fY(y).

Assumptions GLRDE.

1. fY is strictly positive and continuously differentiable over all of Rd .

2. g(y, x) is invertible in y, and g is twice continuously differentiable on Rd × [a, b].

3. limyj→±∞
∫
Rd−1 supx∈[a,b] |rj(y; x)|fY(y)dy−j = 0 for all 1 ≤ j ≤ d .

4.
∫
Rd supx∈[a,b] |f̂ (x)|dy <∞.

Our paper gives simple examples in which these assumptions do not hold whereas ours hold.
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GLRDE with uniform inputs

Peng et al. (2021) proposed a variant of GLR in which Y = U is uniform over (0, 1)d .

For density estimation, this turns out to be a special case of our LRDE-B setting with fY
uniform over R = (α,β) = (0, 1)d .

The proposed GLRDE is similar to our LRDE-B:

f̂ (x) = I[h(U) ≤ x ]S(U, x) +
d∑
j=1

(
lim
uj↑1

ψ(g(u, x))rj(u, x)− lim
uj↓0

ψ(g(u, x))rj(u, x)

)

where

rj(u, x) =
(
J−1g (u; x)∇xg(u, x)

)t
ej , 1 ≤ j ≤ d.

There is a large set of assumptions that are not so easy to verify.
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Conclusion

▶ The LR derivative estimation method popularized some 35 years ago can provide an
unbiased density estimator, by using a simple change of variable.

▶ Sometimes, the boundaries of the integral that we have to differentiate w.r.t. x depend
on x . Then we need to differentiate also with respect to the boundaries (Leibniz rule)

and this adds an extra term.

▶ Extra: One can also apply conditional Monte Carlo to these LRDE estimators to make
them smoother, and then combine them with RQMC. In separate experiments, we

found that this can provide large variance reductions.
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