RngStreams: An object-oriented random-number package in C
with many long streams and substreams

This file describes a C interface to the RngStreams package. The backbone generator is
the combined multiple recursive generator (CMRG) Mrg32k3a proposed in [1], implemented
in 64-bit floating-point arithmetic. This backbone generator has period length p ~ 2!, The
values of V, W, and Z are 2°!, 27 and 2?7, respectively. The seed of the RNG, and the
state of a stream at any given step, are 6-dimensional vectors of 32-bit integers. The default
initial seed of the package is (12345, 12345, 12345, 12345, 12345, 12345).

typedef struct RngStream_InfoState * RngStream;

struct RngStream_InfoState {
double Cgl6], Bgl6], Igl6];
int Anti;
int IncPrec;
char *name;

The state of a stream from the present module. The arrays Ig, Bg, and Cg contain the initial
state, the starting point of the current substream, and the current state, respectively. This
stream generates antithetic variates if Anti # 0. The precision of the output numbers is
increased if IncPrec # 0.

int RngStream_SetPackageSeed (unsigned long seed[6]);

Sets the initial seed of the package RngStreams to the six integers in the vector seed. This will
be the seed (initial state) of the first stream. If this procedure is not called, the default initial
seed is (12345,12345,12345,12345,12345,12345). If it is called, the first 3 values of the seed
must all be less than m; = 4294967087, and not all 0; and the last 3 values must all be less
than mo = 4294944443, and not all 0. Returns —1 for invalid seeds, and 0 otherwise.

RngStream RngStream_CreateStream (const char namel[]);

Creates and returns a new stream with identifier name, whose state variable is of type
RngStream_InfoState. This procedure reserves space to keep the information relative to
the RngStream, initializes its seed I, sets By and Cy equal to I, sets its antithetic and
precision switches to 0. The seed I; is equal to the initial seed of the package given by
RngStream_SetPackageSeed if this is the first stream created, otherwise it is Z steps ahead
of that of the most recently created stream.

void RngStream_DeleteStream (RngStream g);

Deletes the stream g created previously by RngStream_CreateStream, and recovers its memory.

void RngStream_ResetStartStream (RngStream g);

Reinitializes the stream g to its initial state: Cy and B, are set to .

void RngStream_ResetStartSubstream (RngStream g);

Reinitializes the stream g to the beginning of its current substream: Cy is set to B,.



void RngStream_ResetNextSubstream (RngStream g);

Reinitializes the stream g to the beginning of its next substream: N, is computed, and Cy and
B, are set to IN.

void RngStream_SetAntithetic (RngStream g, int a);

If a # 0, the stream g will start generating antithetic variates, i.e., 1 — U instead of U, until
this method is called again with a = 0.

void RngStream_IncreasedPrecis (RngStream g, int incp);

After calling this procedure with incp # 0, each call (direct or indirect) to RngStream_RandU01
for stream g will advance the state of the stream by 2 steps instead of 1, and will return a num-
ber with (roughly) 53 bits of precision instead of 32 bits. More specifically, in the non-antithetic
case, the instruction “x = RngStream_RandU01(g)” when the precision is increased is equiva-
lent to “x = (RngStream_RandU01(g) + RngStream_RandU01(g) * fact) % 1.0” where the
constant fact is equal to 2724, This also applies when calling RngStream_RandU01 indirectly
(e.g., by calling RngStream_RandInt, etc.). By default, or if this procedure is called again
with incp = 0, each call to RngStream_RandUO01 for stream g advances the state by 1 step and
returns a number with 32 bits of precision.

int RngStream_SetSeed (RngStream g, unsigned long seed[6]);

Sets the initial seed I, of stream g to the vector seed. This vector must satisfy the same
conditions as in RngStream_SetPackageSeed. The stream is then reset to this initial seed. The
states and seeds of the other streams are not modified. As a result, after calling this procedure,
the initial seeds of the streams are no longer spaced Z values apart. We discourage the use of
this procedure. Returns —1 for invalid seeds, and 0 otherwise.

void RngStream_AdvanceState (RngStream g, long e, long c);

Advances the state of stream g by k values, without modifying the states of other streams (as
in RngStream_SetSeed), nor the values of B, and I, associated with this stream. If e > 0, then
k=2°4¢ if e <0, then k = —27° + ¢; and if e = 0, then k = ¢. Note: ¢ is allowed to take
negative values. We discourage the use of this procedure.

void RngStream_GetState (RngStream g, unsigned long seed[6]);

Returns in seed[] the current state C, of stream g. This is convenient if we want to save the
state for subsequent use.

void RngStream_WriteState (RngStream g);

Prints (to standard output) the current state of stream g.

void RngStream_WriteStateFull (RngStream g);

Prints (to standard output) the name of stream g and the values of all its internal variables.

double RngStream_RandUO1 (RngStream g);

Returns a (pseudo)random number from the uniform distribution over the interval (0,1), using
stream g, after advancing the state by one step. The returned number has 32 bits of precision



in the sense that it is always a multiple of 1/(23? — 208), unless RngStream_IncreasedPrecis
has been called for this stream.

int RngStream_RandInt (RngStream g, int i, int j);

Returns a (pseudo)random number from the discrete uniform distribution over the integers
{i,i+1,...,7}, using stream g. Makes one call to RngStream_RandU01.

References

[1] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1):159-164, 1999.



