
This article was downloaded by: [132.204.251.254] On: 06 August 2015, At: 13:47
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Good Parameters and Implementations for Combined
Multiple Recursive Random Number Generators
Pierre L'Ecuyer,

To cite this article:
Pierre L'Ecuyer, (1999) Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators.
Operations Research 47(1):159-164. http://dx.doi.org/10.1287/opre.47.1.159

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1999 INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/opre.47.1.159
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

T E C H N I C A L N O T E S

GOOD PARAMETERS AND IMPLEMENTATIONS FOR COMBINED
MULTIPLE RECURSIVE RANDOM NUMBER GENERATORS

PIERRE L’ECUYER
Université de Montréal, Montréal, Québec, Canada

(Received July 1997; revisions received December 1997, June 1998; accepted June 1998)

Combining parallel multiple recursive sequences provides an efficient way of implementing random number generators with long
periods and good structural properties. Such generators are statistically more robust than simple linear congruential generators that
fit into a computer word. We made extensive computer searches for good parameter sets, with respect to the spectral test, for
combined multiple recursive generators of different sizes. We also compare different implementations and give a specific code in C
that is faster than previous implementations of similar generators.

It is now recognized that random number generators
(RNGs) should have huge periods, several orders of

magnitude larger than whatever can be used in practice
(L’Ecuyer 1994, L’Ecuyer 1998b, Ripley 1987). To be reason-
ably safe, the period length of a general purpose generator
must exceed 2100 or so, and preferably more. And a long
period is not sufficient. Good structural properties are also
needed. If the aim is to imitate a sequence of i.i.d. U(0, 1)
(independent and identically distributed random variables,
uniform over the interval [0, 1]), the set Tt 5 {un 5
(un, . . . , un1t21), n Ä 0}, of all vectors of t successive
output values over all the generator’s cycles, should be
uniformly distributed over the t-dimensional unit hyper-
cube [0, 1]t, for all t (ideally). If the seed is random, this
set Tt can be viewed as a sample space from which some
points are drawn. In practice, the structural properties of
Tt can be analyzed via the spectral test, for t up to 30 or so.

A multiple recursive generator (MRG) of order k is de-
fined by the linear recurrence:

x n 5 ~a 1 x n21 1 · · · 1 a k x n2k ! mod m; (1)

u n 5 x n /m,

where m and k are positive integers, and each ai belongs to
Zm 5 {0, 1, . . . , m 2 1} (see Grube 1973, Niederreiter
1992). The recurrence (1) has maximal period length mk 2
1, attained if and only if m is prime and the characteristic
polynomial P(z) 5 zk 2 a1zk21 2 . . . 2 ak is primitive
(i.e., the powers of z, modulo P(z) and m, run through all
nonzero polynomials of degree less than k with coefficients
in Zm). The latter can be achieved most economically with
only two nonzero coefficients, say ar and ak with 1 ¶ r , k.
The recurrence is generally easier to implement when
these coefficients are small. However, a necessary condition

for a good figure of merit with respect to the spectral test
is that ¥i51

k ai
2 be large (Grube 1973, L’Ecuyer 1997). To

reconcile these conflicting requirements, L’Ecuyer (1996)
proposed combined MRGs (CMRGs), where the compo-
nents are carefully selected so that the combined generator
has good structural properties, while each component re-
mains easy to implement in an efficient manner. Such a
CMRG turns out to be equivalent (or approximately
equivalent, depending on the type of combination) to an
MRG with a large composite modulus, equal to the prod-
uct of the moduli of its components. The recurrence of the
CMRG can have many large coefficients even if the com-
ponents have only two small nonzero coefficients. L’Ecuyer
(1996) gave a few examples of CMRGs, but only one of
these (Example 4) was a recommendable generator, with
two components of order 3, period length approximately
2185, and with the parameters chosen specifically for an
implementation using 31-bit integer arithmetic with the
“approximate factoring” method. That generator behaves
well with respect to the spectral test in up to 20
dimensions.

The aim of this paper is to provide good CMRGs of
different sizes, selected via the spectral test up to 32 di-
mensions, and a faster implementation than in L’Ecuyer
(1996) using floating-point arithmetic. Why do we need
different parameter sets? First, different types of imple-
mentations require different constraints on the modulus
and multipliers. For example, a floating-point implementa-
tion with 53 bits of precision allows moduli of more than
31 bits and this can be exploited to increase the period
length for free. Secondly, as 64-bit computers get more
widespread, there is demand for generators implemented
in 64-bit integer arithmetic. Tables of good parameters for

Subject classifications: Simulation, random number generation, multiple recursive, combined generators, lattice structure, spectral test.
Area of review: SIMULATION.

159
Operations Research 0030-364X/99/4701-0159 $05.00
Vol. 47, No. 1, January–February 1999 q 1999 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

06
 A

ug
us

t 2
01

5,
 a

t 1
3:

47
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

such generators must be made available. Thirdly, RNGs
are somewhat like cars: a single model and single size for
the entire world is not the most satisfactory solution. Some
people want a fast and relatively small RNG, while others
prefer a bigger and more robust one, with longer period
and good equidistribution properties in higher dimensions.
Naively, one could think that an RNG with period length
near 2185 is big enough for any conceivable application.
But note that 185 (selected) bits of the RNG’s sequence
are enough to determine all the others, so this sequence
has a lot of structure, and for this reason some might want
a bigger number than 185.

The tables provided here are the partial results of an
extensive computer search that took more than a year of
CPU time on SUN Sparcstations using the software de-
scribed in L’Ecuyer and Couture (1997). The next section
recalls some notation, defines the figures of merit that we
use, and explains our search strategies. Section 2 reports
the results. Section 3 provides an implementation in C and
gives timing comparisons. The full tables and some other
implementations are in a longer version of the paper
(L’Ecuyer 1998a).

1. NOTATION, SELECTION CRITERIA, AND
IMPLEMENTATION CONDITIONS

The RNGs considered in this paper combine J copies of
(1), that is:

x j,n 5 ~a j,1 x j,n21 1 · · · 1 a j,k x j,n2k ! mod m j (2)

for j 5 1, . . . , J, where the mj are distinct primes and the
jth recurrence has order k and period length mj

k 2 1. Let
d1, . . . , dJ be arbitrary integers such that dj is relatively
prime to mj for each j, and define:

w n 5 S O
j51

J

d j

x j,n

m j
D mod 1, (3)

z n 5 S O
j51

J

d j x j,nD mod m 1 , (4)

ũ n 5 z n /m 1 . (5)

The sequences {wn, n Ä 0} and {ũn, n Ä 0} define two
different CMRGs which have been studied by L’Ecuyer
(1996). In summary, the CMRG (2)–(3) is exactly equiva-
lent to an MRG as in (1) with modulus m 5 m1 . . . mJ,
and the set Tt mentioned in the introduction is the inter-
section of a lattice with the unit hypercube. The points of
Tt lie in successive parallel hyperplanes at a distance dt of
each other. The other CMRG, defined by (4)–(5), is also
approximately the same as the first one. In other words,
these CMRGs are basically just special implementations of
an MRG and they can be analyzed by applying the spectral
test to this MRG.

We use the figure of merit MT 5 min2¶t¶T St for some
integer T, where St 5 (rtm

k/tdt)
21 and rt is defined as

follows. For t ¶ 8, rt is the gt defined in Knuth (1981, p.
105), while for t . 8, rt 5 exp(R(t)/t) where R(t) is Rog-

ers’ bound on the density of sphere packings (see Conway
and Sloane 1988, p. 88, and L’Ecuyer 1999). St and MT are
always between 0 and 1 and we seek generators with MT

close to 1. An St close to 0 means that all the points of Tt

lie in equidistant parallel hyperplanes that are far apart,
leaving thick slices of empty space in between. An MT

close to 1 means that Tt is evenly distributed over the unit
hypercube, for all t ¶ T.

For J 5 2, 3, k 5 3, 5, 7, and prime moduli slightly
smaller than 2e for e 5 31, 32, 63, 64, 127, and 128, we
searched for CMRGs with good values of M8, M16, and
M32 (or M24, for e . 32). All the mj are selected so that
rj 5 (mj

k 2 1)/(mj 2 1) is prime, and so that the least
common multiple of the (mj

k 2 1) is (m1
k 2 1) . . . (mJ

k 2
1)/2J21 (which is the largest possible period length for the
combination). In most cases, (mj 2 1)/2 is also prime.
With these conditions, the full-period conditions are easier
to satisfy and to verify, because they require (in particular)
the factorization of rj.

Table I lists some values of m and k such that m, (m 2
1)/2, and r 5 (mk 2 1)/(m 2 1) are all prime. These
values were found by random search, using a few months
of CPU time. They are useful for anyone who would like
to perform additional searches for full-period MRGs.

MRG implementations are easier and more efficient
when certain constraints are imposed on the coefficients
aj,i. For example, forcing some of the coefficients to be
zero saves multiplications. In our search for good coeffi-
cients aj,i, we consider also the following conditions:

(B) The product aj,i(mj 2 1) is less than 253.
(C) The coefficient aj,i satisfies aj,i(mj mod aj,i) , mj.

If Condition (B) holds, the integer aj, i xj, i is always repre-
sented exactly in floating point on a 32-bit computer that

Table I
Values of m and k Such That m, (m 2 1)/2 and r are

Prime

k m

3 231 2 21069, 231 2 43725, 231 2 43845
3 232 2 209, 232 2 22853, 232 2 30833
3 232 2 32969, 232 2 33053
3 263 2 21129, 263 2 275025
3 264 2 239669, 264 2 525377, 264 2 539069
3 2127 2 601821
3 2128 2 233633
5 231 2 22641, 231 2 46365, 231 2 59601
5 232 2 18269, 232 2 32969, 232 2 56789
5 232 2 88277, 232 2 127829
5 263 2 19581, 263 2 594981, 263 2 745281
5 264 2 460589, 264 2 665033, 264 2 959417
7 231 2 6489, 231 2 50949, 231 2 55341
7 232 2 5453, 232 2 36233, 232 2 37277
7 232 2 40313, 232 2 45737
7 263 2 52425, 263 2 92181
7 263 2 152541, 263 2 379521
7 264 2 51149, 264 2 225257

11 232 2 30833, 232 2 86357
13 232 2 9653, 232 2 65129

160 / L’ECUYER

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

06
 A

ug
us

t 2
01

5,
 a

t 1
3:

47
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

supports the IEEE 754 floating-point arithmetic standard,
with at least 53 bits of precision for the mantissa. The
generator can then be implemented directly in floating-
point arithmetic, which is typically faster than an integer
arithmetic implementation, although it uses twice the
amount of memory. When Condition (C) is satisfied and
each integer from 2mj to mj fits into a computer word,
each xj,i can be represented as an integer over a single
computer word and the product aj, i xj, i mod mj can be
computed via the approximate factoring method described
in Bratley et al. (1987) and L’Ecuyer and Côté (1991). This
condition holds if and only if aj,i

2 , mj or aj,i 5 mj/z for
z2 , mj.

One can also force any aj,i to be either positive or nega-
tive. A coefficient aj,i , 0 is equivalent to a9j,i 5 aj,i 1 mj .
0, but uaj,iu may satisfy a condition such as (B) or (C) that
aj,i 1 mj does not satisfy.

When (B) or (C) is imposed and some coefficients are
forced to be zero, combination is usually needed for reach-
ing good figures of merit MT, because there is a limit on
what an MRG can do with these conditions imposed on its
coefficients. Combination helps because the coefficients aj

in (1) can be large even if the aj,i in (2) are small. To
illustrate certain limitations in absence of combination,
consider an MRG with a prime modulus m near 232, order
k 5 7, and for which 7 2 p of the coefficients ai are zero,
the others being less than 221 so that (B) holds. Recall (see
L’Ecuyer 1997) that a general lower bound on dt is given
by

d t > S 1 1 O
i51

k

a i
2D 21/ 2

,

which in our example yields

d t > ~1 1 p~2 21 2 1! 2! 21/ 2 > 1/~2 21Îp! .

For t 5 8, since g8 5 =2, one has S8 5 221/2 m2k/t/d8 ,
227.5 =p. With only two nonzero coefficients (p 5 2) this
gives M8 ¶ S8 , 1/128, whereas if all the coefficients are
nonzero (p 5 7) this still yields M8 ¶ S8 , 1/68.4. It is
thus impossible to obtain a good figure of merit in this
situation, for any p. Similar limitations hold if the MRG
has many zero coefficients.

For several vectors (J, k, m1, . . . , mJ) and different sets
of constraints on the coefficients aj,i, we performed ran-
dom searches among the coefficients yielding maximal pe-
riod length (m1

k 2 1) . . . (mJ
k 2 1)/2J21 for the CMRG,

and retained the coefficient sets with the largest values of
M8 that we could find, those with the largest values of M16,
and those with the largest values of M32 (or M24 for some
large mj). The choice of T 5 8, 16, and 32 is arbitrary. It
gives generators with good lattice structures in small, me-
dium, and large dimensions. Each random search was
given a computing budget of between 20 and 40 hours of
CPU time on a SUN Sparcstation. The next section reports
a small selection of the results. More extensive tables are
given in L’Ecuyer (1998a).

2. TABLES OF COMBINED MRGS WITH GOOD
FIGURES OF MERIT

In Table II, we give the CMRGs with the best value of M32

that we found for a few values of (J, k, m1, . . . , mJ) and
with certain constraints on the coefficients aj,i as indicated
in the second column of the table. The coefficients not
given in the table are equal to zero.

For example, for J 5 2, k 5 3, m1 5 232 2 209, m2 5
232 2 22853, a11 5 a22 5 0, and with Condition (B) in
force, the combined generator with the largest value of
M32 that we found has M32 5 0.63359. For the moduli
given in Table II for J 5 2 and k 5 3, we also made
searches with no conditions on the coefficients and they
did no better than those with condition (B) or (C). This
means that for practical purposes, we lose nothing by im-
posing either (B) or (C) on the coefficients, for these val-
ues of J, k, and mj. For the moduli near 263, condition (B)
becomes irrelevant.

Condition (B1) for the CMRG of order 5 in Table II
means that mj times the sum of the positive coefficients aj,i

does not exceed 253. This is slightly stronger than (B) and
implies that the terms of the linear combination can be
added directly in floating-point arithmetic without check-
ing for overflow. For the mj near 231, our best combina-
tions that satisfy (B1) are roughly as good as our best that
satisfy (B), but not for the mj near 232. For the combina-
tions of order 7 with 3 components and 3 nonzero coeffi-
cients per component, we found no good set of coefficients
that satisfy (B1) for the mj near 231, and also no good
combination for which the coefficients satisfy (C) for mod-
uli near 263 or larger.

3. IMPLEMENTATIONS

Figure 1 gives an implementation in the C language of the
CMRG given in the third entry of Table II. We call it
MRG32k3a. This generator is well-behaved in all dimen-
sions up to at least 45: In addition to M32 ' 0.6336, one
has M40 ' 0.6336 and M45 ' 0.6225. Its period length is
(m1

3 2 1)(m2
3 2 1)/2 ' 2191. This implementation uses

floating-point arithmetic and works under the (sufficient)
condition that all integers between 2253 and 253 are repre-
sented exactly in floating-point. The strings m1, m2, a12,
etc., in the code must also be converted by the compiler to
the exact floating-point representation of the correspond-
ing integers (beware: the author knows compilers, for lan-
guages other than C, that do not do that correctly).

The vectors (s10, s11, s12) and (s20, s21, s22) contain
the values of (x1,0, x1,1, x1,2) and (x2,0, x2,1, x2,2), respec-
tively. Their initial values constitute the seed. Before the
procedure is called for the first time, one must initialize
s10, s11, s12 to (exact) nonnegative integers less than m1

and not all zero, and s20, s21, s22 to nonnegative integers
less than m2 and not all zero. This program implements
the combination (4)–(5), with d1 5 2d2 5 1 and with the
following slight modification: The normalization constant
is 1/(m1 1 1) instead of 1/m1, and zn 5 0 is converted to

161L’ECUYER /

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

06
 A

ug
us

t 2
01

5,
 a

t 1
3:

47
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Figure 1. A floating-point implementation in C of a 32-bit CMRG.

Table II
CMRGs with Good Figure of Merit M32

J 5 2, k 5 3
m1
m2 Cd.

a12
a21

a13
a23 M8 M16 M32

231 2 1 B 1670453 23445492
231 2 21069 B 2197254 21967928 0.64954 0.63638 0.63442

231 2 21069 B, C 26697 294635
231 2 43725 B, C 17207 232449 0.64585 0.63562 0.63257

232 2 209 B 1403580 2810728
232 2 22853 B 527612 21370589 0.68561 0.63940 0.63359

263 2 6645 C 1754669720 23182104042
263 2 21129 C 31387477935 26199136374 0.66021 0.62700 0.62700

263 2 21129 C 18010381385 25837607579
263 2 275025 C 3444163371 23141078384 0.63477 0.63393 0.61218

J 5 2, k 5 5
m1
m2 Cd.

a12
a21

a14
a23

a15
a25 M8 M16 M32

231 2 22641 B1 343567 1162681 21838005
231 2 46365 B1 1358258 449185 2619098 0.65922 0.63317 0.62644

232 2 18269 B 1154721 1739991 21108499
232 2 32969 B 1776413 865203 21641052 0.66340 0.61130 0.61130

J 5 3, k 5 7
m1
m2
m3 Cd.

a11
a22
a33

a14
a25
a36

a17
a27
a37 M8 M16 M32

231 2 6489 B 1004479 719020 23542530
231 2 50949 B 3259273 533655 23434331
231 2 55341 B 1193874 2375699 2589692 0.70833 0.61275 0.61275

232 2 5453 B 1025652 1495670 21555702
232 2 36233 B 1790017 1978132 21015534
232 2 37277 B 1227190 1019889 2847163 0.68699 0.64588 0.64251

162 / L’ECUYER

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

06
 A

ug
us

t 2
01

5,
 a

t 1
3:

47
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

zn 5 m1. This modification is to make sure that the
generator never returns exactly 0 or 1 (frequently, one
takes the logarithm of u or of 1 2 u, where u is the
returned value, for example to generate exponential ran-
dom variables).

To implement the combination (3) instead, add:

#define norm2 2.328318824698632e-10

and replace the last two lines of the procedure by:

p 5 p1 p norm1 2 p2 p norm2;
if (p , 0.0) return (p 1 1.0); else return p;

This would be slightly slower and may return 0.0.
This generator has been tested extensively with vari-

ous empirical statistical tests and it easily passed all the
tests.

Similar implementations, for MRG components with
higher-order recurrences and for moduli near 263, are
given in L’Ecuyer (1998a). Those have longer periods and
a better structure than the generator of Figure 1, but they
are not as fast. They are mentioned in the timing com-
parisons that follow: MRG32k5a is the seventh entry of
Table II. With two components of order 5, each with
three nonzero coefficients, it requires at each step 6
multiplications instead of 4 for MRG32k3a but its pe-
riod length is near 2319. MRG63k3a is the fourth entry
in Table II, with period length near 2377, and it is imple-
mented using approximate factoring with the “long long”
64-bit integer type.

To get an idea of the comparative speeds, for each gen-
erator we generated 10 million (107) random numbers and
added them up, looked at how much CPU time (user time 1
system time) it took, and then printed the sum for checking
purposes. This was done first on a 64-bit SUN Ultra-2 under
OS 5.6, using the system’s compiler (cc, version 4.2) with the
“-fast -xtarget5ultra -xarch5v8plusa” options, and also
on a 64-bit DEC AlphaStation 250 using the compiler cc
at optimization level O4. The timings (in seconds) for se-
lected generators are in Table III. We also indicate the
period length, the type of implementation (FP for floating-
point and I for integer arithmetic), and the sum of the 107

numbers generated. In addition to the already mentioned
CMRGs, we report the timings for a C version of the 32-bit

combined LCG of L’Ecuyer (1988) (comblec88a), the
CMRG in Figure 1 of L’Ecuyer (1996) (combMRG96a),
and one of the system’s generators in UNIX (drand48). In
all cases (except for drand48), each integer in the seed was
12345. (It is a good idea to check that your implementa-
tions reproduce the same sums.) For comblec88a and
combMRG96a, the times are for the implementations in
integer arithmetic as given in these papers. Implementa-
tions of these two generators in floating-point arithmetic
as in Figure 1 are called comblec88f and combMRG96f in
the table. The generator combMRG96b is a variant of
combMRG96a with the moduli and multipliers defined as
embedded constants in the code instead of variables as in
combMRG96a.

Obviously, the timings depend on the type of machine.
On different models of SUN computers they vary (roughly)
only by a machine-dependent constant factor. On these
computers, the floating-point implementation is much
faster than the 32-bit integer implementation, and the im-
plementation based on 64-bit integer arithmetic is rather
slow. On the 64-bit DEC Alpha, a RISC machine with fast
integer arithmetic, the implementations in integer arith-
metic are more competitive. Considering the period and
the quality of the lattice structure, MRG63k3a could be a
good choice for the DEC Alpha.

The generator of Figure 1 gives no more than 32 bits of
precision even though it returns 53-bit floating-point num-
bers. If more precision is desired, a simple solution uses
two successive numbers produced by the generator to con-
struct each output value. For example, if MRG32k3a out-
puts the sequence u1, u2, . . . , one can effectively use the
sequence v1, v2, . . . defined by vi 5 (nu2i 1 u2i21) mod 1
for some constant n between 2221 and 2232.

ACKNOWLEDGMENT

This work has been supported by NSERC-Canada grants
No. ODGP0110050 and SMF0169893, and FCAR-Québec
grant No. 93ER1654. Thanks to Anna Bragina and Rich-
ard Simard for their help in testing the code, and to Ray-
mond Couture, Hannes Leeb, David Kelton, and two
anonymous referees for their constructive comments.

Table III
CPU Time (Seconds) to Generate and Add 107 Random Numbers, and Value of the Sum

Generator
Period

Length ' Method
SUN

Ultra-2
DEC
Alpha Sum

MRG32k3a 2191 FP 5.6 8.2 5001090.95
MRG32k5a 2319 FP 6.8 10.1 5000494.15
MRG63k3a 2377 I 39.5 16.8 5000445.10
combMRG96a 2185 I 19.8 37.6 4999897.05
combMRG96b 2185 I 15.5 13.2 4999897.05
combMRG96f 2185 FP 5.5 8.2 4999897.05
comblec88a 261 I 8.5 5.9 4999532.57
comblec88f 261 FP 4.2 7.9 4999532.57
drand48 248 — 20.1 8.8 —

163L’ECUYER /

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

06
 A

ug
us

t 2
01

5,
 a

t 1
3:

47
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

REFERENCES

Bratley, P., B. L. Fox, L. E. Schrage. 1987. A Guide to Simu-
lation. Second Ed. Springer-Verlag, New York.

Conway, J. H., N. J. A. Sloane. 1988. Sphere Packings, Lattices
and Groups. Grundlehren der Mathematischen Wissen-
schaften 290. Springer-Verlag, New York.

Grube, A. 1973. Mehrfach rekursiv-erzeugte Pseudo-
Zufallszahlen. Z. Angew. Math. Mech. 53 T223–T225.

Knuth, D. E. 1981. The Art of Computer Programming, Volume
2: Seminumerical Algorithms. Second Ed. Addison-
Wesley, Reading, MA.

L’Ecuyer, P. 1988. Efficient and portable combined random
number generators. Comm. ACM 31(6) 742–749 and 774.
See also the correspondence in the same journal 32(8)
1019–1024.

——, 1994. Uniform random number generation. Ann. Oper.
Res. 53 77–120.

——, 1996. Combined multiple recursive random number
generators. Oper. Res. 44(5) 816–822.

——, 1997. Bad lattice structures for vectors of non-successive
values produced by some linear recurrences. INFORMS
J. Computing 9(1) 57–60.

——, 1998a. Good parameters and implementations for com-
bined multiple recursive random number generators.
Available as file combmrg2.ps at URL www.iro.umont-
real.ca/;lecuyer/papers.html. The C code is in file
combmrg2.c.

——, 1998b. Random number generation. J. Banks, Ed. The
Handbook of Simulation. Wiley, New York, 93–137.

——, 1999c. A table of linear congruential generators of dif-
ferent sizes and good lattice structure. Math. Comp. 68
249–260.

——, S. Côté. 1991. Implementing a random number package
with splitting facilities. ACM Trans. Math. Software 17(1)
98–111.

——, R. Couture. 1997. An implementation of the lattice
and spectral tests for multiple recursive linear random
number generators. INFORMS J. Computing 9(2)
206 –217.

Niederreiter, H. 1992. Random Number Generation and
Quasi-Monte Carlo Methods. Volume 63 of SIAM CBMS-
NSF Regional Conf. Series in Applied Math. SIAM, Phila-
delphia, PA.

Ripley, B. D. 1987. Stochastic Simulation. Wiley, New York.

164 / L’ECUYER

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

06
 A

ug
us

t 2
01

5,
 a

t 1
3:

47
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

