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Résumé

Cette thése est composée de trois essais portant sur I'évaluation des options.
Le premier propose de mesurer le risque encouru par le signataire d’une option
5’1l décidait d’une couverture partielle. Le second porte sur I’évaluation des op-
tions asiatiques de type américain. Le dernier aborde les clauses de rachat et de
remboursement implicites aux obligations. On donne ici leurs résumés.

Dans le premier essai, on considére un signataire d’une option européenne
qui décide de couvrir sa position pour certains états de la nature et non pas pour
d’autres. Une couverture partielle cofite moins & mettre en oeuvre mais peut aboutir
3 un défaut. On se propose alors de mesurer le gain et la probabilité de défaut qui en
résultent en exprimant I’événement de couverture en fonction du prix du sous-jacent
3 ’échéance, du maximum des prix et du temps d’atteinte de ce maximum. Dans
un premier temps, on se place sous les hypothéses du modéle de Black et Scholes
(1973) et on dérive des formules analytiques pour ces indicateurs. Dans un second
temps, on considére un modéle a volatilité stochastique et on estime ces indicateurs
par simulation de Monte Carlo rendue efficace via les techniques de réduction de
variance dites d’induction de corrélation. Les résultats montrent de quelle maniére
le gain et le risque de défaut sont inversement reliés.

Le second essai porte sur 1’évaluation des options asiatiques de type américain
sous les hypothéses du modeéle de Black et Scholes (1973). Ces options n’admettent

pas de solution analytique, d’ot: le recours a des approches numériques. On pro-
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Résumé iv

pose une méthode basée sur la programmation dynamique et les éléments finis.
Etant donnée la fonction de valeur de I’option a une certaine date, le principe
est de I’estimer par une interpolation polynomiale par morgeaux, ce qui permet
de valoriser I’option 2 une date antérieure. En réitérant le méme principe depuis
I’échéance jusqu’a la date présente, on obtient la valeur de I'option et la stratégie
optimale de son exercice. Cette procédure est une alternative viable aux méthodes
de différences finies et aux arbres (binomiaux et trinomiaux) surtout si les opportu-
nités d’exercice sont limitées. A I’aide de cette formulation, on établit les propriétés
théoriques de la fonction de valeur en fonction du prix et de la moyenne des prix du
sous-jacent. Les expériences numériques confirment la convergence, la cohérence
et Pefficacité de cette méthode.

Dans le troisiéme essai, on aborde les options de rachat et de remboursement
implicites aux obligations. Ces clauses contractuelles sont de type américain et ne
peuvent &tre valorisées d’une fagon analytique. La régle est de recourir a des ap-
proches numériques. On formule la question d’évaluation des options de rachat
et de remboursement des obligations comme un probléme de programmation dy-
namique dans lequel on modélise le taux sans risque de courte période comme un
processus de diffusion tel que proposé par Vasicek (1977). Etant donnée la fonction
de valeur de I’obligation rachetable et remboursable & une certaine date, le principe
est de I’estimer par une approximation polynomiale par morceaux, ce qui permet

de valoriser ’obligation 4 une date antérieure. En réitérant le méme principe depuis



Résumé v

’échéance jusqu’a la date présente, on €value ces options et on identifie leurs straté-
gies optimales d’exercice. A I’aide de laméme formulation, on établit les propriétés
théoriques de la fonction de valeur d’une obligation rachetable et remboursable. Les

expériences numériques indiquent que la méthode est stable, cohérente et efficace.



Abstract

This thesis contains three essays on option pricing. The first discusses a way
to measure the risk of the short trader of an option if he decides to hedge partially
his position. The second deals with the pricing of American-style Asian options,
and the third with call and put options embedded in bonds.

The first essay considers the case of a short trader of an option who decides to
partially hedge its position on some states of nature and not on the others. A partial
hedge initially costs less than a perfect hedge, but may lead to a default position.
It is of interest in that context to estimate the gain and the default risk. Some
partial hedging strategies based on the price of the primitive asset at the horizon, its
maximum over the trading period, and the time to maximum, are analyzed. Closed-
form solutions are derived in the Black and Scholes (1973) model, and efficient
Monte Carlo estimators are computed in a stochastic volatility model. The results
show how the gain and the default risk inversely change depending on the hedging
event.

The second essay deals with the pricing of Asian options based on the arith-
metic average, under the Black and Scholes (1973) model. Their evaluation in-
volves estimating an integral (a mathematical expectation) for which no analyti-

cal solution is available. Pricing their American-style counterparts, which provide
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early exercise opportunities, poses the additional difficulty of solving a dynamic
optimization problem to determine the optimal exercise strategy. We develop a
numerical method for pricing American-style Asian options based on dynamic pro-
gramming combined with finite-element piecewise-polynomial approximation of
the value function. This method is a viable alternative to Finite Differences algo-
rithms and the lattice-based approach when the early exercise opportunities are lim-
ited. Numerical experiments show convergence, consistency, and efficiency. Some
theoretical properties of the value function of the option and its optimal exercise
strategy are also established.

In the third essay, we consider call and put options embedded in bonds. These
options cannot be priced in a closed-form as it is generally the case for American-
style financial derivatives. We formulate the problem of pricing the embedded call
and put options as a stochastic Dynamic Programming (DP) model. We let the
short-term risk-free interest rate move as in Vasicek (1977). We approximate the
bond value by a piecewise linear interpolation at each step of the DP procedure, and
solve the DP equation in closed-form. This yields both the options” values and their
optimal exercice strategies. Then, we use the DP formulation to establish the basic
properties of bonds, price their embedded call and put options, and determine their
optimal exercise strategies. Numerical investigation shows stability, consistency,

and efficiency.
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Derivatives Markets

A financial derivative is a contract which provides its holder a future payment that
depends on the price of one or several underlying asset(s). The asset underlying a derivative
may be a stock, an index, an interest rate, a foreign currency, or a commodity held for
investment or consumption. This shows the extreme variety of derivative contracts.

Options are particular derivatives characterized by non-negative payoffs, hence their
interpretation as privileges. The most popular are call and put options. A call (respectively
a put) option gives its holder the right to buy (respectively to sell) an asset at or before a
known future date for a known price. Futures and swaps are others popular derivatives. A
future is an agreement to buy or to sell an asset at a certain time in the future for a certain
price. A swap is an agreement to exchange cash flows in the future according a prearranged
formula.

In derivatives markets, there are hedgers, speculators and arbitrageurs. Hedgers
trade to cover their positions. Speculators take risk deliberately in attempt to make high
returns, while arbitrageurs seek abnormal spreads to make riskless profits. The explosive
growth of derivatives markets is explained in large part by a great need for hedging against
price fluctuations, and derivatives may be designed to hedge almost all kinds of market risk.

The growth of derivatives markets has improved the brokerage industry. In response,
the mathematics and their numerical implementations to evaluate derivatives grew with the
same intensity since the early 1970s, and, in conjunction, a new field of research, called

financial engineering, was initiated.
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For complex derivatives, such as path-dependent European options or American-style
derivatives, the efficiency of the pricing methods becomes a major field of research in fi-
nancial engineering. Our work belongs to this field. Specifically, we focus on the imple-
mentation of some efficient Monte Carlo and Dynamic Programming procedures for option

pricing.



Chapter 1
Partial Hedging for Options Based on Extreme
Values and Passage Times

1.1 Introduction

1.1.1 The Market

The model described in this section is presented in detail in Karatzas (1996), Chapters 0
and 1. Let M be a market with p+1 traded assets in which trading takes place continuously
over the period [0, 7). In our presentation, a process X (t) for ¢ € [0, T} is denoted by X (-)-
Let W(-) = (Wi(-),-.., Wa(-))’ be a d-dimensional Brownian motion defined over the
probability space (2, F, P) and F(-) its P-augmented natural filtration. The c-algebra F
can be chosen as F(T'). The Brownian motions W;(-), for j = 1,...,d, can be interpreted
as d sources of systematic risk and the filtration () as a collection of the increasing sets
of information available to investors over time. All the stochastic processes are assumed
to be adapted to the filtration F(-) and verify some additional conditions which guaran-
tee their existence and uniqueness. The adaptability requirement allows dependence on
past realizations and precludes anticipation of future realizations. Assume that the market
M is frictionless, that is, there are no taxes, transaction costs, information asymmetries,

constraints on short selling or borrowing.
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The first asset, called the bank account, does not pay dividends. It starts at unity, and

moves according to the differential equation

dB(t)= B(t)r(t)dt, forB(0)=1and0<t<T, (1.1)

where 7(-) is the process of risk-free interest-rate. The solution of (1.1) yields the following

definition for the discount factor
(@) =1/B(t)=efom®%  for0<t<T.
If the interest rate process is constant, r(-) = r, the discount factor can be written as
y({t)=eT, for0<t<T. (1.2)
The p remaining assets, called the primitive assets, move according to the stochastic
differential equation (SDE)
dSi(t) = p(8)Si(t)dt+ Y oy () Si(t)dW; (1), (1.3)

for S;(0) >0,i=1,...,p,and0 <t < T,

where u(-) = () (+) -5 &2 (-))' is the vector-process of the appreciation rates and a(-) =
[:; ()] is the matrix-process of volarility. For simplicity, assume that the primitive assets

do not pay dividends.

The Black and Scholes (1973) model assumes a constant interest rate, one source of

systematic risk, and one primitive asset. Specificaily:
dS (t) = pS(t)dt + oS (t)dW (t), forS(0)>0and0<t< T, (1.4)

where p and ¢ > 0 are assumed to be constants. Another interesting case is a stochastic

volatility model similar to those discussed by Hull and White (1987), Johnson and Shanno
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(1987), Scott (1987), and Wiggins (1987). Specifically,
dS(t) = uS(t)dt + o(t)S(t)dWi(t), forS(0) >0and0 <t < T, (1.5)

where the volatility process o(-) is random and depends on a two-dimensional Brownian

motion W (-) = (W1 (-), Wa (-))".

1.1.2  The No-Arbitrage Property

An investor trades continuously on the p + 1 traded assets by managing a self-financing

portfolio which generates the wealth process

X(t)= m(t)+ (X(t)—zp:m(t)>, for0<t<T,

where 7 (-) = (71 (-),--.,7p (-))’, called the portfolio strategy, is the vector-process of
the dollar amounts invested in the primitive assets. Notice that the components of this
portfolio strategy can be positive or negative, depending on the position (long or short) of
the investor. The wealth process is denoted by X*™(-) since it depends on the initial wealth
X (0) = z and the portfolio strategy = (-).

An arbitrage opportunity is a strategy = (-) such that
P(X%™ (T) >0) =1and P(X*" (T) > 0) > 0.

A rational investor should take this opportunity when it appears because it costs nothing to
hold and may lead to a positive final wealth. A market without arbitrage opportunities is
called arbitrage-free. There are two sufficient conditions for the arbitrage-free property to

be verified. Firstly, there exists a process 8 : {0,T] x @ —R?, called the market-price of
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risk, which verifies
p()-r()L=0()0(), (1.6)
where 1, = (1,...,1)’ € R®. Secondly, the exponential process
Z () = e 2 o OIF&=[00/dW @ - for0 < ¢ < T, (1.7)

is a P-martingale. In practice, it is somewhat hard to check for (1.7). However, a sufficient

requirement for (1.7) to hold is the so-called Novikov condition
EP [e-% 5 noa)u?dz} < +oo. (1.8)

The market of Black and Scholes (1973) defined in (1.4) is arbitrage-free since § =
(1 — )/ does exist and verifies the Novikov condition (1.8). In the stochastic volatility
models introduced in (1.5), the volatility process o (-) is chosen such that the model is
arbitrage-free.

Assume that the conditions (1.6) and (1.8) hold and that p < d. The market is said
to be standard. The exponential process Z (-) defined in (1.7) allows the construction of
a collection of P-equivalent probability measures Q;, for t € [0, T}, each defined on the

corresponding o-algebra F (t) by
Q:(A) =Ef[Z(t)14]), forAe F(t).

The probability measure Qr, denoted by Q, is called the risk-neutral probability measure.

An important feature of @ is that the process

B(t)=W(t)+/ 6(s)ds, for0<t<T, (1.9
0
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is a Q-Brownian motion. In turn, the equations described in (1.3) can be transformed into

d
dS:(t) = r()S:i(t)dt+ ) 0y(t)S: (t)dB; (B), (1.10)
j=1
for $;(0) >0,i=1,...,p,and0 <t < T,

or, equivalently, into

d
dy)S: () = v() oy (t) B; (t), (1.11)
J=1
for 5;(0) > 0,7 = ..p,and0<t<T,

where B (-) = (B1 (-),...,Ba(-)) is a Q-Brownian motion as expressed in (1.9). Equation
(1.10) shows that one can ignore the appreciation rate x (-) when computing expectations
in the form ER[f (S (t),t € I C [0,T}))], where f : RY| —R. Equation (1.11) says that
the discounted price of each primitive asset is a Q-martingale. The notion of efficiency

implied by this result is that the “best prediction” of ¥ (T") S (T') is S (0).

1.1.3  The Completeness Property
An option is any non-negative and F (T')-measurable random variable Y such that
ER [y (T)Y] < +o0.

One can think of a contract that gives a payoff of Y at time 7". This contract should be
interpreted as a privilege since it gives its holder a non-negative amount.

A call option pays C (T) = (S(T) — E)™ at time T, where z+ = max (z.0) forz €
IR. This contract gives its holder the right to buy the primitive asset at time 7" at a specified
exercise price E. A put option pays P (T) = (E — S(T))" attime T. This contract gives

its holder the right to sell the primitive asset at time T at a specified exercise price E.
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Notice that
C(T)-P(T)=S(T)-E. (1.12)
A complete market is a market on which any contingent claim Y is attainable by a

well-selected self-financing portfolio strategy = (+) :
VY, 3= (-) suchthat X*"(T) =Y, (1.13)

where

v=E?[y(T)Y]. (1.14)
In a complete market, one can start at the initial wealth v defined in (1.14) and find a
portfolio strategy  (-) asin (1.13), cailed the replication portfolio, such that the final wealth
matches with certainty the option payoff. In a standard and complete market, the discounted

wealth process 7y (-) X*™ (-) satisfies the martingale property
~(s) X¥7 (s) = EQR [y (t) X*™ (t) | F(s)], for0<s<t<T. (1.15)

Equation (1.14) can be obtained from (1.15)ats = 0and t = T. In fact, the wealth process
Xv7(-) matches with certainty the option’s value during all the trading period [0, 77, oth-
erwise arbitrage opportunities will appear. This is why the wealth process is called the
price-process of the option. In a standard and complete market, the value v defined in
(1.14) is the unique rational price of the contingent claim Y. If the market is only standard,

there exists in general a whole range of prices
Iu = [Umim Uma.x]a

including the value defined in (1.14), that are consistent with the arbitrage-free property.
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Assume that the interest rate is constant as in (1.2). Using equations (1.12) and (1.14)
and the martingale property of y (-) S (-) described in (1.15), one obtains the put-call parity
relationship

c—p=25(0)—eTE, (1.16)
where ¢ and p are respectively the prices of the call option and its corresponding put option.
Equation (1.16) shows that the value of a put option can often be deduced from the value

of a call option.

A simple criterion exists to check for the completeness property in a standard market.

A standard market is complete if and only if

p=d, (1.17)

and

o (t,w) isregular fort € [0,7) andw € Q. (1.18)
Roughly speaking, the completeness property is a question of dimension: There must be
as many sources of systematic risk as primitive assets. The Black and Scholes model
described in (1.4) is complete since it is standard and verifies p = d = 1 and o(t,w) =
o> 0fort € [0,7) and w € Q. On the other hand, based on equation (1.17), the stochastic

volatility model described in (1.5) is incomplete.

1.2 Partial Hedging in the Black and Scholes Model

Assume that the market is standard and complete. The seller of a contingent claim ¥ can

hedge perfectly all risk by starting at the initial wealth v defined in (1.14) and managing
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the replication portfolio () mentioned in (1.13). Let 1,4 be the indicator of an event
A € F(T). Instead of hedging Y, this investor may want to hedge Y'14. This is less

expensive to replicate, since if we define u = E? [y(T)Y 14] and v = E® [y(T)Y], then
g=v—u>0. (1.19)

The replication takes place only on the hedging event H = {Y =0} U A. The gain is

defined as g = v — w and the default event is defined as H¢ = {Y' > 0} N A°. The default

risk is
P(HS) = EF [1y]. (1.20)

Notice that P(H¢) depends on the appreciation rate u(-) which is assumed to be constant
in the following.

In the next subsections, some partial hedging strategies are analyzed in terms of the
gain and default risk. These strategies account for the price of the primitive asset at the
horizon, its maximum during the trading period, and the time at which this maximum
occurs. In the first subsection, closed-form solutions are derived for the Black and Scholes
model. In the second subsection, efficient Monte Carlo estimators are developed for a

stochastic volatility model.
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1.2.1  Partial Hedging when A = {F < S(T) < a}

Consider a partial replication of the call option Y = (S(T)—E)* when A = {E < 5(T) < a}

for some real a greater than . By equation (1.19), the gain is

g = v—1u,

= EQ[(S(T) - E)*] - E? [(S(T) — E)lie<sim)<a)) -

The cost of the perfect hedge, denoted by v, is the Black and Scholes price which is known
in closed-form. The cost of the partial hedge, denoted by u, can also be computed in closed-
form as follows. In the Black and Scholes (1973) model defined in (1.4), the price of the

primitive asset at the horizon can be written as
S(T) = S(0) exp ((r — /T + m/Tz) ,

where Z is a standard normal random variable. The primitive asset price S(T') is then
lognormal, and from this we can derive (after some algebraic manipulations) the following

expression for u:

u = S(0)[N(d)) = N(d))] = Ee"™T [N(d2) — N(d5)], (1.21)

d [In(S(0)/E) + (r + 6*/2)T) /o VT,

dy = dy—oVT,
&, = [In(5(0)/a) + (r + 0*/2)T] /oVT,

d = d,—oVT,

where N(-) is the cumulative normal distribution.
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Notice the similarity with the Black and Scholes formula since « — v when a —
+00. An agent who applies this partial hedging strategy =(-) must hold initially N(d;) —
N(d) shares of the primitive asset, while a perfect hedge requires N (d). The default risk

measured under Q can be derived in a similar way. One obtains
Q(H®) = E? [Iis(r)>a}) = N(da)-

The default risk P(H¢) is deduced from Q(H*) by substituting p for r where 4 is the
appreciation rate of S(-).

The parameters of the option to be evaluated are: S(0) = 100, £ = 100, T = 0.5,
o = 0.15, and r = 0.05. The partial hedging parameter is a. A numerical illustration is
given in Table 1 whose last column, denoted by oo, reports the cost v of a full replication.

Each cell of this table contains the exact solution computed by numerical integration.

Table 1: Partial Hedging of a Call Option when A = {E < S(T) < a}

a 120 | 125 | 130 | 135 | 150 |
u 5.9642 [ 4.7197 | 5.1534 | 5.3703 | 5.5199 | 5.5271
g 15630 | 0.8075 | 05737 | 0.1569 | 0.0072| 0
P(HC) for z = 0.05 | 0.0622 | 0.0274 | 0.0110 | 0.0041 | 0.0001 | 0
P(HC) for gz = 0.10 | 0.0967 | 0.0460 | 0.0199 | 0.0080 | 0.0003 | 0

When the hedging parameter a increases, the cost u of the partial replication increases
and converges to the Black and Scholes price v = 5.5271. At the same time, the default
risk converges to zero. For example, if the seller decides to hedge the call option only
when S(T') < 130 and not on the others states of nature, he can do so with an initial wealth
u = 5.1534. This results in a gain of g = 0.3737 over the perfect hedge. Nevertheless, the
hedger will fall into default with probability P(H¢) = 0.011 for u = 0.05, and P(H¢) =

0.0199 for = 0.1. Notice that P(H¢) is an increasing function of u.
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122  Partial Hedging when A = {E < S(T) < a, M3(T) < b}

We now consider a hedging event of the form
A={E<S(T)<a,M5(T) <b}, forE<a<b,

where the random variable MS(T) = max {S(t), t € {0, T]} is the maximum attained by
the primitive asset price over the trading period. By the Girsanov Theorem [Karatzas and

Shreve (1991), Section 3.5], there exists a probability measure Q under which the process
X(-) =1n(S())/5(0))/o,

is a Q-Brownian motion. The probability measure Q is defined by its Radon-Nikodym

likelihood ratio
dQ/dé =Z(T) =exp ((r - o?/2)X(T) o —(r = 0'2/‘2)23"/‘20'2) .

This result has been used judiciously by Conze and Viswanathan (1991) to derive explicit
formulas for several lookback options using the risk-neutral evaluation approach. The orig-
inal results, solutions of a partial differential equation, are derived by Goldman, Sosin, and
Gatto (1979).

This change of measure allows the use of the known density function of (X(T), MX(T))

[Karatzas and Shreve (1991), Section 2.8]

o(z,y) = 2(2T%) "3 (2y - x)e‘(zy")2/2T, for y > max(z, 0),
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where MX(T) = max{X(t), ¢t € [0, T]} is the maximum attained by the Q-Brownian

motion X (-) during [0, T}. This result allows for the derivation of the closed-form solutions
u = ER[e7T(S(T) - E)lp<smcars(miss] »
= Eé [e_rTZ (T)(S (O)eaxm - E)l{ESX(T)ga,Ar-Y(T)gE}] ’
and
QH) = E°[ludl,

E¢ [I{S(T)>E}] - E° [I{ESS(T)Sa,MS(T)gb}] ,

~

= N(do) - E® [Z (T)I{ESX(T)SE,MX(T)SE}] ,

where Z = log(z/S(0))/o for z € {E,a,b}. The default risk P(H¢) is deduced from
Q(H¢) by substituting s for . These expectations are basically 2-dimensional integrals.
The parameters of the option to be evaluated are: S(0) = 100, E = 100, T = 0.5,
o = 0.15, and r = 0.05. The partial hedging parameters are a and b = a + 3. Results are
shown in Table 2 whose last column, denoted by oo, reports the cost v of a full replication.

Each cell of this table contains the exact solution computed by numerical integration.

Table 2: Partial Hedging of 2 Call when A = {E < S(T) < a, M3(T) < b}

a 120 125 130 135 150 00

u 3.6810 | 4.5688 | 5.0841 | 5.3418 | 5.5187 | 5.5271

g 1.8461 | 0.9583 | 0.4430 | 0.1853 | 0.0084 0
P(HC) for 2 = 0.05 | 0.0805 | 0.0347 | 0.0137 | 0.0050 | 0.0002 0
P(H®) for p = 0.10 | 0.1203 | 0.0564 | 0.0242 | 0.0095 | 0.0004 0

For example, if the seller decides to hedge the call option only when S(T') < 130 and
MS3(T) < 133, and not on the others states of nature, he can do so with an initial wealth

u = 5.0841. This results in a gain of g = 0.4430 over the perfect hedge. Nevertheless,
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the hedger will fall into default with probability P(H¢) = 0.0137 for p = 0.05, and
P(H®) = 0.0242 for p = 0.1. In comparison with the results of Table 1, here the cost of

any partial hedging strategy is slightly smaller and the default risk is slightly larger.

1.23  Partial Hedging on {E < S(T) < a, M5(T) < b,60°(T) < s}
Consider now a partial hedging strategy on the event
A = {E<S(T) <a,M5(T) <b,6%(T) < s},
forF<a<bandl<s<T,
where 65(T) = inf {t € (0,7, S(t) = MS(T)} is the first time when the primitive asset
attains its maximum over the trading period. The random variable 8°(T') is an example of
a random time which is not a stopping time. The same change of measure as in Section

3.1.2 allows one to use the known density function of (X(T), M*¥(T),8%(T)) [Karatzas

and Shreve (1991), Section 2.8]

6(z,y,6%(T) < s)=—= [N(-—a_{_/ﬁ)(Qy—x)e—(gy‘f)2/'-’T_

fory > max(z,0)and0< s < T,

where o = (y(T — s) % (z — y)s)/T and B = s(T — s)/T. From this, we can derive
closed-form solutions for the cost of a partial hedge and its associated default risk. The

results are

u = E° {C_TT(S (T) - E)1{ESS(T)Sa,MS(T)Sb,OS(T)Ss}] ’

= E° [e-rTZ (T)($(0)e”* ™) — E)I{ESX(T)SE,M-\’(T)si,o-\' (T)Ss}] .
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and
QH?) = ELd,
= E° [I{S(T)>E}] - E° [1{EsS(T)Sa.MS(T)Sb,GS(T)ss}] s
= N(d) - EQ [Z (T)1{ESX(T)SE.M-\'(T)si,o-\‘(T)gs}} :

These expectations are basically 3-dimensional integrals transformed into 2-dimensional
integrals. The default risk P(H¢) can be deduced from Q(H*) by substituting  for r.

The parameters of the option to be evaluated are: S(0) = 100, £ = 100, T = 0.5,
o = 0.15, and » = 0.05. The partial hedging parameters are a, b = a + 3, and s = 0.48.
Results are shown in Table 3 whose last column, denoted by oo, reports the cost v of a full
replication. In that way, for a = oo, one has s = 0.5. Each cell of this table contains the
exact solution computed by numerical integration.

Table 3: Partial Hedging a call when 4 = {E < S(T) < a, MS(T) < 6,6°(T) < s}

a 120 125 130 135 150 00

u 2.4497 | 2.9545 | 3.2201 | 3.3401 | 3.4112 | 5.5271

g 3.0774 | 2.5727 | 2.3070 | 2.1870 | 2.1159 0
P(H®) for p = .05 | 0.2001 | 0.1721 | 0.1605 | 0.1563 | 0.1542 0
P(H¢) for p =0.10 | 0.2600 | 0.2219 | 0.2047 | 0.1977 | 0.1939 0

If the seller decides to hedge the call option only when S(T) < 130, M5(T) < 133,
and 6° (T) < 0.48, and not on the others states of nature, he can do so with an initial wealth
u = 3.2201. This results in a gain of ¢ = 2.3070 over the perfect hedge. Nevertheless,
the hedger will fall into defzult with probability P(H¢) = 0.1605 for p = 0.05, and
P(H¢) = 0.2047 for p = 0.1. In comparison with the results of Table 1 and Table 2,
here the cost of any partial hedging strategy is significantly smaller and the default risk is

significantly larger. The reason is that the primitive asset is likely to attain its maximum at
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the end of the period: The density function of the time to maximum 85 (T) obeys the arcsin

law [Karatzas and Shreve (1991), Section 2.8]:
h(s) = 2zt arcsin(y/s/T), for0<s<T.

Closed-form solutions can also be derived if the hedging event depends on the final
primitive asset price, its first passage time at a certain level, its maximum during the trading

period, and the time to maximum.

1.3 Partial Hedging in a Stochastic Volatility Model

1.3.1 A Monte Carlo Experiment

All the random variables introduced in the following sections are assumed to have finite
variance. The stochastic volatility model introduced in (1.5) is arbitrage-free but incom-

plete (see Section 2 for a justification). The dynamic of the primitive asset under Q is
dS(t) = rS(t)dt + o1 (t)S(t)dBi(t), forS(0) >0and0<t < T,

where the volatility process o (-) is a function of a Brownian motion B (-) = (B1(+), B2(+))'-
Several dynamics for volatility have been proposed in the literature (see Detemple and Os-
akwe (2000) for a general specification). One of these is the following mean-reverting

process

dGl(t) = &(b'_ - 0 (t))dt + 90’1 del + v/ 1-— p"dBQ

for0<t<T,
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where the coefficients o (the reverting rate), 7 (the long-term volatility), 8 (the volatility of
the volatility), and p (the correlation between the innovations) are assumed to be constants.

Statistical methods are needed to estimate these coefficients. For simplicity, we assume

here that p = 0 so that
dO’l(t) = Q(E - Gl(t))dt + gdl(t)ng(t), for 0 <t S T.

To make the hedging of contingent claims possible, a second primitive asset Sa(-)
is introduced in the market. It is assumed to move under Q according to the stochastic

differential equation
ng(t) = TSg(t)dt + O'QSQ(t)ng(t), for SQ(O) >0and0<t<T,

where o is a positive constant (see equation (1.10) for a justification). The asset Sa()
could be interpreted as an index of the rest of the economy.

By equation (1.6), the components of the market-price of risk are 6,(t) = (g, —
r)/o(t) and 8a(t) = (u, — 7)/02 for 0 < t < T. By equation (1.9), the dynamics of S(-),

o1(+), and Sa(-) under P are

dS(t) = pSE)dt+ o1(t)S(E)dWA(2), (1.22)

do\(t) = (6 —oi(t))dt + 0o:(t)dWa(t),
dSa(t) = paSa(t)dt + 0252(t)dWa(2),

for S(0) > 0,51(0) > 0,and 0 <t < T,

where o = a — 8(p, — 1) /02 and 7 = oG/,
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In the market defined in (1.22), starting at the initial wealth defined in (1.14), any
contingent claim Y is attainable by a replication portfolio 7(-) = (m1(-),72(-))" as de-
scribed in (1.13). The price of the call option written on the first primitive asset is v =
ER [e™"(S(T) — E)*]. The partial hedging strategy costs u = EQ[e7T(S(T) — E)*14]
and default risk is P(H*). Notice that the appreciation rate u, of the first primitive asset and
the parameters of the second primitive asset, u, and o, are needed for estimating P(H°),
but not for v and u.

It is well known that option prices usually do not admit closed-form solutions in this
model and that simulation is required. Since the final primitive asset price S(T") cannot
be simulated directly, a discrete-time approximation such that the Euler scheme with m

periods of length » = T'//m can be performed:

S((k — Dh)(rh + &, ((k - DRWVRZy(K),  (1.23)

S(kh) — S((k - 1)h)

G1(kh) = 1((k— D) = a(@—51((k— Dh)h+651((k — Dh)VhZ:(k),

Z5(1), ..., Zo(m) are independent and identically distributed normal variables.
The error of the Euler approximation when computing an expectation in the form

E[f(S(t),t € I C[0,T})], defined as

e(m) = |E[f(5(t),t € I C [0,T))] - E[f(S(t).t € I c [0, T))I,
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where f : Rl —R, is known to be in O(m™!). Given a computational budget, a trade-off
between the number of time increments m of the Euler approximation and the sample size
n of the simulation experiment must be found. Duffie and Glynn (1995) argue that n must
increase as O(m?) so that doubling 7 necessitates quadrupling n. In the following, f (§ (t),
teIc[0,T))isdenoted f(S(t),t € I C[0,T}).

The Euler approximation is used to simulate n copies of (S(T), M5(T), 6°(T)) (we
take n = 4000), which serve to simulate as many copies of f(S(T), M5(T), 5(T)) where

f : R® —»R. Depending on the function f and the probability measure used, the parameter
w= E[f(S(T), M5(T),6°(T))]
matches v, u, or P(H¢). The crude Monte Carlo estimator of w based on n replications is

B =n"1) F(S(T), M3(T),6%(T)).),
i=1

where the (S(T), MS(T),65(T))s, fori = 1,...,n, arethe n copies of (S(T'), M5(T), 6°(T)).
The estimated error of & can be defined as the half-length of the asymptotic 95% confidence

interval of w based on the normality assumption,

e = 1.96s,/v7,

where s,, is the sample standard error of f(S(T), M3(T),85(T)).

Through each path, the global maximum A 5(T') is simulated following Beaglehole,
Dybvig, and Zhou (1996). The time to maximum is simulated as the midpoint of the
subinterval {(k* — 1)h, k"] containing the global maximum.

The parameters of the option to be evaluated are S(0) = 100, E = 100, T = 0.5,

o = 0.15, and r = 0.05. The parameters of the volatility are « = 1.5, & = 0.15, and
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6 = 0.08. The appreciation rate of the first primitive asset is g = 0.1, and the parameters
of the second primitive asset are o, = 0.08 and o> = 0.12. Results in Table 4 are obtained
at s = 0.5, that is, the constraint °(T) < s can be ignored. Each cell of this table contains
the Monte Carlo estimate and its estimated error. The partial hedging parameters are a and

b = a + 3, and the parameters of the simulation are: m = 60 and n = 4000.

Table 4: Partial Hedging of a Call when A = {E <S(T)<a, M5(T) < b}

a 120 | 125 | 130 | 135 | 150 | o©
u 346 | 4.40 | 4.54 | 5.09 | 5.26 | 5.26

+0.16 =0.19 =0.21 =0.22 | =0.23 | +0.23
PO {0430 (0062 [ 0038 [ 004 — | 0

Results in Table 4 are similar to those in Table 2, except for the statistical error,
which we shall now try to reduce. The relative error of P(H¢), defined as the ratio of the
statistical error over the statistical estimation, increases as the parameter a increases, 1.¢.,
as the event H° becomes rarer. This is a typical situation when estimating probability of
rare events. At the extreme case a = 150, the default event H¢ is so rare that we have
observed no realization of f(S(T), M5(T), 6°(T)) in this region for our 4000 simulation
runs. The variance reduction technique, called Importance Sampling (see Boyle, Broadie,
and Glasserman (1997) and L’Ecuyer (1994) for a discussion), provides a way to handle
this type of situation and could be used for large values of a. The idea is to select a change
of measure so that the integrand, here f(S(T), M5(T), 85(T)), goes more frequently into
the most important regions of the sample space, here H¢. For a = 150, one can also see
that the simulation could not distinguish between the cost of the partial replication and the

cost of the full replication.
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In the next subsections, correlation induction techniques are used to reduce the es-
timated error of the crude Monte Carlo estimators. These variance reduction techniques,
namely Antithetic Variates and Control Variates, induce correlation between estimators in
attempt to reduce the variance. The techniques used are discussed, e.g., in Bratley, Fox,

and Schrage (1987) and L’Ecuyer (1994).

1.3.2  Antithetic Variates

Let @, to be an unbiased estimator of w. For simplicity, take @; as the crude Monte Carlo
estimator of w based on one replication. Assume that one can build a second unbiased
estimator - of w which is negatively correlated with #,. Thus, the unbiased estimator

@ = (@, + @2) /2 of w is expected to have lower variance than each of its components:

if Cov|[iy, 2] < 0and s is well selected. Roughly speaking, if &, takes high values above
its mean w, 1, takes low values below its mean w. Thus, their deviations are mutually
compensated in @ whence the terminology “Antithetic Variates”.

The estimator @, is often written as a function of some independent and identically

basic uniforms Uy,. . .,Uq
@ = f(Uh,....Uy),

where f : R? —R. If f is monotone, taking
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ensures the condition Cov[@;,@s] < O [Bratley, Fox, and Schrage (1987), page 46] and
variance reduction. In the case analyzed here, the output @ is a function of some inputs as
shown in (1.23):

@y, = f(Z1(1), .- ., Z1(m), Z2(1),..., Zo(m)),
where Zy(1),. . .,Z1(m),Za(1),- . .. Z2(m) are independently and identically distributed nor-

mal random variables. By the same argument, taking
Dy = f(=Z1(1),...,—2Z1(m), Zo(1),. .., Z2(m)),

ensures the condition Cov[@, @»] < 0 and variance reduction. One can focus only on the
components where the function is monotone and synchronize between the estimators to
induce the attempted negative correlation. For the estimation of u and P(H¢), we observed
a variance reduction with the antithetic variates for the first parameter as illustrated by the
following example.

The parameters of the option to be evaluated are S(0) = 100, £ = 100, T = 0.5,

o = 0.15, and r = 0.05. The parameters of the volatility are & = 1.5, 7 = 0.15, and

§ = 0.0S. Results are shown in Table 5. Each cell of this table contains the Antithetic
Variates estimate and its estimated error. The partial hedging parameters are a and b = a+3,
and the simulation parameters are m = 60 and n = 4000. The estimated errors, given in
Table 5, show a modest variance reduction in comparison with those of Table 4.

Table 5: Partial Hedging a Call when A = {E < S(T) < a, M3(T) < b}

a 120 | 125 | 130 | 135 | oo

u 368 |4.5815.035.29] 5.4
£0.08 | £0.00 | +0.09 | 2010 | 0.1

©

H-On
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1.3.3  Control Variates

Let X be an unbiased estimator of w and let C = (C,, ..., C,)’ be a random vector with
a known expected value v = (v4,.. .,/)’, presumably correlated with X. Assume that C
is known to the simulator. Think of X as the crude Monte Carlo estimator of w based
on one replication when the volatility moves randomly and C = C) as the synchronous
crude Monte Carlo estimator of w when the volatility is constant. The idea behind this
technique is to find a vector 8 = (8,,.. ..8,)’ such that the unbiased estimator of w, namely
the controlled estimator,
Xe=X-5(C-v),
has a lower variance than X. The optimal choice for G, to yield the maximum variance
reduction, is
B =%:'Sxc,
where E¢ is the variance matrix of C and E x ¢ is the covariance vector between X and the

components of C. At 3°, a variance reduction takes place:
Var [X¢] = (1 — R% ¢)Var [X],

where

R ¢ =ZxcZc Exc/Var[X],
is the multiple coefficient of correlation between X and the components of C. In the

particular case ¢ = 1, these results can be written as

B° = Cov[X,C]/Var[C],
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and
Var [X¢] = (1 = Corr [X, C)*)Var [ X].

Roughly speaking, if X increases and takes high values, Cov[X, C] (C — v)/Var[C] neces-
sarily increases. Thus, it controls the excess of X above its mean w via X, whence the ter-
minology “Control Variates”. In option pricing, the random variable v(7')S(T’) is usually
taken as a control variable since $(0) = E?[y(T)S(T)] is known: The process y(-)S(-) isa
(QQ-martingale as mentioned in (1.15). Several authors, e.g., Clewlow and Carverhill (1994),
select a priori 8* = 1 and report a significant variance reduction. In fact, this choice is not
necessarily acceptable but it should work when C is approximately equal to X. In that
case, the optimal value for 3 is expected to be near unity since Cov[X, C] ~Var|[C].

Unfortunately, neither £ nor X x ¢ are known in practice and 3° cannot be computed
as shown above. An alternative idea is to simulate n copies of (X, C), estimate £¢ and

Y x c as usual, and define the observations of the controlled estimator as
Xei=Xi— E'(Ci -v), fori=1,.,n,
where
B=55'Sxe.
The controlled estimator of w is defined as the sample mean of the X, ;, forz = 1,...,n,
X.=X-8(C-v).

The sample variance S§ of X, is defined as usual. Notice that the controlled estimator
X, is generally a biased estimator of w since E and C are a prion correlated. However,

Lavenberg and Welch (1981) showed that this bias vanishes when (X, C) is multinormal.
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As pointed out by Nelson (1990), under weak conditions, the controlled estimator is

convergentasn — +00 :

X, — w inprobability,
§? — (1—- R%c)Var[X] inprobability,

va(X.—w)/S. — N(0,1) indistrbution.

Thus, X . is an asymptotically unbiased estimator of w and has asymptotic smaller variance
than the crude Monte Carlo estimator X. Techniques for reducing the bias of X, for small
samples, such as Batching, Jackknifing, and Splitting, are described in Nelson (1990).
By splitting optimally into three groups, Avramidis and Wilson (1993) build a controlled
estimator which is somewhat more consistent than X, as it converges to w always surely.

The parameters of the option to be evaluated are 5(0) = 100, E =100,T = 0.,
o(0) = 0.15, and 7 = 0.05. The parameters of the volatility are a = 1.5, = 0.15, and
8 = 0.08. The appreciation rate of the first primitive asset is y; = 0.1, and the parameters
of the second primitive asset are y, = 0.08 and 02 = 0.12. Results are shown in Table
6. Each cell of this table contains the Control Variates estimate and its estimated error.
The partial hedging parameters are @ and b = a + 3, and the simulation parameters are
m = 60 and n = 4000. We observe a significant variance reduction resulting from the high

correlation between the crude estimators and their associated control variables.

Table 6: Partial Hedging a Call when A = {E < S(T) < a, M5(T) < b}
a 120 125 130 | 135 fos)
u 363 | 446 | 4.95 | 5.19 | 5.39
+0.04 +.04 +.04 +.02 +.01
P(H®) 0.119 [ 0.056 | 0.023 | 0.010 | O
30002 | £0.002 | £0.002 | 0.001
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1.3.4 Integrating the Correlation Induction Techniques

Now, denote X as the antithetic variates estimator of w (based on one replication) when
the volatility moves randomly and C = C) the synchronous antithetic variates estimator
of w when the volatility is constant. As pointed out by Avramidis and Wilson (1996),
the estimator X can be viewed as an aggregate response and the random variable C as an
aggregate control variable.

The parameters of the option to be evaluated are 5 (0) = 100, E = 100, T = 0.5,
o(0) = 0.15, and r = 0.05. The parameters of the volatility are @ = 1.5, = 0.15,
and 8 = 0.08. Results are shown in Table 7. Each cell of this table contains the estimate
based on the aggregate response and its estimated error. The partial hedging parameters are
¢ and b = a + 3, and the simulation parameters are m = 60 and n = 4000. Additional
improvements are realized when integrating the Antithetic Variates and the Control Variates

techniques.

Table 7: Hedging Partially a Call when A = {E < S(T) < a, M5(T) < b}

a 120 | 125 | 130 | 135 | o©
u | 3.61[4.46|497|5.21|5.39
=02 | 202 | =03 | +02 | =01

1.4 Conclusion

A hedger may find an advantage in partially replicating a contingent claim if the lower
cost of a partial hedge more than offsets the added default risk. Several partial replication
strategies are possible. In this paper, we measure default probabilities and expected gains

for possible strategies using the price of the primitive asset at the horizon, its maximum
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over the trading period, and the time to maximum. The results show how the cost of a
partial hedge and default risk vary depending on the replication event.

In the Black and Scholes model, the partial hedging strategies are easy to identify and
to implement. In the stochastic volatility case, the partial hedging strategy can be approx-
imated based on the sensitivity coefficients of the option (Broadie and Glasserman 1996).
In constraint models, hedging contingent claims is not possible and the super-replication
cost is excessively high (Cvitani¢, Pham, and Touzi 1997). In such models, a partial super-
replication may be an interesting solution.

In this paper, we gave examples of how Monte Carlo Monte simulation, a flexible

and robust tool, can be used to analyze such strategies.
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Chapter 2
Numerical Procedures for Pricing
American-style Asian Options

2.1 Introduction

In 2 frictionless market, the no-arbitrage principle allows one to express the value ofa
derivative as the mathematical expectation of its discounted future payment, with respect
to a so-called risk-neutral probability measure. Options are particular derivatives charac-
terized by non-negative payoffs. European-style options can be exercised at the expiration
date only, whereas American-style ones offer early exercise opportunities to the holder.

For simple cases, such as for European call and put options written on a stock whose
price moves as a geometric Brownian motion (GBM), as studied by Black and Scholes
(1973), analytic formulas are available for the fair price of the option. For more com-
plicated derivatives, however, which may involve multiple assets, stochastic time-varying
model parameters, possibilities of early exercise, etc., analytic formulas are unavailable.
These derivatives are usually priced either via the lattice-based approach, Monte Carlo
simulation, or numerical methods (e.g., Boyle, Broadie, and Glasserman 1997, Hull 2000,
Wilmott, Dewynne, and Howison 1993).

The payments promised by Asian options depend on the average price of the primitive
asset. Those based on the arithmetic mean have no known analytic formula, even under the

GBM assumption. An Asian option can hedge the risk exposure of a firm that sells or

31
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buys certain types of resources (raw materials, energy, foreign currency, etc.), on a regular
basis. The average being less volatile than the price of the underlying asset, these contracts
are less expensive than their standard versions. Asian options are heavily traded over-the-
counter and, because of the possible lack of depth of these markets, their theoretical values
often need to be computed on-the-fly for fair negotiations (Vorst 1998).

Asian options come in various flavors. For example, the average can be arithmetic
or it can be geometric. One talks of a plain vanilla Asian option if the average is com-
puted over the full trading period, and a backward-starting if it is computed over a right
subinterval of the trading period. This interval usually has a fixed starting point in time.

The Asian option can be fixed-strike (if the strike price is a fixed constant) or floating-
strike (if the strike is itself an average). It is called flexible when the payoff is a weighted
average, and equally weighted when all the weights are equal. The prices are discretely
sampled if the payoff is the average of a discrete set of the asset price, and continuously
sampled if the payoff is the integral of the asset price over some time interval, divided by the
length of that interval. The options considered in this paper are the most common: Fixed-
strike, equally-weighted, discretely-sampled Asian options based on arithmetic averaging.
Our method could also be adapted to price other kinds of discretely-sampled Asian options.

European-style Asian (named Eurasian) options can be exercised at the expiration
date only, whereas American-style ones (named Amerasian) offer earlier exercise opportu-
nities, which may become attractive intuitively when the current asset price is below the
current running average (i.€., is pulling down the average) for a call option, and when it is

above the running average for a put. Here, we focus on Amerasian call options, whose val-
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ues are harder to compute than the Eurasian ones, because an optimization problem must
be solved at the same time as computing the mathematical expectation giving the option’s
value.

There is an extensive literature on the pricing of Eurasian options. In the context
of the Black and Scholes’ model, there is a closed-form analytic solution for the value of
discretely-sampled Eurasian options only when they are based on the geometric average
(Turnbull and Wakeman 1991, Zhang 1995). The idea is that the geometric average of
lognormals is a lognormal. Geman and Yor (1993) used Bessel processes and derived ex-
act formulas for the Laplace transform of the value of a continuous-time Eurasian option.
For options based on the arithmetic average, solution approaches include quasi-analytic
approximation methods based on Fourier transforms, Edgeworth and Taylor expansions,
and the like (e.g., Bouaziz, Briys, and Crouhy 1994, Carverhill and Clewlow 1990, Cur-
ran 1994, Levy 1992, Ritchken, Sankarasubramanian, and Vijh 1993, Turnbull and Wake-
man 1991), methods based on partial differential equations (PDEs) and their numerical
solution via finite-difference (FD) techniques (e.g., Alziary, Décamps, and Koehl 1997,
Rogers and Shi 1995, Zvan, Forsyth, and Vetzal 1998), and Monte Carlo simulation cou-
pled with variance-reduction techniques (e.g., Glasserman, Heidelberger, and Shahabuddin
1999, Kemna and Vorst 1990, L’Ecuyer and Lemieux 1999, Lemieux and L’Ecuyer 1998,
Lemieux and L’Ecuyer 2000).

Techniques for pricing Amerasian options are surveyed by Barraquand and Pudet
(1996), Grant, Vora, and Weeks (1997), Zvan, Forsyth, and Vetzal (1998, 1999), and Demp-

ster, Hutton, and Richards (1998). Hull and White (1993) have adapted binomial lattices
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(from the binomial model of Cox, Ross, and Rubinstein 1979) to the pricing of Amerasian
options. Nevertheless, these models are difficult to implement for path-dependent options,
and do not give clear insight on the optimal exercising region (for the American versions).
Broadie and Glasserman (1997a) proposed a simulation method based on non recombin-
ing trees in the lattice model, which produces two estimators of the option value, one with
positive bias and one with negative bias. By taking the union of the confidence intervals
corresponding to these two estimators, one obtains a conservative confidence interval for
the true value. However, the work and space requirements of their approach increases expo-
nentially with the number of exercise opportunities. Broadie and Glasserman (1997b) then
developed a simulation-based stochastic mesh method that accommodates a large number
of exercise dates and high-dimensional American options. Their method appears adaptable
to Amerasian options, although this is not the route we take here.

Zvan, Forsyth, and Vetzal (1998) have developed stable numerical PDE methods
techniques, adapted from the field of computational fluid dynamics, for pricing Amerasian
options with continuously sampled prices. Zvan, Forsyth, and Vetzal (1999) have also
adapted these PDE methods to Amerasian options with discretely sampled asset prices,
and with barriers. The numerical approach introduced in this paper is formulated in discrete
time directly.

Pricing American-style options can be formulated as a Markov Decision process, 1.€.,
a stochastic dynamic programming (DP) problem, as pointed out by Barraquand and Mar-
tineau (1995) and Broadie and Glasserman (1997b), for example. The DP value function

expresses the value of an Amerasian option as a function of the current time, current price,
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and current average. This value function satisfies a DP recurrence (or Bellman equation),
written as an integral equation. Solving this equation yields both the option value and the
optimal exercise strategy. For a general overview of stochastic DP, we refer the reader to
Bertsekas (1987).

In this paper, we write the DP equation for Amerasian options under the GBM as-
sumption. Using this equation, we prove by induction certain properties of the value func-
tion and of the optimal exercise frontier (which delimits the region where it is optimal to
exercise the option). We then propose a numerical solution approach for the DP equation,
based on piecewise polynomial interpolation over rectangular finite elements. This kind of
approach has been used in other application contexts, €.g., by Haurie and L’Ecuyer (1986),
L’Ecuyer and Malenfant (1988). In fact, we reformulate the DP equation in a way that
simplifies significantly the numerical integration at each step. This is a key ingredient for
improving the efficiency of the procedure. Numerical experiments indicate that the method
is competitive;i t provides precise results in a reasonable computing time. It could also be
easily adapted to price most low-dimensional American-style derivatives such as calls on
stocks with dividend paying, puts, lookback options, and options with barriers. The gen-
eral methodology would also work for other types of models, e.g., for a constant elasticity
of variance (CEV) process (Cox 1996, Boyle and Tian 1999). The properties of the value
function that we derive in Section 4 are easy to generalize.

The idea of this paper came after reading Grant, Vora, and Weeks (1997). These
authors also formulate the problem of pricing an Amerasian option in the dynamic pro-

gramming framework, but use Monte Carlo simulation to estimate the value function at
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each point of some discretization of the state space, and identify a “good” exercise frontier
by interpolation. They also propose to restrict the strategy of exercise to a class of sub-
optimal rules where the exercise frontier is approximated by two linear segments, at each
date of exercise opportunity. They observed on a few numerical examples that restricting
the class of strategies in this way did not seem to diminish the value of the option signif-
icantly, but they provided no proof that this is true in general. More recently, Longstaff
and Schwartz (2001) proposed a general methodology based on Monte Carlo simulation
for pricing high-dimensional American-style options, and applied it to Amerasian options.

Here, we suggest replacing simulation at both stages by an exact computation, which
is obviously less noisy, and we do not assume a priori a shape of the exercise frontier.
For both the simulation approach and our approach, an approximation of the value function
must be memorized, so the storage requirement is essentially the same for the two methods.

While finalizing the revision of this paper, we learned about related work by Wu and
Fu (2000), who also proved some properties of the exercise frontier for Amerasian options
and proposed a different approach, that parameterizes the exercise frontier and optimizes
the parameters by a stochastic approximation algorithm combined with a simulation-based
perturbation analysis gradient estimation method.

Section 2 presents the model and notation. In Section 3, we develop the DP formula-
tion. In Section 4, we establish certain properties of the value function and of the optimal
region of exercise. Our approximation approach is detailed in Section 5. In Section 6, we

report on numerical experiments. Section 7 is 2 conclusion.
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2.2 Model and Notation

2.2.1 Evolution of the Primitive Asset

The primitive asset is a stock without dividend whose price moves as a GBM, in a world
that satisfies the assumptions of Black and Scholes (1973). Under these assumptions, there
is a probability measure Q, called risk-neutral, under which the price of the primitive asset

{S(t),t € [0,T]} satisfies the stochastic differential equation (SDE)
dS(t) = rS(t)dt + oS(t)dW (t), for0<t<T, (2.29)

where S = S(0) > 0, r is the risk-free rate, ¢ is the volatility parameter, T is the maturity
date, and {W(t), t € [0, T} is a standard Brownian motion. The solution of (2.24) is given
by

S(t") = S(t')ert - WEN-WIL L for0 <t <t < T, (2.25)
where 4 = r — ¢%/2. An important feature is that the random variable S(t")/S(¢')
is lognormal with parameters u(t’ — t') and o/t” — t/, and independent of the o-field
F(t") = 0 {S(t), t € [0,t]}, i.e., the trajectory of S(t) up to time ¢’. This follows from
the independent-increments property of the Brownian motion. In addition, the discounted

price of the primitive asset is a Q-martingale:
p(thS(t') = E[p(t")S(t") | F(¥')], for0<t' <t"<T, (2.26)

where {p(t) = e~™,t € [0, T} is the discount factor process and E is (all along this paper)
the expectation with respect to Q. Details about risk-neutral evaluation can be found in

Karatzas and Shreve (1998).
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2.2.2 The Amerasian Contract

We consider a model similar to that of Grant, Vora, and Weeks (1997). Let0 =ty < ¢; <
tr < --- < t, = T be a fixed sequence of observation dates, where T is the time horizon,
and let m" be an integer satisfying 1 < m* < n. The increments of time ~ = t; — t;_,, for
i=2,...,n, are assumed to be equally spaced.

The exercise opportunities are at dates t,,, for m* < m < n. If the Amerasian
call option is exercised at ¢, its payoff” (known as the exercise value) is (S — K)* =
max(0, S, — K), where K is the exercise price and Sm = (S(t)+---+S(tm)) /m is
the arithmetic average of the stock price at the observation dates up to time Z.,..

This model is quite flexible. For n = 1, we get an European call option and, for m™ =
n > 1, an Eurasian call option. In fact, we are not really interested in these degenerate

cases, but in the case where m”™ < n.

2.3 The Dynamic Programming Formulation

For m = 0,...,n, denote by v,(s,3) the value of the option at t,, when S(tn,) = s and
S,. = 5. This value is a function of the state variables (s,5) and of the time t,,. We take
the szate space as [0, -'r-oo)2 for convenience, although at each time step, only a subset of
this space is reachable. Indeed, one must have 5 = s > O att; and5 > s/m > 0 at t,y,, for

m > 1.
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Attimet, = T, if S, = 5, the value of the Amerasian call option coincides with its
exercise value
v, (5,3) = (5~ K)".

Attime t,,, if S, = 5, the exercise value of the option is
v (5) = (5 K)*, form"<m<n 2.27)

From the risk-neutral pricing theory, the holding value of the option (its value if not exer-
cised) at time t,,, for 0 < m < n, can be expressed as the conditional expectation of the

discounted value of the opticn at time ¢,,+1 :
h -
v (8,3) (2.28)

= FE [,OUm+1 (S(tm+1)~,§m+l) l S(tm) =3, -S_m = '§:|

m+1 ’

= pEm,s,§ [vm+1 (S(tm+l)r

where p = e~ is the discount factor over the period [tm, tm-+1)- The value of the option

satisfies
vh (s,3) if0<m<m
U (5,5) = { max (v5,(3),22(s,5)) ifm"<m<n. (2.29)
vE,(3) ifm=n

Notice that v,(s,5) = v,(5) does not depend on s, and that vo(s,3) = vo(s) does not
depend on 5.

The optimal exercise strategy is defined as follows: In state (s,5) at time tp,, for
m® < m < n, exercise the option if v¢ (5) > v’ (s,3), and hold it otherwise. The functions
ve, v", and v,,, are defined for all m, via the above recurrence equations.

The natural way of solving (2.28) is via backward iteration: From the known func-

tion v, and using (2.27)—(2.29), compute v,_;, then from v,_; compute v,_o, and so on,
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down to v,. Here, unfortunately, the functions v, for m < n — 2, cannot be obtained in
closed form (we will give a closed-form expression for v, in a moment), s they must
be approximated in some way. We propose an approximation method in Section 5. In the
next section, we establish some properties of the option value and of its optimal strategy of

exercise, which are interesting per se and are also useful for analyzing the approximation

technique.

2.4 Characterizing the Value Function and the Exercise
Strategy

2.4.1 The Value Function v,_;

Recall that the value function v, at the horizon ¢, = T has the simple form vn(s,3) =
(3 — K)*. We now derive a closed-form expression for the value function at time t,—1, the
last observation date before the horizon. We assume that 1 < m* < n (otherwise one has

v,_1 = v"_, and the argument simplifies). From (2.28), we have

03] pBin [ <(n —1)5+S(ta) K)+

n

= 25, 1.5 |8t -B)'].

where K = nK — (n — 1)3 and E,_; 45 denotes the conditional expectation above.
We first consider the case where K < 0, i.e., § > Kn/(n — 1). The holding value
can then be derived from (2.26) as the linear function

n—1

vh_1(5,3) =0"(s,3) = 5 - pK,

S|l

_— S
n n
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and the exercise value equals 5 — K > 0. One can easily identify the optimal decision
(exercise or not) for any given state (s,3) by comparing this exercise value with the holding

value o', This yields an explicit expression for the value function. Consider the line

defined in the (s,3) plane by 5 — K = v"(s,5), that is,
s—(n—-(n—1)p)5+nK(1—-p)=0. (2.30)

The optimal strategy here is: Exercise the option if and only if (s,3) is above the line (2.30).
This line passes through the point (X, K)n/(n—1) and has a slope of 1/(n—(n-1)p) < 1,
so it is optimal to exercise for certain pairs (s,5) with s > 5, a possibility which was
neglected by Grant, Vora, and Weeks (1997). A partial intuition behind this optimal strategy
is that for sufficiently large 3 and for s < S, the average price will most likely decrease in
the future (it is pressured down by the current value), so it is best to exercise right away.

We now consider the case K > 0, i.e., 5 < Kn/(n — 1). In this case, the holding
value is equivalent to the value of an European call option under the GBM assumption,
with strike price K, initial price s for the primitive asset, maturity horizon T — t,_; = h,
volatility o, and risk-free rate 7. This value is given by the well-known Black-Scholes
formula:

v®5(s,3) =

(é(dl)s — pK®(d, - 0'\/:’;)) ,

SN

where
e In(s/K) + (r +o*/2)h
1 0'\/}-1,

and ® denotes the standard normal distribution function. If 5 < K, one must clearly hold

the option because the exercise value is 0. For 5 > K, the optimal decision is obtained by

comparing v35(s, 3) with 5 — K|, similar to what we did for the case where K < 0. Wenow
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have a closed-form expression for v,_i:

o _ [ max (3~ K,v"(s,3)) if3$2>Kn/(n-1)
Un-1(8,5) = { max (3 — K,v%(s,3)) ifs<Kn/(n—-1)"

We could (in principle) compute an expression for v,_» by placing our expression
for v,_; in the DP equations (2.27) and (2.29), although this becomes quite complicated.
The functions v, and v,_; are continuous and non-decreasing with respect to both s and
5. Finally, the optimal exercise region at t,_; is the epigraph of some function ¢,_;,
i.e., the region where 3 > ¢, _,(s), where ¢,,_,(s) is defined as the value of 5 such that
vh_ (s,5) =35 — K. In the next subsection, we show that these general properties hold as

well at time t,,, form < n.

2.4.2  Properties of the Value Function and of the Exercise Frontier

We now prove certain monotonicity and convexity properties of the value function at each
step, and use these properties to show that the optimal strategy of exercise at each step is
characterized by a function ¢, whose epigraph partitions the state space in two pieces: At
time t,,, for m* < m < n, it is optimal to exercise the option if 5 > ¢,,, (s), and hold it
if 3 < ¢,, (s). We derive these properties when the asset moves as a GBM, but the proofs
work as well if the ratio S (tm+1) /S (tm) has a different distribution than the lognormal,

provided that it is independent of F (¢,,).

Proposition 1 For m < n, the holding value v’ (s,3) is a continuous, strictly positive,
strictly increasing, and convex function of both s > 0 and’s > 0. For m < n, the value

function vy, (s,3) also has the same properties except that it is only non-decreasing in 3.
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Proof. The proof proceeds by backward induction on m. At each step, we define the
auxiliary random variable 741 = S (tm+1) /S (tm), Which has the lognormal distribution
with parameters ph and ov/h, independently of F (t.,), as explained in (2.25). A key
step in our proof will be to write the holding value v% (s,5) as a convex combination of a
continuous family of well-known functions indexed by 74.1.

For m = n — 1, the holding value is

vh_1(8,3) = pEaries [Un (§n)]
- o [T (BB k) s e

n

where f is the density of 7,. For s > 0 and 5 > 0, this conditional expectation does exist
since v, (Sn) = (S»— K )+ is dominated by a polynomial of ,,, a lognormal random
variable with finite moments.

The integrand is continuous and bounded by an integrable function of 7 over any
bounded interval for s and 5. Therefore, the holding value v*_, (s,3) is also continuous
by Lebesgue’s dominated convergence theorem (Billingsley 1986). The integral is strictly
positive because, for instance, the lognormal distribution always gives a strictly positive
measure to the event {(n — 1)5 + s7,, — nK > n}, on which the integrand is greater than

1.
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Fors > 0,5 >0,and § > 0, one has

v,':_l (s,5+6) - v,}:_l (s,3)

_ p/;w [((n—l)(§+6)+ST—K)+—((n_1)§+87—}{>+] f ) dr

n n
+oo n—1GE+8+sr (n—-1)5+s7
- [ETTILECSELIEL AR
(nK=(n—1)3)/s n n
> =150

n
The same argument can be used to prove that vh_ (s,3) is strictly increasing in s. The
convexity of v*_, (s,5) follows from the fact that this function is a positively weighted
average (a convex combination), of the values of [((n — 1) 3 + s7) /n — K], over all pos-
itive values of 7, which are (piecewise linear) convex functions of s and 5 for each 7. It
is also straightforward to verify directly the definition of convexity for v*_, (s,3) (e.g.

Rockafellar 1970).

Because the holding value is continuous and strictly positive, the value function
Unoi (5.3) = max (5 — K)*.vh_, (5.9))

is continuous and strictly positive. It is also convex, non-decreasing in s, and strictly in-
creasing in 5, because it is the maximum of two functions that satisfy these properties.
Notice that v,,_, is also dominated by a polynomial of a lognormal random variable.

We now assume that the result holds for m + 1, where m < n — 2, and show that this

implies that it holds for m. The holding value at ¢, is

ms + STm ~
vt (5,5) = pEn-1s3 [vm+1 (s7’m+1,——s—rﬁ%i-il->] (2.31)

+oo m3 + ST
- oo (57, 2555 £ (7 dr.
o[ ‘)“(w m+1>f()r
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A similar argument, used for m = n — 1, ensures the existence of the above integral. The
function v” (s,3) is continuous and strictly positive because the integrand is continuous,
strictly positive, and bounded by an integrable function of T over every bounded interval for
s and 3. The other properties can be proved via similar arguments as forthecasem =n—1.

The proof for vy is also similar as for m > 0. We omit the details. W

Lemma2 Fors> 0and3S, >3, > 0, one has

v (5,52) = tm (8:51) £ ;%p(gz -5) form<n (2.32)

and

Um (S, -) = Um (3,31) S (52 - §1) form S n. (2'33)

dl

Proof. The proof proceeds again by backward induction on . We will use the property
that b* —a* < b—a whena < b. Form = n, one has v, (s,52) = va (5,51) = (52 = K)" -
(51— K )* < 5, — 3 so0 (2.33) holds for m = n. We assume now that (2.33) holds for
m + 1, where m < n, and show that this implies that (2.32) and (2.33) hold for m. From

(2.31), one has

/""" o mSe + ST ms, + ST F(R)d
= Um [ — VUm ST, T)ar
P A +1 S—— +1 mal

0 (mSo + ST M3 + ST
< - d
<o [T [ErE - e
m
< p(32-31)
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IA

IA

This completes the proof. W

Sm

Proposition 3 Form® < m < n, there exists a continuous, strictly increasing, and convex

function ¢, : (0,+00) — (K, 4+00) such that

>vE (3) fors < o,(s)

(
={ =05 (3) fors=n,(s) (2.34)

<vE (3) fors> o, (s).

Proof, Lets > 0and m* < m < n — 1. We know from Proposition 1 and Lemma 2 that

vk (s,3) is strictly positive and strictly increasing in 5, with a growth rate always less than

pm/ (m + 1) < 1. On the other hand, ;, (3) = (3 - K)" is 0 for 5 < K and increases at

rate 1 fors > K. Therefore, there is a unique value of 3 > K, denoted ¢,,, (s), such that

(2.34) is satisfied. This proves the existence of the function ¢, (s), for all s > 0.

To show that ¢, (s) is strictly increasing in s, let s > s; > 0. If we suppose that

@, (s1) > ©,, (s2), we obtain the contradiction

0 < Ur’:; (32’ Pm (s'-’-)) - ‘U:" (317 Pm (32))

= v} (52,0m (52)) = Vi (51,0 (51)) + v (51, 0 (51)) — o (51,01 (52))

= Pm (32) - K- [(pm (31) - K] + vri:l (Slv%n (sl)) - Urf:z (slt‘rom (32))

= 0}, (51,@m (51)) = U (52,0 (52)) = [ (81) — @ (2)] S0,
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where the first inequality is by Proposition 1 and the last inequality by (2.32) in Lemma 2.
Therefore, @,, (51) < @, (S2), 1.€., @, (8) is strictly increasing in s.

Now, consider two states (s1, ;) and (s2, S2) where it is optimal to exercise the option
at time t,,, i.e., for which3; > ¢, (s1) and 52 > ¢, (s2), and let (s,52) = A(s1,51) +

(1 — X) (s2,3a), for 0 < A < 1. By Proposition 1, v?, is convex and

b (sx,52) < M (s1,51) + (1= A) v (52,52)
< AGE-K)+(1-X) (52— K)
= 5-K
= v, (9).

Therefore, in state (sy,3)), it is optimal to exercise the option. We have just proved that
for any two points lying above the function ¢,,, the straight line joining these two points
is also above the function ¢_,. This implies that ¢,,, is convex. The convexity then implies
the continuity. W

For m* < m < n, we define the optimal exercise frontier at time t,, as the graph of
©..» i.€., the locus of points (s,3) such that v% (s,5) = v, (5). It is optimal to exercise the

Amerasian call option at time t,,, if § > ¢, (s), and hold it at least until £,,.1 if § < o, ().

2.5 Numerical Solution of the DP Equation

The general idea is to partition the positive quadrant of the plan (s,35) by a rectangular
grid and to approximate the value function at each observation date by a function which

is polynomial on each rectangle of the grid, i.e., piecewise polynomial. However, instead
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of fitting the approximation to vy, directly, we redefine the value function such that the
state variables at time t,, become the stock price at time ¢,, and the average of prices up
to time tm—1, denoted by (s,5'). This change of variable simplifies the integration when
the piecewise-polynomial approximation is incorporated into (2.28), which we compute
explicitly. The polynomial functions we tried are linear in s, and linear, quadratic, or cubic
in'3 (Conte and de Boor 1980). Other types of approximations may be used in this context
(see, e.g., de Boor 1978), but we found that the technique proposed here gives a good

compromise in terms of the amount of work required to achieve a given precision.

2.5.1 A Piecewise Approximation

At time £,,, let

- [ (ms=s)/(m~-1) ifm>1
=10 ifm<1’

be the value of Sp_y if S (tm) = s and S, = 5, and define

W (8,5) = vm (8,5),

where 5 = (m—1)5 +s)/mifm > 1and 3 = 0if m = 0. The function wy, has the
same properties as stated for v,, in Proposition 1, except that w, does not depend on 3.

Equation (2.27) can be written in terms of wy, as

we, (s,5) =15, (5,5) = - K)*, for0<m<n, (2.35)
equation (2.28) as
w? (5,3) = v2(s,3) (2.36)

PEm 55 [Wmi1 (5Tm41,3)], for0<m<n,
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and equation (2.29) as
wh (s,5) ifo<m<m
Wm (5,5) = ¢ max (wé(s,5),wk(s,7)) fm <m<n. (2.37)
wg,(s,3) ifm=n.

The idea now is to approximate each value function wr, by a continuous piecewise polyno-
mial function of (s, '), of degree 1 (linear) in s and degree d in 5. We have experimented
withd = 1,2, and 3, i.e., (piecewise) bilinear, linear-quadratic, and linear-cubic functions.

We first define a grid by selecting 0 = ap < a1 < ... < @5 < @pyy =00 2nd 0 =
bo < by < ...< by < by =oo. Thegrid points G = {(a;,b;) : 0 < i < pand0 <j<gq}
is a partition of the positive quadrant [0, 00) x [0, c0) into the (p+1) (g + 1) rectangles
Ri;={(s7):a:<s<aiandb; <¥ <bj}, fori=0,...,pandj=0.....¢. In
our implementation, we took a; = b; and a,, = b,. Under these conditions, if (s,3') € G,
then s in (2.36) is always in the interval (b, by), for m > 0, which means that we need an
approximation of w4 only over the box B = [0, 00) % [by,by).

Suppose for now that g — 1 is a multiple of d. We regroup the rectangles covering the

box B as follows. For j € JO={1,d+1,2d+1,...,9— d}, let

; Ro'j u...U RO,j-i—d—l U Rl‘j U... R1'J‘+d_1 fori=1
Rz(',j) Ri;U...UR;jia forl<i<p-1.
Ry 1jU...URp1jeas1 URp U  Rpjsay fori=p-—1

We consider the approximating functions that are linear in s and polynomial of degree d in
5 over each of the rectangles RS‘;), and continuous across these rectangles.

To construct these piecewise polynomials, at each step m, form =n —2,... .2, we
first compute an approximation of wy, at each point of G, denoted by Wnm. This is done

via the DP equations (2.35)-(2.37), using an available approximation Wn,41 of the value

function wn+;. Then we interpolate @,,, defined at each point of G, with a piecewise
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function linear in s and polynomial of degree d in ¥, for (s,3) € B. More specifically, for
m=n—2,...,2, over the line segment defined by s = a; and 3’ € [b;, ;4] for j € J,

we approximate w,, by the Newton interpolation polynomial

W (a:,5) = B3 (3) (2.38)
= oo+ oy (5§ —b)+ - +ai, @ =b)...(F = bjsa-1).

The coefficients o, are obtained by interpolating the known values of wy, at the

points (a;,b;) ;.- -, (@i, bj+a), i.€., by solving the system of linear equations defined by:

'lZm ((1.,', bJ) = Rr:; (3’) , for 3= bj, cees bj+d. (2.39)

This is done fori = 1,...,p, and j € J9. Then, over each rectangle Rg-) fori < p, the

approximation @y, (s,5') of wy, (s,5') is defined by the linear interpolation

~ — Qi1 — S -l S§—a; _—
Wy \S,8 ) = ——‘Rm S )+ _—Pim \S ). 2.40
(63) = 22 P (s) + 2P ) (2.40)

In the case where g — 1 is not a multiple of d, if 5~ is the largest j < ¢ such that d
divides j — 1, we use a polynomial approximation of degree ¢ — j* (< d) in ¥’ over the

rectangles Rff?., redefined by Rf?. =R;;»U---URiq1-

2.5.2  Explicit Integration for Function Evaluation

Now, we examine how to compute @y, (a;,b;) given an available approximation @Wm+, of
W1, Observe that w” (s,3') in (2.36) is expressed as an expectation with respect to
a single random variable, 7,41, and we have chosen our change of variable (s,35) —

(s, ') precisely to obtain this property. More specifically, the holding value w?, (s,5) is
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approximated by
wy};lq (sr-gl) = pEm,s,§ [ﬁ;m+l (STm+l7§)] (2'41)
p—1
Qit1 — STm+l el L 5Tme1 — m+1
= b [ (B s T ) 1),
* ; Gy —a; )+ Qiyy — O 1 (%)

where € is the element of J@ such that 5 € [be, be.1) and I; is the indicator of the event
{(s7m+1,3) € Rig}.
The function @ is to be evaluated over the points (ax, b;) of the grid G. For s = ay,

§ =b,and s = ¢; = ((m — 1) b + ai) /m, we have by rearranging the terms in (2.41)

(@ 1) PZ Dy i PTe7 (exy) (2.42)

where € is the element of J such that ¢x; € [be, ber1),

B [umzm ] fori =1,
2—ay
Di;={ E|wa=wry, +°*’_;“- S| forl<i<p,
Blauremy, fori = p,
p—Gp—1

7 is a lognormal random variable with parameters ph and ovh, and I; is the indicator
of the event {a;7 < ap} ifi = 1, {a,-) S a7} if i = p— 1, and {a; < ax7 < a1} if

1 <i < p— 1. Defining Ay.; = E [[;] and By; = a;F [7];], we can rewrite

a2Ak1=Bi 1 s _
T , . fori =1,

_ Bi41 Ak i~ Dk,i k,a=1"Ci—1k i1 ;
D= o 4+ e forl<i<p,
B —QGp—1~ .
k.p~1 p=1-1k p=l —_
AR fori =p.

Knowing that E (I (ax7 < a;)] = @ (zx:) and B [7] (ax7 < ;)] = ® (zk’,- - a\/E) et
where  is the standard normal distribution and zx ; = [In (a;/ax) — ph]/ (a\/f_z) , We eas-

ily find that
0] (.’Ek‘g) fori=1
Ai=q P(zris1) — P (zrs) forl<i<p-1
1—-®(zpp-1) fori=p—1
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and
a.® (xk; —ovh)e™ fori=1
Bri=1{ ax|® (wk,i+1 - Ux/f_t) -9 (:rk',- - U\/E)} et forl<i<p—1
Qg 1-‘1’(2‘::,;;-1—(7\/5)] e"h fori=p~-1.

The constants Ay, By, and Dy ; are precomputed before doing the first iteration,
and the Dy ; are then used to evaluate (2.42) at each step m.

This yields the approximate value function
W (g, br) = max (@F, (ax, br) , (cxt — K)T). (2.43)

These values at the grid points are then interpolated to obtain the function @,, as explained
earlier. Integration and interpolation stages are repeated successively until m = 0, where
an approximation of wp and of the option value is finally obtained. An important advantage
of choosing the same grid G for all m is that the coefficients Dy ; can be precomputed once
for all. Evaluating @"”, at the grid points via (2.42) is then very fast.

It would also be possible to use an adaptive grid, where the grid points change with
the observation dates. This could be motivated by the fact that the probability distribution
of the state vector changes with time. In that case, the coefficients Dy ; would depend on
the step m and would have to be recomputed at each observation date.

As it turns out, this procedure evaluates, with no extra cost, the option value and the
optimal decision at all observation dates and in all states. This could be used for instance to
estimate the sensitivity of the option value with respect to the initial price. Eurasian options

can be evaluated via this procedure as well, because they are a special case.
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Finally, we explain how the DP procedure works:

Compute @,_1 (ax, b) for all the grid points (ax, b) (see Section 2.4.1);
Compute the coefficients of @, by (2.39)-(2.40);
FORm =n— 1,0 by step -1
FORk=1,p
FOR!=1,q
Compute @ (ax, b;) for all the grid points (ax, b)) by (2.42);
Compute @, (ax, bi) for all the grid points (ax., b)) by (2.43);
NEXT!
NEXT &
Compute the coefficients of W, by (2.39)-(2.40);

NEXT m

2.5.3 Computational Speed-up and Complexity Analysis

Whenever v, (ax, b)) = (ces — K)© > @F, (ax. b) at some point (ak, by) for some m >
m*, it is optimal to exercise the option at that point and it is optimal to exercise for all
j > I (see Proposition 3). There is no need to compute @t (ax. b;) for j > I, and this saves
computation effort. We also exploit the fact that whenever wh (ax, br) is small enough to
be negligible (say less than e; = 107°), there is no need to compute " (ax, b;) forj <1,
since w’ is a strictly increasing function of 3’ (see Proposition 1); it can be replaced by 0.

The time complexity of this algorithm is O (p*) to precompute the coefficients Dy,

plus O (npq) to compute the sum in (2.42) for each of the pg grid points at each of the n
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steps, plus O (npg) to solve the systems of linear equations giving the coefficients in (2.39).
The overall time complexity is thus O (np?q).

For large p, most of the work is for computing the terms of (2.42) and time can be
saved by observing that several of these terms are negligible. When time increment A is
small, the largest terms of @™ (a,b;) in (2.42) are typically for ¢ near k; they become
negligible when i is far from k. For larger h, the most important terms are for ¢ somewhat
larger than k. In our implementation, we initially choose a small constant €2 (we took
€2 = €,/p). When computing (2.42), we first select a starting point j, we add up the terms
fori = j+1,j+2,...and stop when whenever a term is less than e», then we add the terms
§—1,j—2,...and stop whenever a term is less than ¢». To select 7, if the term for ¢ = &
exceeds 16es, we take j = k, otherwise wetry j = [(k+p) /2] and j = |(3k +p) /4.
In the (rare) cases where the term for j is still less than 16e», we sum all the terms for

i=k+1,...,p.

2.5.4 Convergence

Proving the convergence of the DP algorithm as the grid size becomes finer and finer is
not straightforward because the state space is unbounded and the value function increases
unboundedly when s and 3 goes to infinity. However, if ¢ = min (ap,by) — o0, then by

Lemma 3 of Conze and Viswanathan (1991) and standard large deviations approximation
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for the normal distribution, we have

Q[maxS )/S>¢ }

o<t<T

=0 [maxln(S(t)/S ]

0<

o) (12 (589
- o(ﬁl—cexp< ;n +O(lnc)>)

Thus, the probability that the trajectory of { (S (t), 5 (t)),0 <t < T’} ever exits the box

B = (0,a,] x (0,b,] decreases to O at a rate faster than O (1/P (c)) for any polynomial
P. On the other hand, one can show that the error on the value function can only increase
linearly when s or 3 goes to infinity. As a consequence, the effect of the approximation
error outside the box B becomes negligible if the box is large enough. This is the basic idea
of the convergence proof detailed in the next proposition. Besides proving convergence, the
proposition says that with the bilinear interpolation (d = 1), if we neglect the effect of the
approximation error outside the box B, our DP procedure gives an upper bound on the

option value.

Proposition 4 Define §, = sup,¢;<, @i — @i-1 and 8, = Sup,¢;<, b; — bj—1 and assume
that each approximation ®,, is non decreasing. If p — 00, ¢ — 00, @, — 00, by — 0,

b, — 0, and b, — 0, then for any constant ¢ > 0,

sup sup | Wn(s,3)— wm(s,3)]|—0.
0Sm<n (337)€(0,¢)
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Moreover., if d = 1, W (5,5) 2 Wi (s,3) for all m and all (s,5') € (0, c]’, when a, and

by are large enough.

Proof. InLemma 2, we showed that the derivative of vy, (s,3) and v’ (s,3) with respect
to 5 never exceeds 1. We now show that their derivatives at step m with respect to s is also

bounded by the constant Cp,, defined recursively by C, = 0 and

1
Cm = (Cm-{»l + W) pE [Tm+1]

By backward induction on m, it can be shown that for s; < s,

’ VUpn (52,5) = ¥ (51,3) < (52 — 1) Cn. (2.44)

This is clearly true for m = n, because v, (s,5) does not depend on s. If we assume that

(2.44) holds for m + 1, then, using Lemma 2,

< p /0 [(30 —~ §1) TCrmay + (s;n":‘l) ’] F(r)dr
= p(s2—s1) (Cm-H + "L_{_I/ E[’ mﬂ-l]

= (52— 51)Cim.

Note that the slope of v, with respect to s never exceeds that of vh . This implies (2.44)

and completes the induction. Moreover, the derivative of w,, does not exceed that of v,

and similarly for w?, so Lemma 2 and (2.44) hold for these functions as well.
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Using these bounds on the slope, and the fact that wy, is increasing with respect to

each of its arguments, we obtain that

sup Wm (ak+17 bl+1) = Wm (ak’bl) < Cméa + 6(,. (245)
1<k<p. 1<I<q
Define now ¢, = 0 and €,, = 2p€ms; + Cmba + 6, form =n —1,...,0. Also,

define an increasing of square boxes B, = (0, c,,,]2 as follows. Choose ¢y = c arbitrarily,

and form =0,..., n — 1, choose Cm41 > Cm large enough so that for all (s,3) € B,

Em,s,§ [l 13m+1 (STm+17§) — Wi (STm+1=§) I ((57m+1,§) é Bm+l)] (2.46)

S €m+1y

where I is the indicator function. Such a ¢, €Xists because both W) and wWmy1 are
bounded by a linear function and the probability of exiting the box B+ decreases faster
than the inverse of any (positive) linear function of ¢m+1 When ¢y — 00, thanks to .

We now show, by backward induction on m, that | @p, — wy, | is bounded by e,, over
the box B,,. This is clearly true for m = n, because W, = w,. Now, if we assume that

| Wrnt1 = Wins1 | < €ms1 00 Bry1, then we have, for (s,5) € B,

| W (5,5) — wm (5,5) |

< 0 [ 1Bna(57.3) = (57.9) | F ()

= pEmss || Bmsr (5Tms1,3) = W1 (5Tms1:5) I ((8Tms1.5) € Brms1)] +
PEmss3 “ Wrns1 (5Tm+1,5) = W41 (8Tm+1,8) 1 ((sTm+1,3) € Bm+1)]

< 2p€my1.
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Then, because @, is 2 non-decreasing interpolation of ,,, in the box B, and using (2.45),

we have
] ﬁ}m (31-5_,) = Wn (svgl) IS 2p€m+1 + Cméa + 5:’) = €m-

Under the assumptions of the proposition, €., — 0 and this proves the first part.
In the case of the piecewise-linear interpolation (d = 1), it is also easily seen that the
interpolation always overestimates Wm, because w,, is increasing and convex. That is, by

backward induction on m, one can show that Wy, > Wy > Wr. B

2.5.5 Grid Choice, Refinement, and Convergence Acceleration

In our experiments, we took p = g, a; = b; forall 4, a; = Sexp (utn_1 — 50v/Tao1)s
apy = Sexp(pta-1+50yta 1), and ¢ = Sexp (utn-1 + 60/tn-1), and, for ¢ =
2,....p—2,a; is the quantile of order (i — 1) / (p — 2) of the lognormal distribution with
parameters ut,_; and o/Z,_;. Others distributions may be used to generate the points b;,
e.g, the lognormal approximation of the average prices of the stock (Levy 1992).

To assess the discretization error, we applied the algorithm repeatedly for different
grid sizes, doubling the value of p (= ¢) each time, until there was no significant change
in the option value estimate. We also made a sensitivity analysis with respect to €,: For
€; < 107° (we took 107 and 1078), the results for the option value were the same as those
reported here. Also, replacing the numbers 5 and 6 by larger numbers in the definitions of
a,, a,-1, and a, did not change the results.

The sequence of DP approximations of the option value for successive values of p,

where each value of p is twice the previous one, converges to the true option value (with
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negligeable error) when p — +cc. The straightforward way of estimating the option value
is then to take the approximation obtained with the finest grid (largest p). But one can do
better by using extrapolation methods designed for accelerating the convergence sequences,
and which transform a given sequence into another sequence that converges more rapidly

under very broad conditions. One of these methods is the e-algorithm introduced by Wynn

in 1956 (see Brézinski 1978), and which works as follows. Let sgl) yeees sl(l) be the original
sequence of length [ + 1, where [ + 1 is 0dd, and let sio) =0, forallk.Forj=2,...,1+1

andk=0,...,0l—j+1,define

G) _ -2 G-1) i-1)] 7}
Sk’ = Skn +[Sk+1 —sg )] .

The (I + 1)th and last sequence has a single term, sg *1)_ which is the final approximation of
the convergence point of the original sequence. This algorithm performs surprisingly well
in various contexts. In our context, we take it as a heuristic. In this paper, we took [ +1 = 3.
The original sequence is formed by taking the DP approximation of the successive grid
sizes (p/4)2, (p/2)2, and p°. The approximation sga) thus obtained will be compared to the
DP approximation obtained with the p* grid alone. The CPU time required for computing
sgs) is approximately the sum of CPU times required by DP for the three grids, and is only

marginally more than the CPU time for the p® grid alone.

2.6 Numerical Experiments and Examples

We experimented the linear-linear, linear-quadratic, and the linear-cubic interpolations pre-

sented in Section 2.5.1. The linear-quadratic interpolation appears to be the most efficient.
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This is certainly related to the shape of the value curve: an increasing and convex surface.

We report here on the linear-linear (d = 1) and the linear-quadratic (d = 2) interpolations.

2.6.1 Examplel

For our first example, we take the parameter values S = 100, K = 100, T = 1/4 (years),
o = 0.15 (per year), = 0.05 (per year), h = 1/52 (years), m* = 1, and n = 13. We thus
have a 13-week contract, with an exercise opportunity at each observation epoch, which is
every week. We also consider 3 variants of this example: We first increase the volatility o
from 0.15 to 0.25, we then increase T from 1/4 to 1/2 (26 weeks) while keeping n = 13,
and finally we increase K from 100 to 105, which yields an out-of-the-money option. In
each case, we evaluate the Eurasian and Amerasian options with 5 grid sizes. In Tables
1 and 2, for each parameter set and each gnd size, we give the DP approximation of the
option value obtained with d = 1 (above) and d = 2 (below). The CPU times reported
here are for a 750Mhz PC running the Linux operating system. They are for the first set of
parameters, and are approximately the same for the other sets. The programs are written in
FORTRAN and were compiled with the GNU g77 compiler.

To assess the precision of the DP procedure, we price the European versions of the
contracts in Table 1. The values computed by DP are compared with those computed by
efficient Monte Carlo simulation as suggested by Kemna and Vorst (1990). The last column

of Table 1 gives their 95% confidence intervals obtained with 10° replications.
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Table 1: Prices of Eurasian call options

D

(K.,T,o) 150 300 600 1200 2400 Veu(S1M)

(100,0.25,0.15) | 2.16581 | 2.16510 | 2.16493 | 2.16489 | 2.16487

2.16547 | 2.16502 | 2.16491 | 2.16488 | 2.16487 | [2.16483, 2.16492]

(100,0.25,0.25) | 3.36556 | 5.36439 | 3.36411 | 3.36402 | 3.36402

3.36501 | 3.36426 | 3.36408 | 3.36403 | 3.36402 | [3.36393, 3.36416]

(100,0.50,0.25) | 4.92929 | 4.92765 | 4.92726 | 4.92716 | 4.92713

4.92851 | 4.92746 | 4.92721 | 4.92715 | 4.92713 | [4.92694, 4.92743]

(105,0.50,0.25) | 2.80811 | 2.80647 | 2.80607 | 2.80597 | 2.80595

2.80734 | 2.80628 | 2.80602 | 2.80596 | 2.80594 | [2.80581, 2.80623]

CPU (h:mn:s) | 0:00:01 | 0:00:10 | 0:01:16 | 0:09:47 | 1:18:25

0:00:01 | 0:00:10 | 0:01:15 | 0:09:50 | 1:23:13 00:00:13

The CPU times are approximately the same with d = 1 and 2. With d = 2, there
are more coefficients to determine in each rectangle than with d = 1, but there is only
half the number of boxes for the same grid. The DP approximation converges rapidly as
the grid size is refined. With the coarse grid (p = 150), the error is already less than one
quarter of a cent, and the result is obtained in half of a second. The values obtained with
the e-algorithm (not shown in the table) converge even faster: With p = 600, these values
never differ by more than 0.00001 from the values given in the table with p = 2400, which
can be considered as practically exact.

When we compare the value of the Amerasian option with its Eurasian counterpart,
we see that the privilege of early exercise increases the value of the option, as expected.
The contract becomes more expensive when the volatility or the maturity date are increased
because this gives more chance of achieving a large average. It becomes cheaper when the

strike price is increased, i.e., in the case of an out-of-the-money option.
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Table 2: Prices of Amerasian call options

D
(K,T,o) 150 300 600 1200 2400

(100,0.25,0.15) | 2.32209 | 2.32114 | 2.32091 | 2.32085 2.32084
2.32156 | 2.32101 | 2.32088 | 2.32085 | 2.32084

(100, 0.25,0.25) | 3.65221 [ 3.65058 | 3.65019 | 3.65009 3.65006
3.65129 | 3.65037 | 3.65013 | 3.65008 | 3.65006

(100,0.50,0.25) | 5.53506 | 5.33273 | 5.33217 | 5.33203 | 5.33200
5.33375 | 5.33242 | 5.33209 | 5.33201 | 5.33199

(105, 0.50,0.25) | 2.96851 | 2.96633 | 2.96580 | 2.96567 | 2.96564
2.96732 | 2.966035 | 2.96573 | 2.96565 | 2.96563

CPU (humnis) | 0:00:01 | 0:00:06 | 00:00:48 | 0:06:04 | 0:48:37
0:00:01 | 0:00:06 | 00:00:48 | 0:06:16 | 0:51:15

To quantify the impact of increasing the number of early exercise opportunities (and
observation dates), we performed additional experiments with the same parameter sets as
in Table 2, but with different values of n ranging from 1 to 52. For each set of parameters,
the top and bottom lines of Table 3 give the value of the Amerasian and the Eurasian call
option computed by DP with p = 600 and a linear-quadratic interpolation.

We see that increasing n decreases the option value. This may look strange in the
case of Amerasian call options since they include much more exercise opportunities. The
explanation is that increasing the number of observation dates increases the stability of the
average prices, and this offsets the advantage of having more exercise opportunities (for
the Amerasian contract). Note that n = 1 corresponds to a standard European call. For
n = 2, it is optimal to exercise at time ¢; only if S(t;) = 5 > 2K (see Section 2.4), which
is an extremely rare event with our choice of parameters. This is why the Amerasian and

Eurasian options have practically the same value whenn = 2.
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Table 3: Prices of Amerasian and Eurasian call options

P
(&,T,0) 1 2 4 [ 13 | 26 | 52
(100,0.25,0.15) | 3.635 | 2.842 | 2.512 | 2.321 | 2.289 | 2.276
3.635 | 2.842 | 2.443 | 2.165 | 2.103 | 2.072

(100,0.25,0.95) | 5.598 | 4.395 | 3.920 | 3.650 | 3.608 | 3.592
5.598 | 4.395 | 3.788 | 3.364 | 3.270 | 3.222

(100,0.50,0.25) | 8.260 | 6.463 | 5.745 | 5.332 | 5.266 | 5.239
§260 | 6.462 | 5.558 | 4.927 | 4.787 | 4.716

(105,0.50,0.95) | 5.088 | 4.245 | 3.475 | 2.966 | 2.858 | 2.804
5.988 | 4.245 | 3.389 | 2.806 | 2.678 | 2.614

2.6.2 Example 2

Our second example is the one considered by Grant, Vora, and Weeks (1 997), referred here
by GVW. The time increment is fixed at A = 1/365 (one day), the first observation date is
att; = 91/365 (91 days), and the first exercise opportunity is at tm- = 105/365 (105 days).
The other parameters are: S = 100, K = 100, T = 120/365, o = 0.20, and r = 0.09.
Table 4 gives the DP approximation for the Amerasian option with different grid sizes with
d = 2 (the linear-quadratic approximation). In the second line of each entry (the numbers
in parentheses), we give the extrapolation value obtained with the e-algorithm with [ = 3,
based on the DP approximations with p/4, p/2, and p. For example, the ¢-algorithm with
p = 300 is based on the DP approximations obtained with p = 75 (not shown here), 150,
and 300. The last column, labeled GVW, gives the 95% confidence intervals reported by

GVW for the values of some Amerasian call options.
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Table 4: Prices of Amerasian call options for the GVW example

p
(K,0) 150 300 600 1200 2400 GVW

(100,0.2) | 5.80859 | 5.80274 | 5.80059 | 5.79976 | 5.79943 | 5.80 £ 0.02
(5.799) | (5.799) | (5.799) | (5.799)
(105,0.2) | 3.35848 | 3.35284 | 3.35075 | 3.34994 | 3.34962 | 3.35 + 0.02
(3.349) | (3.350) | (3.349) | (3.349)
(100,0.3) | 7.97369 | 7.96367 | 7.95988 | 7.95838 | 7.95776 | 7.92 £ 0.02
(7.957) | (7.958) | (7.957) | (1.957)
(105,0.3) | 5.57682 [ 5.56705 | 5.56329 | 5.56185 | 5.56124 | 5.53 £ 0.02
(3.560) | (5.361) | (5.561) | (5.561)
CPU (h:mn:s) | 0:00:01 | 0:00:08 | 0:01:09 | 0:08:53 | 1:08:40

Our values are simiiar to those of GVW, except for the two last cases. This could be
explained by the fact that GVW systematically underestimate the options’ values. Indeed,
their exercise strategy is suboptimal and, consequently, their price estimator has a negative
bias. Precisely, this negative bias is introduced when they assume that the exercise frontier
at each stage is determined by two straight lines. Notice that the e-algorithm gives steady

predictions as the grid becomes finer.

2.6.3 Example3

We tried our method with the example given in Tables 3 and 4 of Zvan, Forsyth, and Vetzal
(1999), referred here as ZFV. The parameters of the Amerasian call options are: n = 230,
S=K=100,T =025 r = 0.1, and 0 = 0.2 and 0.4. Averaging is between the
origin and the maturity of the option. Here, DP is performed with the linear-quadratic
interpolation (d = 2). CPU times for the DP procedure are for o = 0.2; those for o = 0.4

are similar.



In Table 5, we report the values of Eurasian call eptions computed by DP, and com-

pare them with those obtained by ZFV and by efficient Monte Carlo with 10° replications

2.6 Numerical Experiments and Examples

(as in Table 1).
Table 5: Prices of Eurasian call options for the ZFV example
DP FD
c | | CPU o CPU

D 0.2 0.4 hmnis | 0.2 0.4 | h:mn:s
145 [ 2.988 | e-alg | 5278 | e-alg | 0:00:07 | 2.929 | 5.160 | 0:02:42
289 |2.942 | (2.928) | 5.187 | (5.159) | 0:00:51 | 2.929 | 5.161 | 0:11:50
600 |2.932 | (2.929) | 5.167 | (5.161) | 0:07:32
1200 | 2.930 | (2.930) | 5.163 | (5.162) | 0:58:14
2400 | 2.930 | (2.930) | 5.162 | (5.162) | 7:23:37

The prices of the Eurasian call options obtained by DP and by FD converge to the
same values. The CPU times reported here are not comparable: We used a 750 Mhz com-

puter whereas ZFV used a 200 mhz one, and we probably used a different compiler as

well.

Table 6: Prices of Amerasian call options for the ZFV example

DpP FD

c CPU a CPU
D 0.2 0.4 himnis | 0.2 04 | h:mn:s
145 | 3267 | ealg | 5919 e-alg | 0:00:04 | 3.213 | 5.828 | 0:02:48
289 |3.217 | (3.201) | 5.830 | (5.799) | 0:00:30 | 3.2153 | 5.825 | 0:11:34
600 | 3.206 | (3.203) | 5.807 | (5.801) | 0:04:05
1200 | 3.204 | (3.203) | 5.803 | (5.801) | 0:34:24
2400 | 3.203 | (3.203) | 5.802 | (5.801) | 4:21:10

In all cases, the difference between the prices of the Amerasian call options obtained
by DP and by FD are less than 0.1% of the initial price. This makes us confident about

the DP algorithm, though its convergence is more effective in the case of Bermudan Asian

options (see Table 1).
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2.7 Conclusion

Numerical methods are required for pricing American-style options: PDEs, the lattice
based approach, and the DP formulation are various alternatives. In this paper, we showed
how to price an Amerasian call option on a single asset, under the Black and Scholes’ as-
sumptions, via DP coupled with a piecewise-polynomial approximation of the value func-
tion after an appropriate change of variable. We also used the DP formulation and proved
continuity, monotonicity, and convexity properties of the value function and of the optimal
exercise frontier. These properties have been used to improve the speed of the DP proce-
dure. This procedure gives an approximation of the value function at each observation date
for each state. Thus, it may be used to compute the sensitivity coefficients of the option
with no extra cost.

DP shows convergence, consistency, and efficiency. If the exercise opportunities are
limited, the DP procedure is particularly efficient because it does not need a time discretiza-
tion to be implemented.

The computational approach does not rely on the form of the exercise region, and
could be adapted for pricing other types of discretely-sampled American-style options for
which the relevant information process can be modeled as a Markov process. For the case
considered in this paper, the Markov process is {(S(t), S(t)),for 0 < ¢t < T'}.

Here, we have used piecewise polynomials, with the pieces determined by a rectan-
gular grid that remains the same at all steps. Adapting the grid to the shape of the value
function at each step (with the same number of pieces) could provide a better approxima-

tion but would bring additional overhead, so it would not necessarily be an improvement.
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Perhaps a good compromise would be to readjust the grid every § steps (say), for some in-
teger §, and readjust it only in the areas just below the optimal exercise frontier, where the
value function is significantly nonlinear.

The GBM assumption could be replaced by the CEV process (Cox 1996). The co-
efficients Dy in (2.42) can still be computed in closed-form. Other dynamics for the
underlying asset may be assumed, but explicit computation may no longer be feasible.

It may be useful to study, for each case of practical interest, how to exploit the struc-
ture of the problem to characterize the value function and the optimal exercise strategy,
and to improve the efficiency of the numerical method, as we have done here. When the
dimension of the state space is large, e.g., if the payoff depends on several underlying as-
sets, approximating the value function becomes generally much more difficult, (we hit the
“curse of dimensionality”) and pricing the option then remains a challenging problem. In
this case, Monte Carlo or quasi-Monte Carlo simulation may be used to solve the DP equa-
tion, but this may alter the efficiency of the DP procedure. Improvements may be realized

via variance reduction techniques.
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Chapter 3
Pricing Call and Put Options Embedded in
Bonds

3.1 Introduction

A bond is a contract which pays to its holder a known amount, called the face value, at 2
known future date, called the marurity. A bond may also pay periodically to its holder fixed
cash dividends called coupons. Otherwise, it is called a zero-coupon bond. A bond can be
interpreted as a loan with a principal equal to the face value and interest payments equal to
the coupons (if any). The borrower is the issuer of the bond and the lender, i.e., the holder
of the bond, is the investor. For a description of fixed income securities in general and of
bonds in particular, we refer to Fabozzi (1997).

Several bonds contain one or several options coming in various flavors. Firstly, the
issuer of the bond may have the right to purchase back its debt for a known amount, called
the call price, during a specified period within the bond’s life. This is the call option.
Several government bonds contain a call feature [see Bliss and Ronn (1995) for the history
of callable U.S. Treasury bonds from 1917]. Secondly, the investor may have the right to
return the bond to the issuer for a known amount, called the pur price, during a specified
period within the bond’s life. This is the pur option. See for example Brennan and Schwartz
(1977). In this way, a savings bond can be redeemed at any time before its maturity and

a retractable bond can be redeemed only at a specified date before its maturity. Similarly,

71
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the maturity of an extensible bond can be extended to 2 longer period [Ananthanarayanan
and Schwartz (1980) and Longstaff (1990)].

An investor may also have the right to exchange the bond for a given number of an
underlying asset during a specified period within the bond’s life. In general, this asset is the
stock of the bond issuer (a firm in this case). This is called a conversion option [Brennan
and Schwartz (1980)]. Corporate bonds often contain several embedded options, e.g., the
Liquid Yield Option Note (LYON), 2 product developed by Merrill Lynch Capital Markets
in 1985, is a zero-coupon bond that is callable, putable, and convertible.

All the options described above are an integral part of a bond, and cannot be traded
alone as is the case for call and put options on stocks (for example). They are said to be
embedded in the bond. In general, they are of the American-type, so that the bond with
its embedded options can be interpreted as an American-style financial derivative with
(possibly) a protection period against early exercising.

Other options embedded in bonds do exist. We give here some examples from the
Future contract on long-maturity U.S. Treasury bonds traded on the Chicago Board of
Trade (CBOT). This Future contract is an agreement to sell or to buy some U.S. Treasury
bonds with a total face value of $100,000 at a certain date in the future, called the delivery
date, for a certain price, called the delivery price. This contract contains several embedded
options discussed by Boyle (1989) and Cohen (1991) among others. The first, called the
timing option, gives the seller the right to deliver the underlying Treasury bonds at any time
during a specified delivery month. The second, called the quality option, gives the seller

the right to deliver any U.S. Treasury bond with at least 15 years to the earliest call date or
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to maturity at the first delivery date. The third, called the wild card option, comes from the
time difference between the closing hours of the cash and the Future markets. Thus, from
2:00 PM (Chicago time), when the CBOT closes, the seller has until 8:00 PM to decide
whether to deliver or not. Bond markets remain open until 4:00 PM.

There are no analytical formulas for valuing American options, even under very sim-
plified assumptions. Numerical methods, essentially trees and finite-differences (FD), are
usually used for pricing using a backward induction framework. Recall that trees are par-
ticular discrete-time models and FD are numerical solution methods for Partial Differential
Equations (PDE). As an alternative approach, the pricing of Bermudan American financial
derivatives can be formulated as a Markov Decision process, i.e., a stochastic Dynamic Pro-
gramming (DP) problem as pointed out by Barraquand and Martineau (1995). Here, the DP
function, i.e., the value of the bond with its embedded options, is a function of the current
time and of the current interest rate, namely the state variables. The set of all the (possi-
ble) realizations of the state variables defines the state space. This value function verifies a
DP recurrence (known as the DP or the Bellman equation) via the risk-neutral principle of
asset pricing. Indeed, the DP equation relates the holding value of the bond at the current
time as an expectation, under the so-called risk-neutral probability measure, of its future
value discounted at the risk-free interest rate. The key point with DP is to solve efficiently
the DP equation which yields both the bond value and the optimal exercise strategies of its
embedded options. For an overview of stochastic DP, we refer to Bertsekas (1987), and for

risk-neutral evaluation, we refer to Karatzas and Shreve (1998).
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The problem of pricing options embedded in bonds is related to the term structure
of interest rates. In this context, the short term risk-free interest rate is very often used as
a Markov process in arbitrage-free markets, but zero-coupon bonds and forward rates are
also used. Several approaches are suggested in the literature depending on the nature of
the underlying asset(s), the dimension of the state space, and the frequency with which the
state variables are observed. For example, a one-factor model may be used for the interest
rate, a two-factor model may be used for the interest rate and its random volatility, or for
the interest rate and a risky asset (say a stock), and so on. The underlying asset(s) may be
observed discretely or continuously.

For discrete-time models, the discrete interest rate is the most widely used, through
a binomial tree in the spirit of Cox, Ross, and Rubinstein (1979). These include models by
Ho and Lee (1986), Black, Derman, and Toy (1990), and Kalotay, Williams, and Fabozzi
(1993). All these models are calibrated to exactly mimic the initial yield curve.

For continuous-time models, the short-term risk-free interest rate is very often mod-
eled as a diffusion process. As pointed out by Chan et al. (1992), most of the alternative
dynamics for the interest rate are described by the general stochastic differential equation
(SDE)

dry = (a+ fr;)dt + or}dB;,, for0<t<T, (3.47)
where a, 3, o, and -y are real parameters and B;, for 0 < ¢t < T, is a standard Brownian

motion. Table 1 presents various versions of equation (3.47) used in the literature.
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Table 1: Models for the Short-Term Interest Rate
Model o B8 c

. Merton (1973) 0
. Vasicek (1977)
. Brennan-Schwartz (1977) 0 0
. Brennan-Schwartz (1980)
. Marsh-Rosenfeld (1983) 0
. Cox-Ingersoll-Ross (1985) 172

alw| o] —
——] ol O|2

(oY R4}

The model by Merton (1973) is simply a standart Brownian motion with a drift. Va-
sicek (1977) uses a mean-reverting Omstein-Uhlenbeck process. This model gives nice
distributional results and ensures explicit formulas for zero-coupon bonds and for several
European-style interest rate derivatives, but it has the undesirable property of allowing neg-
ative interest rates (though with very low probabilities). Several authors take advantage of
its properties to price various interest rate derivatives (often in closed-form), e.g., Jamshid-
ian (1989) and Rabinovitch (1989). Brennan and Schwartz (1977, 1980) are pioneers on
the modeling of options embedded in bonds. They use the PDE approach and FD algo-
rithms. They let the interest rate move as a geometric Brownian motion (GBM) without
a drift to price the call and the put options (Model 3) and as a mean-reverting propor-
tional process to price the conversion option (Model 4). Model 3 has also been used by
Dothan (1978) to price bonds in closed-form, and Model 4 by Courtadon (1982) to price
several European as well as American options on bonds. Notice that Model 3 is a spe-
cial case of Model 4 and that the latter includes the GBM process of Black and Scholes
(1973). Marsh and Rosenfeld (1983) use the constant elasticity of variance (CEV) process
(among others), introduced previously for options pricing [see Cox (1996)]. Cox, Inger-
soll, and Ross (CIR) (1985) use the mean-reverting square-root process (MRSR) to handle

the interest rate movements. Their basic one-factor formulation is based on an equilib-
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rium concept, known to preclude against arbitrage opportunities. It is extendible to several
factors, ensures strictly positive interest rates, and gives explicit formulas for zero-coupon
bonds and for some European-style interest rate derivatives. Other authors use the MRSR
equation to price various interest rate derivatives, e.g., Richard (1978), Ananthanarayanan
and Schwartz (1980), and Schaefer and Schwartz (1984). Other dynamics for interest rates
can also be found, e.g., Brennan and Schwartz (1979) and Clewlow and Strickland (1997).

The underlying assets may also be zero-coupon bonds, e.g., Briys, Crouhy, and Sché-
bel (1991), or forward rates, e.g., Heath, Jarrow, and Morton (HIM) (1992). The HIM
model is one of the most flexible as it integrates several systematic sources of risk and
random coefficients.

Continuous-time models are parsimonious, so that matching all theoretical bond val-
ues with their market counterparts gives much more equations than the number of parame-
ters to estimate. A remedy, proposed by Hull and White (19902), is to augment the model,
i.e., add parameters until a calibration becomes possible. This leads to the extended Vasicek
model and to the extended CIR model. See the note by Carverhill (1995) and the response
by Hull and White (1995) for a discussion about the performance of their “extended” mod-
els. Hull and White (1990b, 1993, 1994a, 1994b, 1996) interpret the FD method as 2
trinomial tree and price several interest rate derivatives within their “extended” models.

In this paper, we formulate the problem of pricing options embedded in bonds as a
stochastic DP model, the focus being on the solution of the DP equation. Precisely, we
consider call and put options. It is well known that the call option tends to decrease the

price of the bond, while the put option has the opposite effect. It is also well known that the



3.2 The Model 77

call option is more likely exercised by the bond issuer when the interest rates are low, while
the put option is more likely exercised by the investor when the interest rates are high. We
use the DP formulation to establish these basic intuitions, to evaluate the impact of these
options on the bond price, and to determine their optimal exercise strategies.

We adopt the Vasicek (1977) model for the short-term risk-free interest rate. By the
finite-elements technique, we approximate the DP function by a piecewise linear interpo-
lation, and, subsequently, we solve the DP equation in closed-form. The PDE approach
and FD algorithms could but are not used in this context [Wilmott, Dewynne, and Howison
(1997)]. Indeed, the DP formulation and the finite elements technique is a viable altema-
tive to the PDE approach and FD algorithms if the joint distribution of the state variables is
known explicitly and the number of exercise opportunities is limited [see Chapter 2].

In Section 2, we present the Vasicek formulation and its distributional properties. In
Section 3, we give the DP formulation. In Sections 4 and 5, we derive some theoretical
properties of the bond value and solve the DP equation. In Section 6, we give some results.

In Section 7, we conclude.

3.2 The Model

Vasicek (1977) introduced a continuous-time, finite horizon, and frictionless market for the
short-term risk-free interest rate in which risk-neutral evaluation is possible. We present
this model directly under the risk-neutral probability measure, denoted by Q, whose exis-

tence is guaranteed by the no-arbitrage property.
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The risk-free interest rate moves under Q according to the SDE
dri=r(F—r)dt+0cdB(t), for0<t<T, (3.48)

where &, 7, and o are real positive constants and B (t), for 0 < ¢t < T, is a standard
Brownian motion whose augmented natural filtration is denoted by F (), for 0 < ¢t < T.
Over time, the interest rate process is pushed towards its reverting level T at the reverting
rate x, and these random reverting cycles are more or less amplified depending on the
volatility parameter . We show later that the standard error of the future interest rate
depends on o.

In this model, a financial derivative can be priced as an expectation under Q of its
future payoff discounted at the risk-free rate. This is the fundamental risk-neutral principle
of asset pricing. Of course, bonds may be priced in that way. For example, for 0 < ¢’ <

t < t" < T, the rational price at ¢’ of an optionless zero-coupon bond paying 1 at T is

v (T) _ E [e— f:,” "‘d"L’:" (Tt”) [ f (t’) s Ty = T] (3_49)

= E [e- fl!’ rtdt’vtu (rt") ] rll = T] .
where v, is the value of the bond at t”. Equation (3.49) att' = O and t” = T gives
w(r)=E[e k],

where r is the interest rate at time 0.

In the Vasicek (1977) model, it is well known that the random variables r;» and

t"

,» Tudu are normal [see Elliott and Kopp (1999) for example]. In the following, we extend

" 1
this result to the random vector (rtn, ftf rudu) .
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Lemma35 For f and g two real functions continuously differentiable in [t', t"), for 0 <

t' <t"<T,and W (t), fort € [0, T), a standard Brownian motion, one has

F®)gl ())du

t)g)Itelt, u)dW (t)) du

[
- [ ([
/(f‘ (8) g (u) I (u € [t, £]) dv)dW()
[

/ ft)g(u) du) dw (t).

Proof. We use the integration by parts theorem in stochastic calculus [@ksendal (1995)].

We define the function h(t) = f (2) f;" g (u) du and transform the right hand integral as

/” (/t f(t)g(u)du)dW(t) - [ h () dW (2)
= (")W(t")" YW (@) -

"2 gwoa
/f 9 (W) W (¢) du
of 1
-

g W (t) dt

f@)
( ) af w) W (¢ )du) dt.
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We now use the same theorem to transform [,/ f (t) g () dW (t) and thereafter the

left hand integral as

[” (ﬁuf(t)g(u)dW(tQ du = Lt,,f(u)g(u)IV(U)du—

/ﬂ F(E)g W () du—

/ﬂ"’ ( [ %% (t) g (W) W () dt) du.

The final result comes from the basic properties of multi-dimensional real integrals. B

Proposition 6 Conditioning on the information available at time t, that is, for ry =T,

tll !
(Ttn, / rudu) , 0S¥ <t"<T.
t'

is a normal vector with mean

the random vector

p (1) =7+ e 2 (r—7)
Il' (r) = - —At I—C—‘Al -
po (r) =TAL + =5— (r = T)
and variance
S o= g_i (1 _ e-—2»:At) Orp = :% (1 — 2RO 4 o= 2mAL)
091 = 012 o’% = % (_3 + 2xAt + 4e—~At — e—znm)

where At = t" —t'. It admits the following decomposition

Ty = [ig (r) -+ 0'121
ftf rudu = s (T) + 02 [pZ1 ++1- png] ’

where (Z1, Z,)' is a standard normal vector and p = 012/ (0102) is the (conditional)

. . e
coefficient of correlation between ry» and [, Tudu.



3.2 The Model 81

Proof. From equation (3.48), one can apply Ito’s lemma to the process @ (t, 7:) = e™ry,

fort € [0, T, and show that

u
r,=F4e ) (1 —F) +o / e~"dB (t),
tf

and consequently that

t”
/ T.dU
tl

1 - e—rcAt ¢ u
= TAL+ — (r—7)+ a/ (/ R aCF): (t)) du
¢/ t/

1 _ e—KAt t” t"
= TAt+——(r— +o / / ey | dB (t).
t t

The last equality comes from the Lemma. Conditioning on the information available at

” !
time ¢’ € [0, T], we can decompose each component of the vector (rzu, ftf rudu) into

a deterministic part and a random part. The latter part turns out to be a limit of linear

combinations of the same standard Brownian motion taken at different points in time. We

conclude that the random variables r;» and ftf" r.du, conditioned on F (t'), are jointly

normal.

Now, from basic properties of stochastic integrals [@ksendal (1995)], one can de-

" ’
rive the conditional mean and the conditional variance of the vector (rtu, ftf rudu> L Its

conditional mean is

E

o ’
(Tt"9 / Tudu) l F (tl)
2[

1-— e—:cAt
= (F+e""°’(r—?),FAt+————ﬁ (r—F)) s

since the centered random vector

t” t” tll Y
( / e~ *=4B (t), / ( / e""(‘“‘)du) dB (t)),
t t t
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is independent of F (¢'). The conditional variance of ¢~ 1s

Var[re | F(t')] = E (/:N ce " "-94pB (t)>- ] F(t')j|

1"

= 0_/ e—‘.'.’n(t”—t)dt
l’

— % (1 _ e-zxm) .

4

W

. . " .
The conditional variance of [, rudu is

t"
Var [ / rudu]F(t'):I
tl
t” l”
- =
¢ t
l" t” 2
= g’ / ( / e-“‘<"">du) dt
t’ t

= T (34 2rAL+ 467 - gAY
h',3

ae""'(“'t)du) dB (t))~ | F(t)

[

.. . ¢! .
The conditional covariance between 7y and [, r.du is
t"
Cov [Tt”, / Tudu I F (t’)
t'

o S
/ oe~"t"-0dB (¢) / ( / o’e"‘("")dU> dB () | F (t')]
¢ v ‘
n " "
= 0'2/ et =t) / e™* =ty | dt
% ¢

— ;:2 (1 — 9O 4 6—2~A£) _

= FE
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3.3 The DP Formulation

In this section, we present the DP function and the DP equation for a zero-coupon bond
with its embedded call and put options. We essentially use the risk-neutral principle of
asset pricing to assess the DP formulation.

Letty, ...t be a sequence of dates such that At = tpiy —tm, form =0,..., M —
1, where ¢y = 0 is the origin and t;; = T is the maturity of the bond. We assume that the
exercise opportunities of the embedded options are at ¢,,,, form = 1,..., M. In practice,
the first increment of time ¢, — tg and the last one t5; — t37-; may be different from At.

Let ¢,, and p,, be the call and the put prices at ¢,,, respectively. If the issuer calls
back the bond at ¢,,, he pays a known amount ¢,, to the investor, and, at the same date, if
the investor puts the bond, he receives a known amount p,,, from the issuer. Assume that
the call and put prices verify 0 < pm < cm, as is usual in practice, and ¢y = ppy = L.
Finally, let v, (r) be the value of the bond and % (r) its holding value at time t,,,, where 7
is the interest rate at that time.

At the maturity date t5; = T, the value of the bond is
vy (r)y=1, forallr, (3.50)

where 1 is the face value of the bond with its embedded options. Table 2 gives the “payoff”

at time ¢,, by the issuer to the investor under decision pairs.

Table 2: The bond payoff under decision pairs

Investor
Issuer Put | Hold
Call Pm Cm
NottoCall | pp, -
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From Table 2, we can specify the optimal strategies of the two agents at each moni-
toring date. The issuer has a dominating strategy; he will call the bond if v?, (1) > cm,
otherwise, he is better not to call. In the first case, the investor will put the bond if
Pm > Cm (a possibility that we exclude). In the second case, the investor will put the

bond if v (1) < p.. Therefore, form =1,..., M — 1, one has

em  fOR(T)>em
tm(r) =4 V2 (r) ifpn < (r) <cm - (3.51)
Pm iU} (r) < Pm

By the risk-neutral principle of asset pricing, we obtain the holding value of the bond v2 (r)

at time t,, from its value v,,,; at time ¢t,,+; by

'Uh (r) = F [e— ft:,:l+1 rzdtvm_\.__l (Ttm+1) | F(tm) STy, = 7‘] ( N

[93)
W
138]
A

tm+1
- dt
= B [ ER L ().

At the origin, the bond value is a function of the observed interest rate

vo (r) = v (r), forallr. G.

W
W
)
g

Equations (3.50-3.53) define the stochastic DP formulation. In particular, equations
(3.50), (3.51), and (3.53) define respectively the DP function at maturity, at a given step
of the DP procedure, and at the origin. Solving the expectation in (3.52) backwards from
the maturity to the origin yields both the initial value of the bond and the optimal exercise

strategies of its embedded options. We return to this point later.
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3.4 Properties of the Bond’s Value

In this section, we study the shape of the value function for a zero-coupon bond with its

embedded options. We essentially use the properties of real integrals.

Proposition 7 Form =0,..., M — 1, the holding value of the bond, vk (r), is a strictly
positive, continuous, and strictly decreasing function of 7. The value function, v, (1),
verifies
Crm, ifr<am
v (r) =14 vh(r), fam<r<bm .

pmr I_/'szm

where a,, and b,, are two thresholds associated with time U,

Proof. The proof proceeds by induction on m. Form = M — 1, equation (3.52) gives

T
h —f redt
Uar-y (1) = Enr-ar {e tar-1 }

_ —pa(r)+03/2
— 6#2() 2/,

because by conditioning on the information available at time t57—;, the random variable
e ! a7 is lognormal with parameters p, (r) and o [see Proposition 6]. Clearly, the
holding value of the bond v%,_, (r) is a strictly positive, continuous, and strictly decreasing
function of , since p, (r) is a continuous and strictly increasing function of . The thresh-
olds ass_; and bps_; at step M — 1 do exist since vf,_, (r) — 400 when r — —oo and

vh,_; (r) — 0 when r — +o0 [see equation (3.51)].
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Now, we show that the properties under interest are verified at step m once they are

verified at step m + 1. From equation (3.52), one has

Uy, (T)
_ tm41
= Enr [e Jom T ety (T‘tm“)}

B // e (FVIPR) (1) 4+ 0121) 6 (21) 6 (22) dmndzy
R

o

+00
= e*#-z(r)+<7§(1-P2)/2/ ey (1 (1) + 0121) 6 (21) dzy,

—00

where ¢ is the density function of a standard normal random variable.

The holding value is strictly positive and continuous by the Lebesgue’s dominated
convergence theorem [Billingsley (1995)]. It is a strictly decreasing function of r since
4, (r) and p, (r) are strictly increasing functions of 7 and v+ (r) is a strictly positive,
bounded, bounded away from zero, and non-increasing function of r. Finally, the thresh-
olds a,, and b,, at step m do exist since v”, (r) — +o00 when 7 — —oc and vy, (r) — 0

whenr — +o00. R

3.5 Solving the DP Equation

In this section, we show how to compute the expectation in (3.52) for each m. The idea
here is to partition the real axis into a collection of intervals and then to approximate the

bond value by a piecewise linear interpolation, so that computation becomes feasible in

closed-form.



3.5 Solving the DP Equation 87

Letay = —00 < a1 < ... < ap < Gpy1 = +00 be aset of points and Ry, ..., Ry

be a partition of R into (p + 1) intervals such that Ry = (—o0,a;) and
R; =[ai-y,a;) fori=2,...,p+1.

Given an approximation ,,, of the bond value v,, at the points a; and step m, we

interpolate this function by a piecewise linear interpolation of the form
p+l1
Tm(a) =) (] +6la) Li(a), (3.54)
i=1

where

Ig(a)={1 ifa € R;

0 elsewhere °

Its local coefficients o™ and 87" are obtained by solving the linear equations
U (@) =V (a;), fori=2,...,p, (3.55)

and, fori € {1,p + 1}, they are identical to those of the adjacent interval. Other piecewise
polynomial approximations, such as quadratic and cubic splines, could be used in this
context [see de Boor (1978) for a general discussion].

Assume now that 7,4 is known, and so are its local coefficients at step m + 1 as in

(3.54). The expectation in (3.52) at step m becomes

(@) = Bme [T s (i) (3356)

p+l

=2 (Q?HE’“"‘* [e—ﬁ:ﬂ "L (m.,u)] +

i=1

13
+1 — ¥t
g Er o, [e Jer rtm+1I" (rtnﬂ-l)]) ’
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where 77, denotes the approximate holding value of the bond. Now, we use the decompo-

’
sition of the random vector (Tt,,,+1, i ndt) in Proposition 2 to compute explicitly the

integrals in (3.56).
Indeed, fork =1,...,pandi=1,...,p+ 1, the first integrals can be expressed as
Ak,i = Em-,ak [e_ f:':‘“ Ttdin (rtm-e-l)]

— g ralo)+o3/2 [® (ax:) — @ (aki-1)]s
and the second ones as

— [ redt
Bk'i = Emaak [e f!m i Ttm+1Ii (Ttm-H.)]

_ e-pz(a,c)q-ag/z %
[l (03) = 010) (8 () = @ (axoa)) = o1 (&7 = e7hems) V2]
where @ is the cumulative density function of a standard normal random variable and
ar; = (a; — p (&) + 012) [0y, forj € {i—1.4}.

In this case, the future interest rate may take negative values [see Proposition 1], but
with very low probabilities. We take a; = g, (r) — 601, a2 = p; (r) = 401, Gpuy =
py (r) + 401, and a, = p, (r) + 60,, where 7 is the interest rate at time 0 and At = T
the maturity of the bond. The integer p is a parameter to be specified. Then, we select the
points ay, for k = 2,...,p — 1, to be equally spaced within the interval [a2, a,,).

Finally, we explain how the DP procedure works:

FORm = M, 0 by step -1

FORk=1,p
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Compute 3 (az) for all the points a; by (3.56);
Compute ¥y, (a;) for all the points a; by (3.51);
NEXT %
Compute the coefficients of Tnat step m by (3.55);

NEXT m

3.6 Numerical Experiments

The value of an embedded option is obtained by making the difference between the prices
of the bond with and without the option. In this section, we price by DP a call and 2
put options embedded in a zero-coupon bond. We price first some optionless zero-coupon
bonds by DP and compare the results with the exact solution of Vasicek ( 1977).

Consider a zero-coupon bond paying 1 at the maturity 7 (in years) and let ro = 4.5%,
% = 1,7 = 5%, and ¢ = 0.01. The number of monitoring dates is denoted by 3. Table
3 gives the values of some optionless zero-coupon bonds computed by DP. Its last column
indicates the exact solution of Vasicek (1977). CPU times are given in seconds and they
are for the last line (the most expensive). In Table 4, all the parameters values are the same

as in Table 3 except for the interest rate at the origin, increased to 5.5%.

Table 3: Optionless Zero-Coupon Bonds (19 = 4.5%)

P
T, M) | 25 30 | 100 | Vasicek
(1,2) [ 0.9543 | 0.9543 | 0.9543 | 0.9543
(2,4) [ 0.9088 | 0.9088 | 0.9088 | 0.9088
(5.10) | 0.7828 | 0.7828 | 0.7828 | 0.7828
(10,20) | 0.6097 | 0.6097 | 0.6097 | 0.6098
CPU (sec) | 0.08 | 037 | 101
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Table 4: Optionless Zero-Coupon Bonds (ro = 5.5%)
P
(T, M) 25 50 100 | Vasicek
(1,2) 0.9482 1 0.9482 | 0.9482 | 0.9482
(2,4) 0.9010 | 0.9010 | 0.9010 | 0.9010
(5,10) | 0.7750 | 0.7750 | 0.7750 | 0.7751
(10,20) | 0.6037 | 0.6037 | 0.6037 0.6038
CPU (sec) | 0.09 0.28 1.07

As expected, the value of a zero-coupon bond decreases when the maturity or the

interest rate increases. In view of the results, the DP procedure appears to be stable, con-
sistent, and efficient. CPU times are obtained with an old 100 Mhz Silicon Graphics (and
an {77 compiler).

Now, consider the 5 years zero-coupon bond in Table 4 for which we add a call and
a put features. The call and put prices are specified in the contract and could be selected
arbitrarily. Here, they are determined as in Mason et al. (1995) [see the case “Waste

Management, Inc.”].
Table 5: The Call and Put Prices

m | tm (inyears) |  Cm Pm

1 0.5 0.83070 | 0.78914
2 1 0.84734 | 0.80749
3 1.5 0.86452 | 0.83040
4 2 0.88223 | 0.85824
5 2.5 0.90051 | 0.88039
6 3 0.91935 | 0.90311
7 3.5 0.92641 | 0.92641
8 4 0.95032 | 0.95032
9 4.5 0.97484 | 0.97484
10 5 1 1

In this example, the bond under interest will be exercised for sure after 3.5 years
(if not exercised before). The last column of Table 6 reports the options values. They
are obtained by making the difference between the price of the bond with its embedded

option(s) and the price of its optionless counterpart (0.7751).
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Table 6: Pricing the Embedded Call and Put Options

P
(T, M) Option 25 50 100 | Vasicek | Option Value
(5,10) Call |0.7726 | 0.7727 | 0.7727 | 0.7751 0.0024
(5,10) Put 0.7767 | 0.7766 | 0.7766 | 0.7751 0.0015
(5,10) | Call+Put | 0.7751 | 0.7751 | 0.7751 | 0.7751 0

CPU (sec) 0.09 0.3 1.04

As expected, the call option tends to decrease the bond value and the put option has
the opposite effect. In this case, the inclusion of both the call and the put features has
negligible effect on the bond value (no effect for the precision given in this example). They

tend to compensate each other.

3.7 Conclusion

American-style financial derivatives do not admit closed-form solutions even under very
simplified assumptions. In this paper, we adress the problem of pricing the embedded call
and put options via a stochastic DP formulation, the focus being on the solution of the DP
equation. We let the interest rate move as in Vasicek (1977), we approximate the bond value
by a piecewise linear interpolation, and solve the DP equation in closed-form. We use this
formulation to price zero-coupon bonds and their embedded options. Results show that the
bond value decreases when the call option is included, and increases when the put option
is included. Numerical investigation shows stability, consistency, and efficiency. Also, we
use the DP formulation to establish some theoretical properties of the bond value with its
embedded options. It is a strictly positive, continuous, and non-increasing function of the
interest rate. It is equal to the call price for “low” interest rates and to the put price for

“high” interest rates.
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If the interest rate moves according to the GBM, the CEV, or the CIR process, the
market remains arbitrage-free and risk-neutral evaluation is preserved. In this context, the

interest rate is Markov and the stochastic DP formulation could be applied.
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