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Highlights

• The call center operates 24 hours/day (except for a 15-minute 
maintenance period at 4 a.m.).

• It takes inbound calls primarily.
• Calls come from 3 time zones in the continental U.S.
• The call volume is high (about 30,000/day), and is increasing fast.
• The durations of the calls 

– are typically quite short (about 35-40 seconds)
– depend on the location of the caller (Southern callers take a bit longer to 

communicate)
– depend on the time in the day and day of week.

• There in no routing of calls (good).
• At the beginning, we are not worrying about multi-skilled agents.



Highlights (continued)

• The arrival process has all the bad properties listed in 
Avramidis, et al. (2004) and Brown et al. (2005):

1. The total daily volume has overdispersion relative to the 
Poisson distribution (the variance is much greater than the 
mean).

2. The arrival rate varies considerably with the time of the day.
3. There is significant correlation between arrival counts in a time 

partition of the day.
4. There is correlation between call volumes on successive days.



Property 1

Sample Mean = 28,719
Sample Variance = 1,307,632 (St. Dev. = 1,143)

Arrival Counts for 12 Days (Chosen at Random)
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Property 3

After 10 a.m.
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Scatterplot of Arrival Counts Before and After 10 a.m.
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Scatterplot of Arrival Counts Before and After Noon
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Highlights (continued)

• In addition:
1. The calling population changes due to the addition and 

subtraction of call points.
2. We observe callers after a potential queueing delay at each 

point of origin.



Highlights (continued)

Service requirements:

� Pr{Wait ≤ Tj} ≥ 0.98.

� Tj depends on the time interval j, and varies from 3 to 12 seconds.

� Failovers over 15 secs are unacceptable.



Call Times (Log-logistic)
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Anderson-Darling Test with Log-Logistic Model

Sample size 250

Test statistic 0.30248

Note: The following critical values are exact.

Critical Values for Level of Significance (alpha)

Sample Size 0.250 0.100 0.050 0.025
0.010 0.005

250 0.426 0.562 0.659 0.768
0.905 1.009

Reject? No

Kolmogorov-Smirnov Test with Log-Logistic Model

Sample size 250

Normal test statistic 0.03878
Modified test statistic 0.61311

Note: The following critical values are exact.

Critical Values for Level of Significance (alpha)

Sample Size 0.100 0.050 0.025 0.010
50 0.708 0.770 0.817 0.873
infinity 0.715 0.780 0.827 0.886

Reject? No
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First (Naïve) Approach

• Assume a NHPP arrival model.
• Optimize M/M/N systems over 15-minute periods.

– Collect data from the central database.
– Create a forecast of the arrival rate function and the call times 

for each day of next week separately.
– Compute an initial guess at staffing level using the square root

rule. (Such a rule is usually conservative.)
– Use a simulation-based search to find the number of agents 

that satisfies the service requirements. The simulation model 
was built with Simkit, a Java-based DES package (available 
from http://diana.gl.nps.navy.mil/Simkit/).



Benefits from First Approach

• Staffing task can be done much more quickly than 
before.

• Users can run “worst-case” scenarios to test robustness 
of particular staffing levels.

• Users can see the consequences of new business growth 
in the future. More stores translate into:
– Much more efficiency in terms of server utilization.
– Better performance in terms of contracted metrics.



Estimation of the Arrival Rate Function 
from Event Count Data

� We collect call arrivals during an interval (0, S] (e.g., S = 1440 minutes).
� Suppose that we collect call arrivals over the time interval (0, S] for k days.
� Partition (0, S] into m subintervals

(a0, a1], (a1, a2], . . . , (am−1, am] (a0 = 0, am = S).

� For example, we could use 15-minute intervals.
� oj = observed number of calls in (aj−1, ai], j = 1, . . . ,m, over all k real-
izations.

� The estimate of the arrival rate function λ(·) is

λ̃(t) =
oj

k(aj − aj−1) for aj−1 < t ≤ aj ; j = 1, . . . ,m.

� The following is an alternative estimator for the mean-value function:

Λ̃(t) =

Ã
j−1X
i=1

oi
k

!
+
oj(t− aj−1)
k(aj − aj−1) for aj−1 < t ≤ aj ; j = 1, . . . ,m.



Generation of Arrivals Based on Event 
Count Data: Notation

The following algorithm uses the next-event approach, which schedules the next
arrival when the current arrival is processed.

� T = time of current call arrival.
� E ∼ Exponential(1).
� The algorithm returns

� Λ̃−1(Λ̃(T ) + E) as the time of the next call arrival
� −1 if no further arrivals are generated (we have exceeded time S).

� fj = oj/k, j = 1, . . . ,m.

� Fj =
Pj

i=1 fi = Fj − Fj−1, j = 1, . . . ,m. (F0 = 0)
� CumRate.Now = Λ̃(T ).
� CumRate.New = Λ̃(T ) +E.
� CumRate = value of cumulative rate function at the right endpoint of the
interval associated with the next arrival time.



Generation of Arrivals Based on Event 
Count Data
Max← Fm
j ← 1
while (T > aj)

j ← j + 1
endwhile
CumRate.Now← Fj−1 + oj(T − aj−1)/(k(aj − aj−1))
CumRate← Fj
Generate U ∼ Uniform(0, 1)
CumRate.New← CumRate.Now + E
if (CumRate.New ≤ Max) then

while (CumRate.New > CumRate)
j ← j + 1
CumRate← CumRate + fj

endwhile
return aj − (CumRate− CumRate.New)(aj − aj−1)/fj

else
return −1

endif



Facts

� As k → ∞, the estimator Λ̃(t) converges to the actual function only at
the endpoints of the intervals.

� The estimate Λ̃(t) is zero intervals containing no observations. In this
case, no arrivals will be generated in those intervals. This is convenient
for modeling breaks.

� An alternative method uses all observed arrival times (Leemis 2001).



Simple Staffing Assignment

� This approximation was designed for the Markovian M/M/N system.
� λ = arrival rate for calls in a sufficiently long time interval.
� E[S] = mean holding (call) time in this interval.
� R = λE[S] (offered load).
� W = waiting time (delay) of a typical call in steady-state.
� If R and the number of agents grow according to the relationship
N = R+ β

√
R, then the probability that a call will wait is

Pr{W > 0} ≈
∙
1 +

βΦ(β)

φ(β)

¸−1
,

E[W ] ≈ Pr{W > 0}E[S]
β
√
R
,

Pr{W > T} ≈ Pr{W > 0}e−β
√
RT/E[S],

where Φ(·) and φ(·) are the density and cdf of the standard normal distri-
bution.



A Simple Staffing Assignment (continued)

� Suppose we wish to have

Pr{W ≤ T} ≥ 1− ²,

e.g., Pr{W ≤ 12 sec} ≥ 0.98.
� We solve (numerically)∙

1 +
βΦ(β)

φ(β)

¸−1
e−β
√
RT/E[S] = ²

for β, and then set

N =
l
R+ β

√
R
m
.



Forecasting Daily Arrivals

shape parameter

We tested two models from Avramidis et al. (2004):

� Model 1 (Whitt 1999): Λ(t) =Wλ(t); W ∼ gamma(γ, 1).

� Xi = arrival count for interval [ti−1, ti), i = 1, . . . , 96.
� Y =

∑96
i=1 Xi = total daily count.

� λi =
∫ ti

ti−1
λ(t) dt.

� X = (X1, . . . ,X96).
� X ∼ negative multinomial(γ, λ1, . . . , λ96).
� Facts:

� Corr(Xi, Xj) ≥ 0).
� This model yields distributional properties for the remaining demand given

the demand observed up to a certain point — good for short term forecasts.



Forecasting Daily Arrivals (continued)

� Model 3:

� Y =
∑96

i=1 Xi = total daily count ∼ 3-parameter gamma.

� Qi = Xi/Y , i = 1, . . . , 96.

� Q = (Q1, . . . , Q96) ∼ Dirichlet(α1, . . . , α96), and independent of Y .

� X̃ = Y Q.

� X = [X̃].

� This model allows negative correlations between Xi and Xj .

� We used counts for the same day in 3 weeks to estimate the parameters of
the gamma and Dirichlet distributions.



Arrival Counts for a Wednesday (Model 3)
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What’s Next?

• We are examining daily arrival process models as more 
data are collected.

• We are looking at models for call volumes over different 
days.

• We are looking at flexible staffing assignments.
• We are looking more closely at service time 

distributions and how they vary from day to day (as well 
as hour to hour).



My Dream!

It’s not just what call centers can do for us…
It’s what we can do for call centers!
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