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• A method for multi-skill staffing
• Random arrival rates
• Extensions
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Single-period multi-skill staffing problem

N = {1, . . . , n} = set of call (contact) classes (types)

M = {1, . . . ,m} = set of agent types

Si ⊆ N = type-i skill set

Decision variables: y = (y1, . . . , ym)T, where yi is the number of agents of type i.

Costs: c = (c1, . . . , cm) where ci = cost of an agent of type i.

Virtual queue time: the time a customer with infinite patience (i.e., who never
abandons) must wait in queue

Service level (SL) for call type j:

gj(y) =
expected # calls arrived whose virtual queue time is < τj

expected # calls arrived
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for some constant τj.

g(y) = aggregate SL, defined analogously for given time limit τ .

The functions g• depend on the routing policy. For planning purposes, it may be
necessary to work with a fixed routing policy; we do so here.

min cTy =
∑m

i=1 ciyi

subject to gj(y) ≥ lj for all j,
g(y) ≥ l,
y ≥ 0, and integer.

(P2)

Past work

Cezik and L’Ecuyer (2005)

Bhulai et. al. (2005)
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Overflow routing

Station i: the ensemble of agents of type i

Rj = {Rj(1), Rj(2), . . . , Rj(mj)}: ordered list of stations that can handle call
type j

r(i, j): the rank of i in the list Rj; that is, Rj(r(i, j)) = i.

Overflow routing policy:
- upon arrival, a class-j call is assigned to an agent in the highest-rank
(lowest-index) station in Rj with an available agent (say, i∗) or else is placed in
queue.
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Overflow routing, loss system: Past work

Loss system: Calls type j that overflow from the last station, Rj(mj), are lost.

Optimality of specialist-first routing for special cases of skill sets (Chevalier et. al.
2005, Ormeci 2004)

Exponential decomposition: analyze each station separately, based on 1-moment
approximation of overflow process (Koole and Talim 2000) (KT00).

Equivalent Random Method: 2-moment approximation of overflow process, i.e.,
rate and peakedness (Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential decomposition (Franx et. al. 2005)
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Overflow routing in a delay system

Overflow-or-wait-at-last-station policy:
- each queued call of type j must be served at the last station on its list:
Lj = Rj(mj)
- FIFO across multiple call classes

Captures overflow routing and is conceptually simple to analyze.
Conceptually not very attractive, because it allows agent idleness.

For each station i, define:
Li = {j : i = Rj(`) for some ` 6= mj} =set of classes that overflow at i
Di = {j : i = Rj(mj) = set of classes that wait at i

Partition stations into three types:
loss-delay: MLD = {i : Li 6= ∅,Di 6= ∅}
pure-loss: ML = {i : Li 6= ∅,Di = ∅}
pure-delay: MD = {i : Li = ∅,Di 6= ∅}
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Illustration

λ1 = γ1,1 λ2 = γ1,2 λ3 = γ2,3
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L1 = {2}, D1 = {1} ⇒ station 1 is of loss-delay type.
L2 = ∅, D2 = {2, 3} ⇒ station 2 is of pure-delay type.
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Analysis of a loss-delay station with abandonment

1. Work with two input streams:
loss (call types in Li):

delay (call types in Di):
Assume they are independent Poisson processes.

2. Assume:
- service and time-to-abandonment are exponential r.v.’s - two streams have the
same mean service time and mean time to abandonment

3. One-dimensional Birth and death (B-D) model of the loss-delay station.

4. Conditional on encountering s customers in queue, distribution of virtual time
in queue is known analytically (Riordan 1962, Koole 2003).

5. PASTA yields the unconditional distribution of virtual time in queue

Approximate performance measures for a loss-delay station:
BA(s, λL, λD, µL, µD, η, c) = blocking probability
P (W > τ) = DA(τ ; s, λL, λD, µL, µD, η, c),
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where
W = virtual waiting time
λL = loss stream arrival rate
µL = loss stream service rate
λD = delay stream arrival rate
µD = delay stream service rate
η = time-to-abandonment rate
c = queue capacity
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Loss-delay approximation

λj = class-j arrival rate
µi,j = service rate for class j at station i
ηj = class-j time-to-abandonment rate

p(i, j) = station immediately preceeding station i in the routing of type-j calls
(exists whenever r(i, j) > 1)

Generalized arrival to station i: encompasses both:
- an exogenous arrival (i.e., r(i, j) = 1)
- an overflow to i.

We will approximate:
γi,j = generalized arrival rate for all i and j ∈ Si

Bi = blocking probability, whenever i is a pure-loss or loss-delay station
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Loss-Delay approximation with Abandonment (LDA):

γi,j =
{
λj for all i ∈M, j ∈ Si, and r(i, j) = 1
γp(i,j),jBp(i,j) for all i ∈M, j ∈ Si, and r(i, j) > 1 (1)

γi,L =
∑
j∈Li

γi,j,
1
µi,L

=
∑
j∈Li

γi,j

γi,L

1
µi,j

, i ∈MLD ∪ML, (2)

γi,D =
∑
j∈Di

γi,j,
1
µi,D

=
∑
j∈Di

γi,j

γi,D

1
µi,j

,
1
ηi

=
∑
j∈Di

γi,j

γi,D

1
ηj
, i ∈MLD ∪MD (3)

Bi = BA (yi, γi,L, γi,D, µi,L, µi,D, ηi, ci) , i ∈MLD ∪ML, (4)

where: ci = max(dψ√yie, 10) and ψ is a queue-size control parameter.

Similar to KT00, but blocking probability function BA differs from theirs in
stations having a delay stream.
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Assume solution to (1)–(4) is available.

Lj = Rj(mj) = last station in class-j routing

Class-j service level:

gj(y; τ) = 1−
γLj,j

λj
DLj

(τ), τ > 0, j ∈ N , (5)

where

Di(τ) = P (Wi > τ) = DA (τ ; yi, γi,L, γi,D, µi,L, µi,D, ηi, ci) , τ > 0, i ∈MLD∪MD.
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A view of solution approaches to (P2)

Stage 1 combines:

Optimizer (over the space of staffing vectors)

Evaluator of performance (service level, expected waiting time, loss rate due to
abandonment)
A solution is E-(in)feasible whenever it is declared (in)feasible for (P2) by the
evaluator.

Stage 2: Adjustor Adjusts the optimizer’s incumbent for:
infeasibility
or
cost reduction
Require more accurate evaluator than Stage 1; local search requiring few
evaluations.

Cezik and L’Ecuyer (2005): Cutting Plane / Simulation.
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Neighborhood search: Elements
y(k) = the incumbent solution, where k is a counter of incumbents

q = a positive integer move size

Remove neighborhood: Y1(y(k), q) = {y : y = y(k) − qei, i ∈ C}, where

C = {i : y(k)
i ≥ q}.

Pivot: some i ∈ T = {i : y(k)
i ≥ q}.

Switch neighborhood:

Y2 = Y2(y(k), q, i) = {y : y = y(k) − qei + qej, y
(k)
i ≥ q, j ∈M},

where ei is the vector with 1 on i-the coordinate, 0 elsewhere.

Cost-reducing switch neighborhood:

Y−2 (y(k), q, i) = {y : y = y(k) − qei + qej, y
(k)
i ≥ q, cj < ci} ⊆ Y2.

Search overview: A search integrator selects a neighborhood to consider.
Given a neighborhood, either we determine it contains no cost-reducing and
E-feasible members and record its identity, or else we select the next incumbent.
Then return control to the integrator.
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Agent removal

q∗(k) = smallest q such that Y1(y(k), q) contains no E-feasible solutions.

Procedure Remove(y(k), q, q∗(k)) {
Evaluate all candidates in Y1(y(k), q)
If (at least one candidate is E-feasible)

Incumbent selection via best-candidate criterion:
Minimize the ratio:

ĝ(y(k))− ĝ(y)
cTy(k) − cTy

over y ∈ Y1 and E-feasible, where ĝ = approximate service-level function
Else
Y1 contains no E-feasible solutions
Update: q∗(k)← min(q∗(k), q).

End if
}
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Agent switching

A pivot i is (y, q)-infeasible whenever Y−2 (y, q, i) is either empty or all its
members are E-infeasible (q ≥ 1)

q∗i (k) = the smallest q such that i is known to be a (y(k), q)-infeasible pivot

Procedure Switch(y(k), q, (q∗i (k))i∈M) {
Select a pivot P randomly, uniformly over P = T ∩ {i : q∗i (k) > q}
Evaluate all candidates in Y−2 (y(k), q, P ).
If (at least one candidate is E-feasible)

Select the next incumbent by best-candidate criterion
Else

Pivot P has been proven to be (y(k), q)-infeasible
Update: q∗P (k)← min(q∗P (k), q)

End if
}
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Search integration

Given: y(k), q∗(k), q∗i (k) (all i)

Procedure Search

Select a move size q ∈ {1, 2, . . . , qmax} where qmax = maxi x
(k)
i

If (q < q∗(k))
Call Remove with move size q

Else
Call Switch with move size q

End if

Normal termination: ⇔ All possible pivots are (y(k), 1)-infeasible.

Early termination: Search is terminated before having met the above condition
(e.g., via a time limit).
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Search Properties

Problem (P2∗): Replace all functions g• in (P2) by the evaluator’s estimates g̃•.

NE: (random) number of evaluations until normal termination.

Assumption: if at incumbent ` some approximate service level j decreases with a
switch of size q1, then it decreases by at least as much for all larger move sizes:

g̃j(x(`)−q1ei+q1ek) < g̃j(x(`)), q2 > q1 ⇒ g̃j(x(`)−q2ei+q2ek) ≤ g̃j(x(`)−q1ei+q1ek)
(6)

for any class j and agent types i, k with ck < ci.

Proposition 3.

1. NE is finite.

2. Let y(k) be the output of Search with normal termination. Then

(a) There exist no (P2∗)-feasible vectors in Y1(y(k), 1).



19

(b) There exist no (P2∗)-feasible cost-reducing vectors (relative to y(k)) in the
neighborhood ∪

i:y
(k)
i ≥1
Y2(y(k), 1, i).

(c) If (6) holds for incumbent k, then there exist no (P2∗)-feasible cost-reducing
vectors in ∪q≥1 ∪i:y

(k)
i ≥q

Y2(y(k), q, i).

3. Suppose (6) holds for all incumbents (i.e, all `). Then, in each call to Switch
with incumbent y(k) and move size q, the members of {i : q∗i (k) ≤ q} are
(y(k), q)-infeasible pivots.
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Simple multi-skill case: N Design

Λ = (Λ1,Λ2) = Random arrival rate with mean (100,50), coefficient of variation
1/4.
Each marginal distribution discretized to 3 values (low, medium, high) ⇒ 9
scenarios

Patience: exponential with mean 3 minutes

τ = 20 seconds

Target SL: 80% for each class
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Overflow routing: Class 1 prefers group 1, overflows to group 2 if necessary

Staffing: (82 specialists, 65 generalists (best solution found, for “priority” policy
and mean arrival rate)

For this staffing, varied the routing policy (call selection by agents).
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Performance with “Priority”

Priority: group 2 gives priority to class-2 queue

`i = class-i abandonment rate (rate of call loss)
` = aggregate abandonment rate (call loss, both classes)

Probab. α1 α2 SL1 SL2 `1 `2 `
0.11 76.6 38.3 1.00 1.00 0.0 0.0 0.0
0.11 76.6 49.3 1.00 0.98 0.1 0.3 0.4
0.11 76.6 62.4 0.97 0.78 0.7 3.7 4.4
0.11 98.7 38.3 0.95 0.95 1.4 0.6 2.0
0.11 98.7 49.3 0.83 0.83 4.5 2.4 6.9
0.11 98.7 62.4 0.64 0.57 9.5 7.0 16.5
0.11 124.8 38.3 0.53 0.82 15.2 2.2 17.4
0.11 124.8 49.3 0.32 0.68 23.0 4.4 27.4
0.11 124.8 62.4 0.15 0.47 31.7 8.5 40.2

average 100 50 0.66 0.76 9.5 3.2 12.7
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Performance with “longest queue first”

Longest queue first: group 2 serves calls in FIFO order, giving priority to the
longest of the two queues

Probab. α1 α2 SL1 SL2 `1 `2 `
0.11 76.6 38.3 1.00 1.00 0.0 0.0 0.0
0.11 76.6 49.4 1.00 0.97 0.1 0.4 0.5
0.11 76.6 62.4 0.98 0.78 0.4 3.7 4.1
0.11 98.7 38.3 0.98 0.91 0.9 1.0 1.9
0.11 98.7 49.4 0.91 0.71 2.8 4.0 6.8
0.11 98.7 62.4 0.77 0.41 5.9 10.3 16.2
0.11 124.8 38.3 0.69 0.39 9.6 7.9 17.5
0.11 124.8 49.4 0.50 0.20 14.0 13.6 27.6
0.11 124.8 62.4 0.31 0.08 19.1 20.8 39.9

average 100.0 50.0 0.75 0.58 5.9 6.8 12.7
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Performance with “single FIFO”

Single FIFO queue: FIFO call selection across classes, by both groups

Probab. α1 α2 SL1 SL2 `1 `2 `
0.11 76.5 38.3 1.00 1.00 0.0 0.0 0.0
0.11 76.5 49.4 1.00 0.97 0.1 0.4 0.5
0.11 76.5 62.4 0.98 0.76 0.5 4.1 4.6
0.11 98.6 38.3 0.96 0.92 1.2 0.9 2.1
0.11 98.6 49.4 0.88 0.72 3.4 3.6 7.0
0.11 98.6 62.4 0.72 0.41 7.0 9.8 16.8
0.11 124.7 38.3 0.59 0.45 12.6 5.2 17.8
0.11 124.7 49.4 0.40 0.24 18.2 9.8 28.0
0.11 124.7 62.4 0.22 0.09 24.2 16.6 40.8

average 100.0 50.0 0.70 0.59 7.5 5.6 13.1



25

Performance with “Priority” and positive correlation on Λ

Same 9 arrival-rate scenarios

Preference routing

Simply change the scenario probabilities

Probab. α1 α2 SL1 SL2 `1 `2 `
0.17 76.6 38.3 1.00 1.00 0.0 0.0 0.0
0.11 76.6 49.4 0.99 0.98 0.1 0.3 0.4
0.06 76.6 62.4 0.97 0.78 0.7 3.7 4.4
0.11 98.7 38.3 0.95 0.96 1.3 0.6 1.9
0.12 98.7 49.4 0.83 0.83 4.4 2.4 6.8
0.11 98.7 62.4 0.64 0.56 9.5 7.1 16.6
0.06 124.8 38.3 0.51 0.81 15.5 2.2 17.7
0.11 124.8 49.4 0.31 0.68 23.3 4.5 27.8
0.17 124.8 62.4 0.15 0.47 31.9 8.5 40.4

average 100.0 50.0 0.63 0.75 10.5 3.4 13.9
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2-stage model formulation with re-staffing option

Stage 1. Intermediate planning horizon (a few weeks), high forecast uncertainty
x = (x1 . . . xm) = stage-1 decision = planned staffing.

Λ = (Λ1 . . .Λm)= random arrival rate vector; FΛ=known distribution of Λ.

Stage 2. Day-of-operation; low forecast uncertainty
- Have x from stage 1
- λ = observed (constant) arrival rate
- Have Option to increase or decrease staffing

y = (y1 . . . ym) = stage-2 (adjusted) staffing

gj(y;λ) = class-j service level (or other performance measure) when arrival rate
vector is λ.

c+i = cost per additional type-i agent

c−i = benefit per type-i agent released from duty or sent to other activities

u = upper bound on new staffing vector
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pj = penalty per unit violation of constraint j (meeting fixed target service-levels
may be impossible for some λ (with positive probability).

Stage-2 cost (re-staffing cost + infeasibility penalty):

f2(y;x, λ) =
∑

i c
+
i (yi − xi)+ −

∑
i c
−
i (xi − yi)+ +

∑
j pj(lj − gj(y;x, λ)) ,

where x+ = max(x, 0)

Stage-2 problem: For given x and λ,

miny f2(y;x, λ)
subject to 0 ≤ y ≤ u, and integer.

f∗2 (x, λ) = optimal cost of (P2’)

f1(x) = EΛ[f∗2 (x,Λ)] = expected stage-2 cost, (EΛ is expectation under FΛ).

Stage-1 problem:

min
∑

i

cixi + f1(x)
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Modeling issues in staff planning

1. Poor forecasts of arrival rates ⇒ Early planning decisions will often be “off”
(service level too high some days, too low on others).

2. How can we build better models of daily operations?

(a) What are the re-planning options available to managers after an initial staff
plan is made, all the way up to the day of operation ?
What are the costs of reducing and/or increasing staffing? after good forecasts
of the arrival rate are available?

(b) Routing policy constraints versus routing flexibility.

⇒ Early staffing decisions linked to the re-planning options and costs.

3. Alternative service level definitions?
Work with “expected low-service costs” instead of service-level constraints ?


