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Tools for Staffing and Scheduling in Call Centers:

Survey of work in our lab

Pierre L’Ecuyer

with Thanos Avramidis, Eric Buist, Tolga Cezik, Wyean Chan, Nabil Channouf

Canada Research Chair in Stochastic Simulation and Optimization, U. Montréal

Sponsored by Bell Canada

• General problem statement;
• Simulation tools and improving simulation efficiency;

Queueing approximations vs simulation;
• Building realistic models; Computer games vs tools for decision making;
• Optimization of staffing, scheduling, call routing, priorities, outbound call, etc.

Article are on my web page: type Pierre L’Ecuyer in Google.
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Example: A Call Center with Multiple Call Types

K call types. Depends on required technical skill, language, importance, etc.
I agent types (or skill groups). Each has skills to handle certain call types.
Some agents may be better than others for a given call type.
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Call arrivals: follow some stochastic process.

Abandonments: callers may abandon after a random patience time.

If each agent has a single skill: K single queues in parallel.

If each agent has all skills: one single queue.
More efficient (less wait, fewer abandonments), but more costly.

Each additional skill increases the cost of an agent.
Can also decrease its speed!

For well-balanced systems, one or two skills per agent often gives a performance
almost as good as all skills for all agents (e.g., Wallace and Whitt 2004).
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Performance measures

Example: Total cost of agents.

Constraints

Service level (SL): fraction of calls that wait less than an acceptable wait time `
(typically 20 to 30 seconds). Often measured and controlled separately by time
period (hour, day, ...), by call type, .... + aggregated.

Caveat: could cheat and never serve calls that already waited too much.

Conditional SL: E[Wait | Wait > `].

Abandonment ratio: fraction of calls that abandon.

Average waiting time?
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Skill-based routing (SBR) strategies:

Rules that control in real time the agent-to-call and call-to-agent assignments.
Act as controlling device for service levels, across call types and globally.

Dynamic routing: Decision may depend on the entire state of the system.
An optimal policy is generally too complicated and hard to implement.

Static routing: Each call type has an ordered list of agent types.
If all are busy, the call joins a queue (usually one queue per call).

Each agent type may also have an ordered list of queues (call types) for when it
becomes available (priorities).

Other: Could weight the calls, use state-dependent thresholds, etc.
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Staffing problem: Divide the day into periods (e.g, half hours) and determine how
many agents of each type to have in the center for each period in order to meet
the performance constraints, at minimal cost.

The SL in one period can depend on the number of agents in other periods!

The SL constraints can be per customer type, per period, or aggregated.

Caveat: not possible to match exactly the optimal staffing by scheduling a set of
agents whose working shifts are admissible (i.e., satisfy the constraints determined
by Union rules, etc.).

Scheduling problem: Determine a set of agents, each with its working shift for the
day, so that the performance constraints are met, at minimal cost.

Scheduling and rostering problem:
In practice, we do not have an infinite supply of each agent type!
For a given set of agents and a given set of admissible shifts, assign a shift to each
agent, to meet the performance constraints at minimal cost.
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Blend systems: inbound and outbound calls

A predictive dialer makes outbound call, trying to reach customers when inbound
traffic is low.

A right party connect: when the outbound contact is successful (good).

A mismatch: when the successful contact cannot be served immediately (bad).

Possible additional constraints:
– Lower bound on the (expected) volume of outbound calls per day.
– Upper bound on the (expected) fraction of mismatches.

Other types of recourses:

Ability to get new agents on short advice (perhaps on workstation at home)?

Controlling the arrival rate, e.g., by giving information on current waiting times?

Other ways?
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Simulation tools

Paradigm: a computer game that reproduces exactly the behavior of the call
center relevant to the decisions we want to make.

Then we can try everything we want without paying the price!

Available software to do this?
Arena Contact Center Edition, ccProphet, ...

Plus: Graphical user interface and animation.

Minus: Expensive, slow, not so flexible.

So we developed our own tool: ContactCenters, a Java library built over SSJ.
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ContactCenters

Library based on well-supported modern programming language Java.
Strong expressive power. GUI-independent.
Interoperability with other software (statistics, optimization, databases, etc).

Fast: about 30 times faster than Arena in our experiments.

Provides building blocks to simulate all types of call centers.
Supports several types of contacts, multiskill, blend, arbitrary dialing and routing
policies, various types of arrival processes, etc.

Support for variance reduction.

Pre-compiled generic models.
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Building realistic models

We need lots of detailed data about the call center operations:
arrivals, service times, breaks, hidden rules and practice, etc.

With partial and aggregate information, we can only build an “approximate”
model, which may not be realistic.

This is often a problem!

Examples: service times are not exponential; arrivals are not Poisson and
stationary, perhaps breaks are not exactly as planned, perhaps agents are not
available exactly as planned, etc.
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Arrival process modeling

Arrival processes can be nonstationary, doubly stochastic, dependent, etc.
Examples, for single type: nonstationary Poisson with random inflation factor each
day; arrival rate Bλ(t) at time t, where E[B] = 1.
(Whitt, Avramidis et al. 2004).

Other multivariate distributions (NORTA, etc.).

But: other relevant information can be used to forecast call volumes.
All this information should be part of our models!

Service time distributions;
Patience time distributions;
Etc.
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Steady-state approximations of SL

Single skill: M/M/s (Erlang-C Analysis).

µ = service rate; λ = arrival rate; ρ = λ/µ = load
s = staffing (number of servers)

Delay probability:

P (wait > 0) =

ρs

s!
s

s− ρ

ρs

s!
s

s− ρ
+

s−1∑
i=0

ρi

i!
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Large system: square-root safety staffing.

Halfin-Whitt (1981) limit: sequence of M/M/s queues;
Queue n has sn = n servers, arrival rate λn, and load ρn = λn/µ.
Wn = steady-state waiting time.

Theorem. For n →∞, if λn →∞ and (1− ρn/n)
√

n → β for 0 < β < 1, then

P (Wn > 0) → δ =
1

1 + βΦ(β)/φ(β)

where Φ and φ are the standard normal c.d.f. and p.d.f.

Square-root formula: For load ρ and delay probability δ, staff

n = ρ + β
√

ρ

agents. Simpler than inverting M/M/s formula.
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Pointwise Stationary (PS) approximation (Green and Kolesar 1991, Whitt 1991):
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2. integrate result (performance) with respect to t.
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Time-dependent arrival rate.

Pointwise Stationary (PS) approximation (Green and Kolesar 1991, Whitt 1991):
1. Use steady-state approximation at each time point t;
2. integrate result (performance) with respect to t.

Improvement: use arrival rate at t for performance at t + δ, for some delay δ
(e.g., Ingolfsson et al.).
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Multiskill case

Koole and Talim (2000): static overflow routing, loss system.

Call type k has a Poisson arrival process, with rate λk, and ordered list of agent
types to look for.

If all these agent types are busy, the call is lost.
The net arrival process at each skill group is assumed Poisson.

Blocking probabilities per skill group and loss rates per call type are computed by
solving a system of nonlinear equations.



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential approximation (Franx et. al. 2005): Reportedly very successul
at approximating by-type loss rates. Restrictions on routing.



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential approximation (Franx et. al. 2005): Reportedly very successul
at approximating by-type loss rates. Restrictions on routing.

Loss-delay approximation (Avramidis et al. 2006).



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential approximation (Franx et. al. 2005): Reportedly very successul
at approximating by-type loss rates. Restrictions on routing.

Loss-delay approximation (Avramidis et al. 2006).

Assume customer type k joins a waiting queue at the last skill group in its list, if
all are busy.



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential approximation (Franx et. al. 2005): Reportedly very successul
at approximating by-type loss rates. Restrictions on routing.

Loss-delay approximation (Avramidis et al. 2006).

Assume customer type k joins a waiting queue at the last skill group in its list, if
all are busy.

The SL for type k is approximated using a birth-and-death CTMC model at that
queue, for each k.



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential approximation (Franx et. al. 2005): Reportedly very successul
at approximating by-type loss rates. Restrictions on routing.

Loss-delay approximation (Avramidis et al. 2006).

Assume customer type k joins a waiting queue at the last skill group in its list, if
all are busy.

The SL for type k is approximated using a birth-and-death CTMC model at that
queue, for each k.

Allows abandonments and general routing.



23

Other (better) approximations of loss rates:

Equivalent Random Method: two-moment approximation of overflow process
(Hayward 1981, Wolff 1989, Chevalier et. al. 2004).

Hyper-exponential approximation (Franx et. al. 2005): Reportedly very successul
at approximating by-type loss rates. Restrictions on routing.

Loss-delay approximation (Avramidis et al. 2006).

Assume customer type k joins a waiting queue at the last skill group in its list, if
all are busy.

The SL for type k is approximated using a birth-and-death CTMC model at that
queue, for each k.

Allows abandonments and general routing.

Not very realistic, but useful for rough-cut first-step in staffing optimization.
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Agent types (or skill groups) i = 1, . . . , I;
Periods p = 1, . . . , P ;
Shift types q = 1, . . . , Q.

The shift specifies the time when the agent starts working, when he/she finishes,
and all the lunch and coffee breaks.

Costs: c = (c1,1, . . . , c1,Q, . . . , cI,1, . . . , cI,Q) where
ci,q = cost of an agent of type i having shift q.

Decision variables: x = (x1,1, . . . , x1,Q, . . . , xI,1, . . . , xI,Q) where
xi,q = number of agents of type i having shift q.

Auxiliary variables: y = (y1,1, . . . , y1,P , . . . , yI,1, . . . , yI,P ) where
yi,p = number of agents of type i in period p.

We have y = Ax where A is block diagonal with i blocks Ã, and element (p, q)
of Ã is 1 if shift q covers period p, 0 otherwise.
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gk,p(y) = long-run SL for call type k in period p.
E.g., fraction of calls answered within 20 seconds, or sk,p seconds:

gk,p(y) =
E[num. of calls in period p answered within the limit]

E[num. of arrivals in period p]
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gk,p(y) = long-run SL for call type k in period p.
E.g., fraction of calls answered within 20 seconds, or sk,p seconds:

gk,p(y) =
E[num. of calls in period p answered within the limit]

E[num. of arrivals in period p]
.

gp(y) = aggregated long-run SL over period p.
gk(y) = aggregated long-run SL for call type k.
g(y) = aggregated long-run SL overall.

These functions g• (ratios of expectations) are unknown and often very
complicated. Each may depend on entire vector y. They can be either

• approximated via simplified queueing models, or

• estimated by simulation.

Here, the routing rules are assumed fixed; we do not optimize them.
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Scheduling problem

min ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to Ax = y,
gk,p(y) ≥ lk,p for all k, p,
gp(y) ≥ lp for all p,
gk(y) ≥ lk for all k,
g(y) ≥ l,
x ≥ 0, and integer.
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Staffing Problem

Relaxation: forget about the admissibility of schedules; just assume that any
staffing is admissible.

Costs: c = (c1,1, . . . , c1,P , . . . , cI,1, . . . , cI,P ) where
ci,p = cost of an agent of type i in period p.

min cty =
∑I

i=1

∑P
p=1 ci,pyi,p

subject to gk,p(y) ≥ lk,p for all k, p,
gp(y) ≥ lp for all p,
gk(y) ≥ lk for all k,
g(y) ≥ l,
y ≥ 0, and integer.
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Single period, steady-state approximation

Take one period at a time and assume that the system is in steady-state.

c = (c1, . . . , cI) where ci = cost of an agent of type i.

y = (y1, . . . , yI) where yi = number of agents of type i.

min cty =
∑I

i=1 ciyi

subject to gk(y) ≥ lk for all k,
g(y) ≥ l,
y ≥ 0, and integer.

Neglects the transient and overflow effect across periods.
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Scheduling by a two-step method

First step: solve the staffing problem (easier).
Let y∗ be an optimal solution.

Second step: find an admissible schedule that covers the staffing y∗, by solving:

min ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to Ax ≥ y∗,
x ≥ 0, and integer.

This does not give an optimal solution to the original scheduling problem.
And the gap could be significant.
Potential discrepancy in mix of agent types across successive periods.
Can be alleviated by skill-transfer decision variables.
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Skill-transfer decision variables (Bhulai, Koole, and Pot 2005):
zp,j,i = number of agents of type j that work as type-i agents in period p
(they use only part of their skills).

min ctx =
I∑

i=1

Q∑
q=1

ci,qxi,q

subject to ∑
q:Ãp,q=1

xi,q +
∑

j∈S+
i

zp,j,i −
∑

j∈S−i

zp,i,j ≥ yi,p ∀p, i

all xi,q, zp,j,i ≥ 0 and integer.
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Sample-path optimization via simulation

[Atlason, Epelman, and Henderson, 2004; Cezik and L’Ecuyer 2005]
We simulate n independent operating days (could also be weeks, etc.) of the
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Sample-path optimization via simulation

[Atlason, Epelman, and Henderson, 2004; Cezik and L’Ecuyer 2005]
We simulate n independent operating days (could also be weeks, etc.) of the
center, to estimate the functions g•.

Let ω represent the source of randomness, i.e., the sequence of independent
uniform r.v.’s underlying the entire simulation (n runs).

For a ω, the empirical SL’s over the n simulation runs are:
Gn,k,p(y, ω) for call type k in period p;
Gn,p(y, ω) aggregated over period p;
Gn,k(y, ω) aggregated for call type k;
Gn(y, ω) aggregated overall.

For a fixed ω, these are deterministic functions of y.

We replace the functions g by the estimators G and optimize.

To compute them at different values of y, we simply use simulation with common
random numbers.
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Empirical scheduling optimization problem (sample version of the problem):

min ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to Ax = y,
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Gn(y) ≥ l,
x ≥ 0, and integer.



32

Empirical scheduling optimization problem (sample version of the problem):

min ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to Ax = y,
Gn,k,p(y) ≥ lk,p for all k, p,
Gn,p(y) ≥ lp for all p,
Gn,k(y) ≥ lk for all k,
Gn(y) ≥ l,
x ≥ 0, and integer.

Under mild conditions, when n →∞, the optimal solution of the sample problem
converges w.p.1 to that of the original problem.



32

Empirical scheduling optimization problem (sample version of the problem):

min ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to Ax = y,
Gn,k,p(y) ≥ lk,p for all k, p,
Gn,p(y) ≥ lp for all p,
Gn,k(y) ≥ lk for all k,
Gn(y) ≥ l,
x ≥ 0, and integer.

Under mild conditions, when n →∞, the optimal solution of the sample problem
converges w.p.1 to that of the original problem.

Similar formulation for the staffing problem.
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Neighborhood search for staffing problem

[Avramidis et al. 2006]
Stage 1: Start with feasible solution and decrease cost using neighborhood search
with “loss-delay” approximation to evaluate SL and select next solution.

Outputs a locally optimal solution (w.r.t. loss-delay approx.).

Stage 2: simulation-based local adjustment to stage-1 solution to account for two
mutually exclusive cases:

• the incumbent is infeasible and we seek a nearby feasible solution;

• the incumbent is feasible and we seek further cost reduction.
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Variance reduction: examples

Suppose the arrival process is Poisson with rate Bλ(t) at time t, where E[B] = 1
and λ(·) is deterministic.

Xi = Gi(s0) = number of calls who waited less than s0 seconds on day i. Crude
estimator of µ = E[Xi]:

X̄n =
1
n

n∑
i=1

Xi.

The realization Bi of B has a large impact on G(s0), so we may want to use
quasi-Monte Carlo or stratification w.r.t. B.

Suppose B = F−1
B (U) where U ∼ Unif(0, 1).

Stratification on U in k strata: for s = 1, . . . , k, generate ns indep. r.v.’s
U (s) ∼ Unif((s− 1)/k, s/k) and denote Xs,1, . . . , Xs,ns the corresponding
observations of G(s0).
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X̄s,n =
1
k

k∑
s=1

1
ns

ns∑
i=1

Xs,i.

The variance

Var[X̄s,n] =
1
k2

k∑
s=1

σ2
s/ns

where σ2
s = Var[X | S = s] (must be estimated), is minimized by taking (if we

neglect rounding)

ns = n∗s = n
σs∑k

l=1 σl/k
.

We have

Var[X̄n] = Var[X̄so,n] +
1
nk

k∑
s=1

(σs − σ̄)2 +
1
nk

k∑
s=1

(µs − µ)2.
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Combining with a control variate.

Let A = number of arrivals during the day. CV estimator conditional on U = u:

Xc(u) = X − β(u)[A− E[A | U = u]] = X − β(u)C(u).

Optimal CV coefficient depend on u:

β∗(u) =
Cov[A,X|U = u]

Var[A|U = u]
=

E[C ·X | U = u]
E[C2 | U = u]

.

Can approximate β∗ by approximating the two functions
q1(u) = E[C ·X | U = u] and q2(u) = E[C2 | U = u].
Use pilot runs and least squares polynomial or spline approximation.

Variance in stratum s is now

σ2
s = Var[Xc(U (s))] =

1
k

∫ s/k

(s−1)/k

Var[X − β∗(u)C | U = u]du

where U (s) ∼ Unif((s− 1)/k, s/k). So the optimal allocation changes!
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The function β∗(u) approximated by polynomial interpolation
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Another example: Sensitivity w.r.t. mean service time parameter.

Let X1,i and X2,i be the realizations of G(s0) with mean service time θ and θ + δ.

Finite difference estimator:

∆i = [X2,i −X1,i]/δ.

With IRN: Var[∆i] = O(δ−2).
With CRN, if G(s0) was continuous, we would have Var[∆i] = O(1).
With well-synchronized CRN, we can prove that Var[∆i] = O(δ−1−ε).
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Ongoing and Future Work in Our Group

• Develop a Java library for simulation of call centers.

• Variance reduction methods for simulation.

• Integrate with optimization algorithms for staffing, scheduling, rostering, routing.

• Integrate with approximation formulas and CTMC models.

• Better models for inbound traffic and other aspects.

• Currently, our work is driven by the interests of Bell Canada.

Papers: type L’Ecuyer in Google.


