PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: KernelVMatrix.cc 8617 2008-03-03 17:45:54Z nouiz $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "KernelVMatrix.h" 00044 00045 // From Old Kernel.cc: all includes are putted in every file. 00046 // To be revised manually 00047 /*#include <cmath> 00048 #include <plearn/base/stringutils.h> 00049 #include <plearn/ker/Kernel.h> 00050 #include <plearn/math/TMat_maths.h> 00051 #include <plearn/sys/PLMPI.h>*/ 00053 namespace PLearn { 00054 using namespace std; 00055 00056 00057 // ***************** 00058 // * KernelVMatrix * 00059 // ***************** 00060 00061 PLEARN_IMPLEMENT_OBJECT(KernelVMatrix, "ONE LINE DESC", "NO HELP"); 00062 00063 KernelVMatrix::KernelVMatrix() 00064 { 00065 } 00066 00067 KernelVMatrix::KernelVMatrix(VMat the_source1, VMat the_source2, Ker the_ker) 00068 : VMatrix(the_source1->length(), the_source2->length()), 00069 source1(the_source1), source2(the_source2), ker(the_ker), 00070 input1(the_source1->width()), input2(the_source2->width()) 00071 {} 00072 00073 void 00074 KernelVMatrix::build() 00075 { 00076 inherited::build(); 00077 build_(); 00078 } 00079 00080 void 00081 KernelVMatrix::build_() 00082 { 00083 if (source1) 00084 input1.resize(source1->width()); 00085 if (source2) 00086 input2.resize(source2->width()); 00087 updateMtime(source1); 00088 updateMtime(source2); 00089 updateMtime(ker.getData()); 00090 } 00091 00092 void 00093 KernelVMatrix::declareOptions(OptionList &ol) 00094 { 00095 declareOption(ol, "source1", &KernelVMatrix::source1, 00096 OptionBase::buildoption, ""); 00097 00098 declareOption(ol, "source2", &KernelVMatrix::source2, 00099 OptionBase::buildoption, ""); 00100 00101 declareOption(ol, "ker", &KernelVMatrix::ker, 00102 OptionBase::buildoption, ""); 00103 00104 inherited::declareOptions(ol); 00105 } 00106 00107 00108 // IMPLEMENT_NAME_AND_DEEPCOPY(KernelVMatrix); 00109 void KernelVMatrix::makeDeepCopyFromShallowCopy(CopiesMap& copies) 00110 { 00111 inherited::makeDeepCopyFromShallowCopy(copies); 00112 deepCopyField(source1, copies); 00113 deepCopyField(source2, copies); 00114 deepCopyField(ker, copies); 00115 deepCopyField(input1, copies); 00116 deepCopyField(input2, copies); 00117 } 00118 00119 00120 real KernelVMatrix::get(int i, int j) const 00121 { 00122 #ifdef BOUNDCHECK 00123 if(i<0 || i>=length() || j<0 || j>=width()) 00124 PLERROR("In KernelVMatrix::get OUT OF BOUNDS"); 00125 #endif 00126 00127 source1->getRow(i,input1); 00128 source2->getRow(j,input2); 00129 return ker(input1,input2); 00130 } 00131 00132 00133 void KernelVMatrix::getSubRow(int i, int j, Vec v) const 00134 { 00135 #ifdef BOUNDCHECK 00136 if(i<0 || i>=length() || j<0 || j+v.length()>width()) 00137 PLERROR("In KernelVMatrix::getRow OUT OF BOUNDS"); 00138 #endif 00139 00140 source1->getRow(i,input1); 00141 for(int jj=0; jj<v.length(); jj++) 00142 { 00143 source2->getRow(j+jj,input2); 00144 v[jj] = ker(input1,input2); 00145 } 00146 } 00147 00148 00149 00150 } // end of namespace PLearn 00151 00152 00153 /* 00154 Local Variables: 00155 mode:c++ 00156 c-basic-offset:4 00157 c-file-style:"stroustrup" 00158 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00159 indent-tabs-mode:nil 00160 fill-column:79 00161 End: 00162 */ 00163 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :