PLearn 0.1
|
00001 00002 // -*- C++ -*- 00003 00004 // VMatrixFromDistribution.cc 00005 // 00006 // Copyright (C) 2003 Pascal Vincent 00007 // Copyright (C) 2005 Olivier Delalleau 00008 // 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 /* ******************************************************* 00038 * $Id: VMatrixFromDistribution.cc 5557 2006-05-10 20:36:58Z lamblin $ 00039 ******************************************************* */ 00040 00042 #include "VMatrixFromDistribution.h" 00043 00044 namespace PLearn { 00045 using namespace std; 00046 00047 VMatrixFromDistribution::VMatrixFromDistribution() 00048 :mode("sample"), generator_seed(0), nsamples(0) 00049 /* ### Initialize all fields to their default value */ 00050 { 00051 samples_per_dim = 10; 00052 } 00053 00054 PLEARN_IMPLEMENT_OBJECT(VMatrixFromDistribution, "A VMatrix built from sampling a distribution", 00055 "VMatrixFromDistribution implements a VMatrix whose data rows are drawn from a distribution\n" 00056 "or that contains the density or log density sampled on a grid (depending on \"mode\").\n" 00057 "The matrix is computed in memory at build time\n"); 00058 00059 void VMatrixFromDistribution::declareOptions(OptionList& ol) 00060 { 00061 declareOption(ol, "distr", &VMatrixFromDistribution::distr, OptionBase::buildoption, 00062 "The distribution this matrix will be generated from\n"); 00063 00064 declareOption(ol, "mode", &VMatrixFromDistribution::mode, OptionBase::buildoption, 00065 "mode can be one of:\n" 00066 " \"sample\" : will draw nsamples from the distribution initializing the generator with the generator_seed \n" 00067 " \"density\" : for 1d or 2d distributions, will report the density along a grid of samples_per_dim \n" 00068 " gridpoints per dimension. The resulting matrix will contain rows of the form [ coordinates density ] \n" 00069 " \"log_density\" : same as density, but reports the log of the density instead. \n" 00070 ); 00071 00072 declareOption(ol, "generator_seed", &VMatrixFromDistribution::generator_seed, OptionBase::buildoption, 00073 "The initial generator_seed to initialize the distribution's generator"); 00074 00075 declareOption(ol, "nsamples", &VMatrixFromDistribution::nsamples, OptionBase::buildoption, 00076 "number of samples to draw"); 00077 00078 declareOption(ol, "samples_per_dim", &VMatrixFromDistribution::samples_per_dim, OptionBase::buildoption, 00079 "number of samples on each dimensions of the grid"); 00080 00081 declareOption(ol, "mins", &VMatrixFromDistribution::mins, OptionBase::buildoption, 00082 "the minimum of the grid on each dimensions"); 00083 00084 declareOption(ol, "maxs", &VMatrixFromDistribution::maxs, OptionBase::buildoption, 00085 "the maximum of the grid on each dimensions"); 00086 00087 inherited::declareOptions(ol); 00088 } 00089 00090 void VMatrixFromDistribution::build_() 00091 { 00092 if(distr) 00093 { 00094 if(mode=="sample") 00095 { 00096 length_ = nsamples; 00097 width_ = distr->getNPredicted(); 00098 inputsize_ = width_; 00099 targetsize_ = 0; 00100 weightsize_ = 0; 00101 data.resize(length_, width_); 00102 distr->resetGenerator(generator_seed); 00103 distr->generateN(data); 00104 } 00105 else if(mode=="density" || mode=="log_density") 00106 { 00107 length_ = (int)pow(double(samples_per_dim),double(distr->inputsize())); 00108 width_ = distr->inputsize()+1; 00109 inputsize_ = distr->inputsize(); 00110 targetsize_ = 0; 00111 weightsize_ = 1; 00112 00113 data.resize(length_, width_); 00114 Vec v(data.width()); 00115 int k=0; 00116 switch(distr->inputsize()) 00117 { 00118 case 1: 00119 for(int j=0;j<samples_per_dim;j++) 00120 { 00121 v[0] = mins[0] + ((real)j / (samples_per_dim-1)) * (maxs[0]-mins[0]); 00122 if(mode=="density") 00123 v[1] = distr->density(v.subVec(0,1)); 00124 else // log_density 00125 v[1] = distr->log_density(v.subVec(0,1)); 00126 data(k++)<<v; 00127 } 00128 break; 00129 case 2: 00130 for(int i=0;i<samples_per_dim;i++) 00131 { 00132 v[0] = mins[0] + ((real)i / (samples_per_dim-1)) * (maxs[0]-mins[0]); 00133 for(int j=0;j<samples_per_dim;j++) 00134 { 00135 v[1] = mins[1] + ((real)j / (samples_per_dim-1)) * (maxs[1]-mins[1]); 00136 if(mode=="density") 00137 v[2] = distr->density(v.subVec(0,2)); 00138 else // log_density 00139 v[2] = distr->log_density(v.subVec(0,2)); 00140 data(k++)<<v; 00141 } 00142 } 00143 break; 00144 default: 00145 PLERROR("density and log_density modes only supported for distribution of dimension 1 or 2");break; 00146 } 00147 } 00148 else 00149 PLERROR("In VMatrixFromDistribution: invalid mode: %s",mode.c_str()); 00150 } 00151 } 00152 00153 // ### Nothing to add here, simply calls build_ 00154 void VMatrixFromDistribution::build() 00155 { 00156 inherited::build(); 00157 build_(); 00158 } 00159 00160 void VMatrixFromDistribution::makeDeepCopyFromShallowCopy(CopiesMap& copies) 00161 { 00162 inherited::makeDeepCopyFromShallowCopy(copies); 00163 } 00164 00165 real VMatrixFromDistribution::get(int i, int j) const 00166 { return data(i,j); } 00167 00168 void VMatrixFromDistribution::getColumn(int i, Vec v) const 00169 { v << data.column(i); } 00170 00171 void VMatrixFromDistribution::getSubRow(int i, int j, Vec v) const 00172 { v << data(i).subVec(j,v.length()); } 00173 00174 void VMatrixFromDistribution::getRow(int i, Vec v) const 00175 { v << data(i); } 00176 00177 void VMatrixFromDistribution::getMat(int i, int j, Mat m) const 00178 { m << data.subMat(i,j,m.length(),m.width()); } 00179 00180 Mat VMatrixFromDistribution::toMat() const 00181 { return data; } 00182 00183 } // end of namespace PLearn 00184 00185 00186 /* 00187 Local Variables: 00188 mode:c++ 00189 c-basic-offset:4 00190 c-file-style:"stroustrup" 00191 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00192 indent-tabs-mode:nil 00193 fill-column:79 00194 End: 00195 */ 00196 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :