PLearn 0.1
|
#include "TMat.h"
Go to the source code of this file.
Namespaces | |
namespace | PLearn |
< for swap | |
Functions | |
real | PLearn::log_gamma (real xx) |
real | PLearn::log_beta (real x, real y) |
real | PLearn::incomplete_beta (real z, real x, real y) |
real | PLearn::student_t_cdf (real t, int nb_degrees_of_freedom) |
void | PLearn::seed () |
void | PLearn::manual_seed (int32_t x) |
int32_t | PLearn::get_seed () |
real | PLearn::uniform_sample () |
real | PLearn::bounded_uniform (real a, real b) |
real | PLearn::expdev () |
real | PLearn::gaussian_01 () |
real | PLearn::normal_sample () |
real | PLearn::gaussian_mu_sigma (real mu, real sigma) |
real | PLearn::gaussian_mixture_mu_sigma (Vec &w, const Vec &mu, const Vec &sigma) |
real | PLearn::gamdev (int ia) |
real | PLearn::poidev (real xm) |
real | PLearn::bnldev (real pp, int n) |
real | PLearn::binomial_sample (real prob1) |
alias | |
int | PLearn::multinomial_sample (const Vec &distribution) |
int | PLearn::uniform_multinomial_sample (int N) |
return an integer between 0 and N-1 with equal probabilities | |
template<class T > | |
void | PLearn::bootstrap_rows (const TMat< T > &source, TMat< T > destination) |
sample with replacement the rows of source and put them in destination. | |
void | PLearn::fill_random_uniform (const Vec &dest, real minval=0, real maxval=1) |
sample each element from uniform distribution U[minval,maxval] | |
void | PLearn::fill_random_discrete (const Vec &dest, const Vec &set) |
sample each element from the given set | |
void | PLearn::fill_random_normal (const Vec &dest, real mean=0, real stdev=1) |
sample each element from Normal(mean,sdev^2) distribution | |
void | PLearn::fill_random_normal (const Vec &dest, const Vec &mean, const Vec &stdev) |
sample each element from multivariate Normal(mean,diag(sdev^2)) distribution | |
void | PLearn::fill_random_uniform (const Mat &dest, real minval, real maxval) |
void | PLearn::fill_random_normal (const Mat &dest, real mean, real sdev) |
void | PLearn::random_subset_indices (const TVec< int > &dest, int n) |
Fill dest with dest.length() unique indices of entries in (0,1,...n-1), chosen uniformly i.e. | |
template<class T > | |
void | PLearn::shuffleElements (const TVec< T > &vec) |
randomly shuffle the entries of the TVector | |
template<class T > | |
void | PLearn::shuffleRows (const TMat< T > &mat) |
template<class T > | |
TVec< int > | PLearn::computeRanks (const TMat< T > &mat, TMat< T > &ranks, bool ignore_missing=false) |
For each column of 'mat', sort the elements and put in the 'ranks' matrix (of the same dimensions) the rank of original elements. |