| 
    PLearn 0.1 
   | 
 
#include "TMat.h"
Go to the source code of this file.
Namespaces | |
| namespace | PLearn | 
< for swap  | |
Functions | |
| real | PLearn::log_gamma (real xx) | 
| real | PLearn::log_beta (real x, real y) | 
| real | PLearn::incomplete_beta (real z, real x, real y) | 
| real | PLearn::student_t_cdf (real t, int nb_degrees_of_freedom) | 
| void | PLearn::seed () | 
| void | PLearn::manual_seed (int32_t x) | 
| int32_t | PLearn::get_seed () | 
| real | PLearn::uniform_sample () | 
| real | PLearn::bounded_uniform (real a, real b) | 
| real | PLearn::expdev () | 
| real | PLearn::gaussian_01 () | 
| real | PLearn::normal_sample () | 
| real | PLearn::gaussian_mu_sigma (real mu, real sigma) | 
| real | PLearn::gaussian_mixture_mu_sigma (Vec &w, const Vec &mu, const Vec &sigma) | 
| real | PLearn::gamdev (int ia) | 
| real | PLearn::poidev (real xm) | 
| real | PLearn::bnldev (real pp, int n) | 
| real | PLearn::binomial_sample (real prob1) | 
| alias   | |
| int | PLearn::multinomial_sample (const Vec &distribution) | 
| int | PLearn::uniform_multinomial_sample (int N) | 
| return an integer between 0 and N-1 with equal probabilities   | |
| template<class T > | |
| void | PLearn::bootstrap_rows (const TMat< T > &source, TMat< T > destination) | 
| sample with replacement the rows of source and put them in destination.   | |
| void | PLearn::fill_random_uniform (const Vec &dest, real minval=0, real maxval=1) | 
| sample each element from uniform distribution U[minval,maxval]   | |
| void | PLearn::fill_random_discrete (const Vec &dest, const Vec &set) | 
| sample each element from the given set   | |
| void | PLearn::fill_random_normal (const Vec &dest, real mean=0, real stdev=1) | 
| sample each element from Normal(mean,sdev^2) distribution   | |
| void | PLearn::fill_random_normal (const Vec &dest, const Vec &mean, const Vec &stdev) | 
| sample each element from multivariate Normal(mean,diag(sdev^2)) distribution   | |
| void | PLearn::fill_random_uniform (const Mat &dest, real minval, real maxval) | 
| void | PLearn::fill_random_normal (const Mat &dest, real mean, real sdev) | 
| void | PLearn::random_subset_indices (const TVec< int > &dest, int n) | 
| Fill dest with dest.length() unique indices of entries in (0,1,...n-1), chosen uniformly i.e.   | |
| template<class T > | |
| void | PLearn::shuffleElements (const TVec< T > &vec) | 
| randomly shuffle the entries of the TVector   | |
| template<class T > | |
| void | PLearn::shuffleRows (const TMat< T > &mat) | 
| template<class T > | |
| TVec< int > | PLearn::computeRanks (const TMat< T > &mat, TMat< T > &ranks, bool ignore_missing=false) | 
| For each column of 'mat', sort the elements and put in the 'ranks' matrix (of the same dimensions) the rank of original elements.   | |
 1.7.4