PLearn 0.1
Public Member Functions | Static Public Member Functions | Static Public Attributes | Private Types | Private Member Functions
PLearn::ComputePurenneError Class Reference

#include <ComputePurenneError.h>

Inheritance diagram for PLearn::ComputePurenneError:
Inheritance graph
[legend]
Collaboration diagram for PLearn::ComputePurenneError:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 ComputePurenneError ()
virtual ~ComputePurenneError ()
virtual string classname () const
virtual OptionListgetOptionList () const
virtual OptionMapgetOptionMap () const
virtual RemoteMethodMapgetRemoteMethodMap () const
virtual ComputePurenneErrordeepCopy (CopiesMap &copies) const
virtual void makeDeepCopyFromShallowCopy (CopiesMap &copies)
 Transforms a shallow copy into a deep copy.
virtual void build ()
 Finish building the object; just call inherited::build followed by build_()
virtual void train ()
 *** SUBCLASS WRITING: ***
virtual void forget ()
 *** SUBCLASS WRITING: ***
virtual int outputsize () const
 SUBCLASS WRITING: override this so that it returns the size of this learner's output, as a function of its inputsize(), targetsize() and set options.
virtual TVec< string > getTrainCostNames () const
 *** SUBCLASS WRITING: ***
virtual TVec< string > getTestCostNames () const
 *** SUBCLASS WRITING: ***
virtual void computeOutput (const Vec &input, Vec &output) const
 *** SUBCLASS WRITING: ***
virtual void computeOutputAndCosts (const Vec &input, const Vec &target, Vec &output, Vec &costs) const
 Default calls computeOutput and computeCostsFromOutputs.
virtual void computeCostsFromOutputs (const Vec &input, const Vec &output, const Vec &target, Vec &costs) const
 *** SUBCLASS WRITING: ***

Static Public Member Functions

static string _classname_ ()
static OptionList_getOptionList_ ()
static RemoteMethodMap_getRemoteMethodMap_ ()
static Object_new_instance_for_typemap_ ()
static bool _isa_ (const Object *o)
static void _static_initialize_ ()
static const PPathdeclaringFile ()
static void declareOptions (OptionList &ol)
 Declares this class' options.

Static Public Attributes

static StaticInitializer _static_initializer_

Private Types

typedef PLearner inherited

Private Member Functions

void build_ ()
 **** SUBCLASS WRITING: ****

Detailed Description

Definition at line 53 of file ComputePurenneError.h.


Member Typedef Documentation

Reimplemented from PLearn::PLearner.

Definition at line 55 of file ComputePurenneError.h.


Constructor & Destructor Documentation

PLearn::ComputePurenneError::ComputePurenneError ( )

Definition at line 52 of file ComputePurenneError.cc.

{
}
PLearn::ComputePurenneError::~ComputePurenneError ( ) [virtual]

Definition at line 56 of file ComputePurenneError.cc.

{
}

Member Function Documentation

string PLearn::ComputePurenneError::_classname_ ( ) [static]

Reimplemented from PLearn::PLearner.

Definition at line 50 of file ComputePurenneError.cc.

OptionList & PLearn::ComputePurenneError::_getOptionList_ ( ) [static]

Reimplemented from PLearn::PLearner.

Definition at line 50 of file ComputePurenneError.cc.

RemoteMethodMap & PLearn::ComputePurenneError::_getRemoteMethodMap_ ( ) [static]

Reimplemented from PLearn::PLearner.

Definition at line 50 of file ComputePurenneError.cc.

bool PLearn::ComputePurenneError::_isa_ ( const Object o) [static]

Reimplemented from PLearn::PLearner.

Definition at line 50 of file ComputePurenneError.cc.

Object * PLearn::ComputePurenneError::_new_instance_for_typemap_ ( ) [static]

Reimplemented from PLearn::Object.

Definition at line 50 of file ComputePurenneError.cc.

StaticInitializer ComputePurenneError::_static_initializer_ & PLearn::ComputePurenneError::_static_initialize_ ( ) [static]

Reimplemented from PLearn::PLearner.

Definition at line 50 of file ComputePurenneError.cc.

void PLearn::ComputePurenneError::build ( ) [virtual]

Finish building the object; just call inherited::build followed by build_()

Reimplemented from PLearn::PLearner.

Definition at line 70 of file ComputePurenneError.cc.

void PLearn::ComputePurenneError::build_ ( ) [private]

**** SUBCLASS WRITING: ****

This method should finish building of the object, according to set 'options', in *any* situation.

Typical situations include:

  • Initial building of an object from a few user-specified options
  • Building of a "reloaded" object: i.e. from the complete set of all serialised options.
  • Updating or "re-building" of an object after a few "tuning" options (such as hyper-parameters) have been modified.

You can assume that the parent class' build_() has already been called.

A typical build method will want to know the inputsize(), targetsize() and outputsize(), and may also want to check whether train_set->hasWeights(). All these methods require a train_set to be set, so the first thing you may want to do, is check if(train_set), before doing any heavy building...

Note: build() is always called by setTrainingSet.

Reimplemented from PLearn::PLearner.

Definition at line 76 of file ComputePurenneError.cc.

{
}
string PLearn::ComputePurenneError::classname ( ) const [virtual]

Reimplemented from PLearn::Object.

Definition at line 50 of file ComputePurenneError.cc.

void PLearn::ComputePurenneError::computeCostsFromOutputs ( const Vec input,
const Vec output,
const Vec target,
Vec costs 
) const [virtual]

*** SUBCLASS WRITING: ***

This should be defined in subclasses to compute the weighted costs from already computed output. The costs should correspond to the cost names returned by getTestCostNames().

NOTE: In exotic cases, the cost may also depend on some info in the input, that's why the method also gets so see it.

Implements PLearn::PLearner.

Definition at line 142 of file ComputePurenneError.cc.

References PLearn::pow().

{
    costsv[0] = pow((outputv[0] - targetv[0]), 2);
    costsv[1] = outputv[1] == targetv[1] ? 0 : 1;
    costsv[2] = int(round(fabs(outputv[1] - targetv[1])));
    costsv[3] = pow((outputv[1] - targetv[1]), 2);
}

Here is the call graph for this function:

void PLearn::ComputePurenneError::computeOutput ( const Vec input,
Vec output 
) const [virtual]

*** SUBCLASS WRITING: ***

This should be defined in subclasses to compute the output from the input.

Reimplemented from PLearn::PLearner.

Definition at line 130 of file ComputePurenneError.cc.

{
    outputv[0] = inputv[0];
    outputv[1] = inputv[1];
}
void PLearn::ComputePurenneError::computeOutputAndCosts ( const Vec input,
const Vec target,
Vec output,
Vec costs 
) const [virtual]

Default calls computeOutput and computeCostsFromOutputs.

You may override this if you have a more efficient way to compute both output and weighted costs at the same time.

Reimplemented from PLearn::PLearner.

Definition at line 136 of file ComputePurenneError.cc.

{
    computeOutput(inputv, outputv);
    computeCostsFromOutputs(inputv, outputv, targetv, costsv);
}
void PLearn::ComputePurenneError::declareOptions ( OptionList ol) [static]

Declares this class' options.

Reimplemented from PLearn::PLearner.

Definition at line 60 of file ComputePurenneError.cc.

static const PPath& PLearn::ComputePurenneError::declaringFile ( ) [inline, static]

Reimplemented from PLearn::PLearner.

Definition at line 61 of file ComputePurenneError.h.

:
    void         build_();
ComputePurenneError * PLearn::ComputePurenneError::deepCopy ( CopiesMap copies) const [virtual]

Reimplemented from PLearn::PLearner.

Definition at line 50 of file ComputePurenneError.cc.

void PLearn::ComputePurenneError::forget ( ) [virtual]

*** SUBCLASS WRITING: ***

(Re-)initializes the PLearner in its fresh state (that state may depend on the 'seed' option) and sets 'stage' back to 0 (this is the stage of a fresh learner!)

A typical forget() method should do the following:

  • initialize the learner's parameters, using this random generator
  • stage = 0;

This method is typically called by the build_() method, after it has finished setting up the parameters, and if it deemed useful to set or reset the learner in its fresh state. (remember build may be called after modifying options that do not necessarily require the learner to restart from a fresh state...) forget is also called by the setTrainingSet method, after calling build(), so it will generally be called TWICE during setTrainingSet!

Reimplemented from PLearn::PLearner.

Definition at line 106 of file ComputePurenneError.cc.

{
}
OptionList & PLearn::ComputePurenneError::getOptionList ( ) const [virtual]

Reimplemented from PLearn::Object.

Definition at line 50 of file ComputePurenneError.cc.

OptionMap & PLearn::ComputePurenneError::getOptionMap ( ) const [virtual]

Reimplemented from PLearn::Object.

Definition at line 50 of file ComputePurenneError.cc.

RemoteMethodMap & PLearn::ComputePurenneError::getRemoteMethodMap ( ) const [virtual]

Reimplemented from PLearn::Object.

Definition at line 50 of file ComputePurenneError.cc.

TVec< string > PLearn::ComputePurenneError::getTestCostNames ( ) const [virtual]

*** SUBCLASS WRITING: ***

This should return the names of the costs computed by computeCostsFromOutputs.

Implements PLearn::PLearner.

Definition at line 125 of file ComputePurenneError.cc.

{ 
    return getTrainCostNames();
}
TVec< string > PLearn::ComputePurenneError::getTrainCostNames ( ) const [virtual]

*** SUBCLASS WRITING: ***

This should return the names of the objective costs that the train method computes and for which it updates the VecStatsCollector train_stats.

Implements PLearn::PLearner.

Definition at line 115 of file ComputePurenneError.cc.

{
    TVec<string> return_msg(4);
    return_msg[0] = "mse";
    return_msg[1] = "class_error";
    return_msg[2] = "linear_class_error";
    return_msg[3] = "square_class_error";
    return return_msg;
}
void PLearn::ComputePurenneError::makeDeepCopyFromShallowCopy ( CopiesMap copies) [virtual]

Transforms a shallow copy into a deep copy.

Reimplemented from PLearn::PLearner.

Definition at line 65 of file ComputePurenneError.cc.

int PLearn::ComputePurenneError::outputsize ( ) const [virtual]

SUBCLASS WRITING: override this so that it returns the size of this learner's output, as a function of its inputsize(), targetsize() and set options.

Implements PLearn::PLearner.

Definition at line 110 of file ComputePurenneError.cc.

{
    return 2;
}
void PLearn::ComputePurenneError::train ( ) [virtual]

*** SUBCLASS WRITING: ***

The role of the train method is to bring the learner up to stage==nstages, updating the stats with training costs measured on-line in the process.

TYPICAL CODE:

  static Vec input;  // static so we don't reallocate/deallocate memory each time...
  static Vec target; // (but be careful that static means shared!)
  input.resize(inputsize());    // the train_set's inputsize()
  target.resize(targetsize());  // the train_set's targetsize()
  real weight;
  
  if(!train_stats)   // make a default stats collector, in case there's none
      train_stats = new VecStatsCollector();
  
  if(nstages<stage)  // asking to revert to a previous stage!
      forget();      // reset the learner to stage=0
  
  while(stage<nstages)
  {
      // clear statistics of previous epoch
      train_stats->forget(); 
            
      //... train for 1 stage, and update train_stats,
      // using train_set->getSample(input, target, weight);
      // and train_stats->update(train_costs)
          
      ++stage;
      train_stats->finalize(); // finalize statistics for this epoch
  }

Implements PLearn::PLearner.

Definition at line 80 of file ComputePurenneError.cc.

References PLearn::ProgressBar::update().

{
    int row;
    Vec sample_input(train_set->inputsize());
    Vec sample_target(train_set->targetsize());
    real sample_weight;
    Vec sample_output(2);
    Vec sample_costs(4);
    ProgressBar* pb = NULL;
    if (report_progress)
    {
        pb = new ProgressBar("Purenne error: computing the train statistics: ", train_set->length());
    } 
    train_stats->forget();
    for (row = 0; row < train_set->length(); row++)
    {  
        train_set->getExample(row, sample_input, sample_target, sample_weight);
        computeOutput(sample_input, sample_output);
        computeCostsFromOutputs(sample_input, sample_output, sample_target, sample_costs); 
        train_stats->update(sample_costs);
        if (report_progress) pb->update(row);
    }
    train_stats->finalize();
    if (report_progress) delete pb; 
}

Here is the call graph for this function:


Member Data Documentation

Reimplemented from PLearn::PLearner.

Definition at line 61 of file ComputePurenneError.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines