PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // RankedVMatrix.cc 00004 // 00005 // Copyright (C) 2004 Olivier Delalleau 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 /* ******************************************************* 00036 * $Id: RankedVMatrix.cc 5557 2006-05-10 20:36:58Z lamblin $ 00037 ******************************************************* */ 00038 00039 // Authors: Olivier Delalleau 00040 00044 #include "RankedVMatrix.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00050 // RankedVMatrix // 00052 RankedVMatrix::RankedVMatrix() 00053 {} 00054 00055 RankedVMatrix::RankedVMatrix(VMat the_source, PP<RankedVMatrix> the_reference) 00056 : reference(the_reference) 00057 { 00058 source = the_source; 00059 build(); 00060 } 00061 00062 PLEARN_IMPLEMENT_OBJECT(RankedVMatrix, 00063 "Replaces the target of a source VMat with its rank.", 00064 "A 'reference' VMat, which is also a RankedVMatrix, can also be provided.\n" 00065 "In this case, the target will be defined as follows from a target y:\n" 00066 " 1. Find in the reference's source VMat the target closest to y\n" 00067 " 2. Use the rank of the input corresponding to this target.\n" 00068 " 3. If there is no such target, use the maximum rank + 1\n" 00069 "If no reference is given, then the target is just the rank in the source\n" 00070 "VMat's sorted targets, starting from 0.\n" 00071 ); 00072 00074 // declareOptions // 00076 void RankedVMatrix::declareOptions(OptionList& ol) 00077 { 00078 declareOption(ol, "reference", &RankedVMatrix::reference, OptionBase::buildoption, 00079 "An optional reference VMat used to define the targets.\n"); 00080 00081 // Now call the parent class' declareOptions 00082 inherited::declareOptions(ol); 00083 } 00084 00086 // build // 00088 void RankedVMatrix::build() 00089 { 00090 inherited::build(); 00091 build_(); 00092 } 00093 00095 // build_ // 00097 void RankedVMatrix::build_() 00098 { 00099 // ### This method should do the real building of the object, 00100 // ### according to set 'options', in *any* situation. 00101 // ### Typical situations include: 00102 // ### - Initial building of an object from a few user-specified options 00103 // ### - Building of a "reloaded" object: i.e. from the complete set of all serialised options. 00104 // ### - Updating or "re-building" of an object after a few "tuning" options have been modified. 00105 // ### You should assume that the parent class' build_() has already been called. 00106 if (source) { 00107 if (source->targetsize() != 1) 00108 PLERROR("In RankedVMatrix::build_ - The source VMat must have a targetsize equal to 1"); 00109 // Get sorted target column. 00110 sorted_targets.resize(source->length(), 2); 00111 sorted_targets.column(0) << source.column(source->inputsize())->toMat(); 00112 sorted_targets.column(1) << TVec<int>(0, source->length() - 1, 1); 00113 sortRows(sorted_targets); 00114 index_to_rank.resize(source->length()); 00115 if (reference) { 00116 // We define the targets based on the reference rankings. 00117 // First get the sorted target column of the reference. 00118 Mat ref_sorted_targets = reference->getSortedTargets(); 00119 // Now find the inverse mapping from index to rank. 00120 int ref_index = 0; 00121 int the_index; 00122 for (int i = 0; i < sorted_targets.length(); i++) { 00123 while (ref_index < ref_sorted_targets.length() && 00124 sorted_targets(i,0) > ref_sorted_targets(ref_index,0)) 00125 ref_index++; 00126 if (ref_index == 0) 00127 // The first target higher or equal is the 0-th one. 00128 the_index = 0; 00129 else if (ref_index == sorted_targets.length()) 00130 // There is no target higher or equal. 00131 the_index = sorted_targets.length() - 1; 00132 else if (fast_exact_is_equal(sorted_targets(i,0), 00133 ref_sorted_targets(ref_index, 0))) 00134 // We have an exact match. 00135 the_index = ref_index; 00136 else { 00137 // General case: we are in-between two targets. We choose the closest 00138 // one. 00139 if (fabs(sorted_targets(i,0) - ref_sorted_targets(ref_index,0)) <= 00140 fabs(sorted_targets(i,0) - ref_sorted_targets(ref_index - 1 ,0))) 00141 the_index = ref_index; 00142 else 00143 the_index = ref_index - 1; 00144 } 00145 index_to_rank[(int) sorted_targets(i,1)] = the_index; 00146 } 00147 } else { 00148 // Store the inverse mapping from index to rank. 00149 for (int i = 0; i < source->length(); i++) 00150 index_to_rank[(int) sorted_targets(i,1)] = i; 00151 } 00152 // Set VMat info. 00153 width_ = source->width() - source->targetsize() + 1; 00154 defineSizes(source->inputsize(), 1, source->weightsize()); 00155 setMetaInfoFromSource(); 00156 } 00157 } 00158 00160 // getNewRow // 00162 void RankedVMatrix::getNewRow(int i, const Vec& v) const 00163 { 00164 source->getRow(i, v); 00165 // Replace the target with the rank. 00166 v[inputsize_] = index_to_rank[i]; 00167 } 00168 00170 // makeDeepCopyFromShallowCopy // 00172 void RankedVMatrix::makeDeepCopyFromShallowCopy(CopiesMap& copies) 00173 { 00174 inherited::makeDeepCopyFromShallowCopy(copies); 00175 deepCopyField(index_to_rank, copies); 00176 deepCopyField(sorted_targets, copies); 00177 deepCopyField(reference, copies); 00178 } 00179 00180 } // end of namespace PLearn 00181 00182 00183 /* 00184 Local Variables: 00185 mode:c++ 00186 c-basic-offset:4 00187 c-file-style:"stroustrup" 00188 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00189 indent-tabs-mode:nil 00190 fill-column:79 00191 End: 00192 */ 00193 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :