PLearn 0.1
|
Dot product between 2 vectors (or possibly 2 matrices, which are then simply seen as vectors) More...
#include <DotProductVariable.h>
Public Member Functions | |
DotProductVariable () | |
Default constructor for persistence. | |
DotProductVariable (Variable *input1, Variable *input2) | |
virtual string | classname () const |
virtual OptionList & | getOptionList () const |
virtual OptionMap & | getOptionMap () const |
virtual RemoteMethodMap & | getRemoteMethodMap () const |
virtual DotProductVariable * | deepCopy (CopiesMap &copies) const |
virtual void | build () |
Post-constructor. | |
virtual void | recomputeSize (int &l, int &w) const |
Recomputes the length l and width w that this variable should have, according to its parent variables. | |
virtual void | fprop () |
compute output given input | |
virtual void | bprop () |
virtual void | bbprop () |
compute an approximation to diag(d^2/dinput^2) given diag(d^2/doutput^2), with diag(d^2/dinput^2) ~=~ (doutput/dinput)' diag(d^2/doutput^2) (doutput/dinput) In particular: if 'C' depends on 'y' and 'y' depends on x ... | |
virtual void | symbolicBprop () |
compute a piece of new Var graph that represents the symbolic derivative of this Var | |
virtual void | rfprop () |
Static Public Member Functions | |
static string | _classname_ () |
DotProductVariable. | |
static OptionList & | _getOptionList_ () |
static RemoteMethodMap & | _getRemoteMethodMap_ () |
static Object * | _new_instance_for_typemap_ () |
static bool | _isa_ (const Object *o) |
static void | _static_initialize_ () |
static const PPath & | declaringFile () |
Static Public Attributes | |
static StaticInitializer | _static_initializer_ |
Protected Member Functions | |
void | build_ () |
This does the actual building. | |
Private Types | |
typedef BinaryVariable | inherited |
Dot product between 2 vectors (or possibly 2 matrices, which are then simply seen as vectors)
* Dot and Matrix products... *
Definition at line 55 of file DotProductVariable.h.
typedef BinaryVariable PLearn::DotProductVariable::inherited [private] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.h.
PLearn::DotProductVariable::DotProductVariable | ( | ) | [inline] |
string PLearn::DotProductVariable::_classname_ | ( | ) | [static] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.cc.
OptionList & PLearn::DotProductVariable::_getOptionList_ | ( | ) | [static] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.cc.
RemoteMethodMap & PLearn::DotProductVariable::_getRemoteMethodMap_ | ( | ) | [static] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.cc.
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.cc.
Object * PLearn::DotProductVariable::_new_instance_for_typemap_ | ( | ) | [static] |
Reimplemented from PLearn::Object.
Definition at line 57 of file DotProductVariable.cc.
StaticInitializer DotProductVariable::_static_initializer_ & PLearn::DotProductVariable::_static_initialize_ | ( | ) | [static] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.cc.
void PLearn::DotProductVariable::bbprop | ( | ) | [virtual] |
compute an approximation to diag(d^2/dinput^2) given diag(d^2/doutput^2), with diag(d^2/dinput^2) ~=~ (doutput/dinput)' diag(d^2/doutput^2) (doutput/dinput) In particular: if 'C' depends on 'y' and 'y' depends on x ...
d^2C/dx^2 = d^2C/dy^2 * (dy/dx)^2 + dC/dy * d^2y/dx^2 (diaghessian) (gradient)
Reimplemented from PLearn::Variable.
Definition at line 111 of file DotProductVariable.cc.
References PLearn::Variable::diaghessiandata, PLearn::BinaryVariable::input1, PLearn::BinaryVariable::input2, and PLearn::Var::length().
{ if (input1->diaghessian.length()==0) input1->resizeDiagHessian(); if (input2->diaghessian.length()==0) input2->resizeDiagHessian(); real h = diaghessiandata[0]; for (int k=0; k<input1->nelems(); k++) { real in2v=input2->valuedata[k]; input1->diaghessiandata[k] += in2v * in2v * h; real in1v=input1->valuedata[k]; input2->diaghessiandata[k] += in1v * in1v * h; } }
void PLearn::DotProductVariable::bprop | ( | ) | [virtual] |
Implements PLearn::Variable.
Definition at line 100 of file DotProductVariable.cc.
References grad, PLearn::Variable::gradientdata, PLearn::BinaryVariable::input1, and PLearn::BinaryVariable::input2.
void PLearn::DotProductVariable::build | ( | ) | [virtual] |
Post-constructor.
The normal implementation should call simply inherited::build(), then this class's build_(). This method should be callable again at later times, after modifying some option fields to change the "architecture" of the object.
Reimplemented from PLearn::BinaryVariable.
Definition at line 66 of file DotProductVariable.cc.
References PLearn::BinaryVariable::build(), and build_().
{ inherited::build(); build_(); }
void PLearn::DotProductVariable::build_ | ( | ) | [protected] |
This does the actual building.
Reimplemented from PLearn::BinaryVariable.
Definition at line 73 of file DotProductVariable.cc.
References PLearn::BinaryVariable::input1, PLearn::BinaryVariable::input2, PLearn::Var::length(), PLERROR, and PLearn::Var::width().
Referenced by build(), and DotProductVariable().
{ if(input1 && input2 && (input1->nelems() != input2->nelems())) PLERROR("IN DotProductVariable input1 and input2 must have the " "same number of elements: %dx%d != %dx%d", input1->length(), input1->width(), input2->length(), input2->width()); }
string PLearn::DotProductVariable::classname | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 57 of file DotProductVariable.cc.
static const PPath& PLearn::DotProductVariable::declaringFile | ( | ) | [inline, static] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 64 of file DotProductVariable.h.
: void build_();
DotProductVariable * PLearn::DotProductVariable::deepCopy | ( | CopiesMap & | copies | ) | const [virtual] |
Reimplemented from PLearn::BinaryVariable.
Definition at line 57 of file DotProductVariable.cc.
void PLearn::DotProductVariable::fprop | ( | ) | [virtual] |
compute output given input
Implements PLearn::Variable.
Definition at line 91 of file DotProductVariable.cc.
References PLearn::BinaryVariable::input1, PLearn::BinaryVariable::input2, PLearn::sum(), and PLearn::Variable::valuedata.
{ real sum = 0.0; for (int k=0; k<input1->nelems(); k++) sum += input1->valuedata[k] * input2->valuedata[k]; valuedata[0] = sum; }
OptionList & PLearn::DotProductVariable::getOptionList | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 57 of file DotProductVariable.cc.
OptionMap & PLearn::DotProductVariable::getOptionMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 57 of file DotProductVariable.cc.
RemoteMethodMap & PLearn::DotProductVariable::getRemoteMethodMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 57 of file DotProductVariable.cc.
Recomputes the length l and width w that this variable should have, according to its parent variables.
This is used for ex. by sizeprop() The default version stupidly returns the current dimensions, so make sure to overload it in subclasses if this is not appropriate.
Reimplemented from PLearn::Variable.
Definition at line 81 of file DotProductVariable.cc.
{ l=1; w=1; }
void PLearn::DotProductVariable::rfprop | ( | ) | [virtual] |
Reimplemented from PLearn::Variable.
Definition at line 135 of file DotProductVariable.cc.
References PLearn::BinaryVariable::input1, PLearn::BinaryVariable::input2, PLearn::TVec< T >::length(), PLearn::BinaryVariable::resizeRValue(), PLearn::Variable::rValue, PLearn::Variable::rvaluedata, and PLearn::sum().
{ if (rValue.length()==0) resizeRValue(); real sum = 0.0; for (int k=0; k<input1->nelems(); k++) sum += input1->rvaluedata[k] * input2->valuedata[k] + input1->valuedata[k] * input2->rvaluedata[k]; rvaluedata[0] = sum; }
void PLearn::DotProductVariable::symbolicBprop | ( | ) | [virtual] |
compute a piece of new Var graph that represents the symbolic derivative of this Var
Reimplemented from PLearn::Variable.
Definition at line 128 of file DotProductVariable.cc.
References PLearn::Variable::g, PLearn::BinaryVariable::input1, and PLearn::BinaryVariable::input2.
Reimplemented from PLearn::BinaryVariable.
Definition at line 64 of file DotProductVariable.h.