PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: ManifoldParzenKernel.cc 3994 2005-08-25 13:35:03Z chapados $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "ManifoldParzenKernel.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00049 PLEARN_IMPLEMENT_OBJECT(ManifoldParzenKernel, 00050 "Kernel that uses the evaluate method of Manifold Parzen.", 00051 ""); 00052 00053 real ManifoldParzenKernel::evaluate(const Vec& x1, const Vec& x2) const 00054 { 00055 real ret; 00056 if(is_symmetric) 00057 ret = mp->evaluate(x1,x2,scale) + mp->evaluate(x2,x1,scale); 00058 else 00059 ret = mp->evaluate(x1,x2,scale); 00060 00061 return ret; 00062 } 00063 00064 real ManifoldParzenKernel::evaluate_i_j(int i, int j) const 00065 { 00066 real ret; 00067 if(is_symmetric) 00068 ret = mp->evaluate_i_j(i,j,scale) + mp->evaluate_i_j(j,i,scale); 00069 else 00070 ret = mp->evaluate_i_j(i,j,scale); 00071 00072 return ret; 00073 } 00074 00075 void ManifoldParzenKernel::declareOptions(OptionList& ol) 00076 { 00077 declareOption(ol, "scale", &ManifoldParzenKernel::scale, OptionBase::buildoption, 00078 "The scale factor of the eigen values"); 00079 declareOption(ol, "mp", &ManifoldParzenKernel::mp, OptionBase::buildoption, 00080 "Manifold Parzen distribution"); 00081 declareOption(ol, "train_mp", &ManifoldParzenKernel::train_mp, OptionBase::buildoption, 00082 "Indication that the ManifoldParzen distribution should be trained"); 00083 inherited::declareOptions(ol); 00084 } 00085 00086 void ManifoldParzenKernel::setDataForKernelMatrix(VMat the_data) 00087 { 00088 inherited::setDataForKernelMatrix(the_data); 00089 if(train_mp && data) 00090 { 00091 mp->setTrainingSet(data); 00092 PP<VecStatsCollector> stats = new VecStatsCollector(); 00093 mp->setTrainStatsCollector(stats); 00094 mp->train(); 00095 stats->finalize(); 00096 } 00097 00098 if(!train_mp && data) PLWARNING("ManifoldParzenKernel::setDataForKernelMatrix: data of kernel is possibly different from data of ManifoldParzen distribution."); 00099 00100 } 00101 00102 void ManifoldParzenKernel::addDataForKernelMatrix(const Vec& newRow) 00103 { 00104 PLERROR("ManifoldParzenKernel::addDataForKernelMatrix: this method is currently not supported."); 00105 00106 } 00107 00108 00109 } // end of namespace PLearn 00110 00111 00112 /* 00113 Local Variables: 00114 mode:c++ 00115 c-basic-offset:4 00116 c-file-style:"stroustrup" 00117 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00118 indent-tabs-mode:nil 00119 fill-column:79 00120 End: 00121 */ 00122 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :