PLearn 0.1
|
#include <RegressionTreeMulticlassLeaveProb.h>
Public Member Functions | |
RegressionTreeMulticlassLeaveProb () | |
virtual | ~RegressionTreeMulticlassLeaveProb () |
virtual string | classname () const |
virtual OptionList & | getOptionList () const |
virtual OptionMap & | getOptionMap () const |
virtual RemoteMethodMap & | getRemoteMethodMap () const |
virtual RegressionTreeMulticlassLeaveProb * | deepCopy (CopiesMap &copies) const |
virtual void | makeDeepCopyFromShallowCopy (CopiesMap &copies) |
Does the necessary operations to transform a shallow copy (this) into a deep copy by deep-copying all the members that need to be. | |
virtual void | build () |
Post-constructor. | |
virtual int | outputsize () const |
void | initStats () |
void | addRow (int row) |
void | addRow (int row, real target, real weight) |
void | addRow (int row, Vec outputv, Vec errorv) |
void | addRow (int row, real target, real weight, Vec outputv, Vec errorv) |
void | removeRow (int row, real target, real weight) |
void | removeRow (int row, Vec outputv, Vec errorv) |
void | removeRow (int row, real target, real weight, Vec outputv, Vec errorv) |
void | getOutputAndError (Vec &output, Vec &error) const |
TVec< string > | getOutputNames () const |
void | printStats () |
virtual void | addLeave (PP< RegressionTreeLeave > leave) |
virtual void | removeLeave (PP< RegressionTreeLeave > leave) |
Static Public Member Functions | |
static string | _classname_ () |
static OptionList & | _getOptionList_ () |
static RemoteMethodMap & | _getRemoteMethodMap_ () |
static Object * | _new_instance_for_typemap_ () |
static bool | _isa_ (const Object *o) |
static void | _static_initialize_ () |
static const PPath & | declaringFile () |
static void | declareOptions (OptionList &ol) |
Declare options (data fields) for the class. | |
Static Public Attributes | |
static StaticInitializer | _static_initializer_ |
Private Types | |
typedef RegressionTreeLeave | inherited |
Private Member Functions | |
void | build_ () |
Object-specific post-constructor. | |
Private Attributes | |
int | nb_class |
string | objective_function |
Vec | multiclass_weights_sum |
Definition at line 50 of file RegressionTreeMulticlassLeaveProb.h.
typedef RegressionTreeLeave PLearn::RegressionTreeMulticlassLeaveProb::inherited [private] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 52 of file RegressionTreeMulticlassLeaveProb.h.
PLearn::RegressionTreeMulticlassLeaveProb::RegressionTreeMulticlassLeaveProb | ( | ) |
Definition at line 55 of file RegressionTreeMulticlassLeaveProb.cc.
References build().
: nb_class(-1), objective_function("l1") { build(); }
PLearn::RegressionTreeMulticlassLeaveProb::~RegressionTreeMulticlassLeaveProb | ( | ) | [virtual] |
Definition at line 62 of file RegressionTreeMulticlassLeaveProb.cc.
{ }
string PLearn::RegressionTreeMulticlassLeaveProb::_classname_ | ( | ) | [static] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
OptionList & PLearn::RegressionTreeMulticlassLeaveProb::_getOptionList_ | ( | ) | [static] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
RemoteMethodMap & PLearn::RegressionTreeMulticlassLeaveProb::_getRemoteMethodMap_ | ( | ) | [static] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
Object * PLearn::RegressionTreeMulticlassLeaveProb::_new_instance_for_typemap_ | ( | ) | [static] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
StaticInitializer RegressionTreeMulticlassLeaveProb::_static_initializer_ & PLearn::RegressionTreeMulticlassLeaveProb::_static_initialize_ | ( | ) | [static] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
void PLearn::RegressionTreeMulticlassLeaveProb::addLeave | ( | PP< RegressionTreeLeave > | leave | ) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 248 of file RegressionTreeMulticlassLeaveProb.cc.
References classname(), PLearn::RegressionTreeLeave::length_, multiclass_weights_sum, PLERROR, and PLearn::RegressionTreeLeave::weights_sum.
{ PP<RegressionTreeMulticlassLeaveProb> leave = (PP<RegressionTreeMulticlassLeaveProb>) leave_; if(leave->classname() == classname()){ length_ += leave->length_; weights_sum += leave->weights_sum; multiclass_weights_sum += leave->multiclass_weights_sum; }else PLERROR("In %s::addLeave the leave to add should have the same class. It have %s.", classname().c_str(), leave->classname().c_str()); }
void PLearn::RegressionTreeMulticlassLeaveProb::addRow | ( | int | row | ) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 129 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::RegressionTreeLeave::train_set.
Referenced by addRow().
{ real weight = train_set->getWeight(row); real target = train_set->getTarget(row); RegressionTreeMulticlassLeaveProb::addRow(row, target, weight); }
void PLearn::RegressionTreeMulticlassLeaveProb::addRow | ( | int | row, |
real | target, | ||
real | weight | ||
) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 143 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::RegressionTreeLeave::length_, multiclass_weights_sum, and PLearn::RegressionTreeLeave::weights_sum.
{ length_ += 1; weights_sum += weight; multiclass_weights_sum[int(target)] += weight; }
void PLearn::RegressionTreeMulticlassLeaveProb::addRow | ( | int | row, |
Vec | outputv, | ||
Vec | errorv | ||
) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 150 of file RegressionTreeMulticlassLeaveProb.cc.
References addRow(), and getOutputAndError().
{ RegressionTreeMulticlassLeaveProb::addRow(row); RegressionTreeMulticlassLeaveProb::getOutputAndError(outputv,errorv); }
void PLearn::RegressionTreeMulticlassLeaveProb::addRow | ( | int | row, |
real | target, | ||
real | weight, | ||
Vec | outputv, | ||
Vec | errorv | ||
) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 136 of file RegressionTreeMulticlassLeaveProb.cc.
References addRow(), and getOutputAndError().
{ RegressionTreeMulticlassLeaveProb::addRow(row, target, weight); RegressionTreeMulticlassLeaveProb::getOutputAndError(outputv,errorv); }
void PLearn::RegressionTreeMulticlassLeaveProb::build | ( | ) | [virtual] |
Post-constructor.
The normal implementation should call simply inherited::build(), then this class's build_(). This method should be callable again at later times, after modifying some option fields to change the "architecture" of the object.
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 100 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::RegressionTreeLeave::build(), and build_().
Referenced by RegressionTreeMulticlassLeaveProb().
{ inherited::build(); build_(); }
void PLearn::RegressionTreeMulticlassLeaveProb::build_ | ( | ) | [private] |
Object-specific post-constructor.
This method should be redefined in subclasses and do the actual building of the object according to previously set option fields. Constructors can just set option fields, and then call build_. This method is NOT virtual, and will typically be called only from three places: a constructor, the public virtual build()
method, and possibly the public virtual read method (which calls its parent's read). build_()
can assume that its parent's build_()
has already been called.
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 106 of file RegressionTreeMulticlassLeaveProb.cc.
Referenced by build().
{ }
string PLearn::RegressionTreeMulticlassLeaveProb::classname | ( | ) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
Referenced by addLeave(), and removeLeave().
void PLearn::RegressionTreeMulticlassLeaveProb::declareOptions | ( | OptionList & | ol | ) | [static] |
Declare options (data fields) for the class.
Redefine this in subclasses: call declareOption
(...) for each option, and then call inherited::declareOptions(options)
. Please call the inherited
method AT THE END to get the options listed in a consistent order (from most recently defined to least recently defined).
static void MyDerivedClass::declareOptions(OptionList& ol) { declareOption(ol, "inputsize", &MyObject::inputsize_, OptionBase::buildoption, "The size of the input; it must be provided"); declareOption(ol, "weights", &MyObject::weights, OptionBase::learntoption, "The learned model weights"); inherited::declareOptions(ol); }
ol | List of options that is progressively being constructed for the current class. |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 66 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::OptionBase::buildoption, PLearn::declareOption(), PLearn::RegressionTreeLeave::declareOptions(), PLearn::OptionBase::learntoption, PLearn::RegressionTreeLeave::loss_function_factor, multiclass_weights_sum, nb_class, objective_function, and PLearn::redeclareOption().
{ inherited::declareOptions(ol); declareOption(ol, "nb_class", &RegressionTreeMulticlassLeaveProb::nb_class, OptionBase::buildoption, "The number of class. Should be numbered from 0 to nb_class -1.\n" ); declareOption(ol, "objective_function", &RegressionTreeMulticlassLeaveProb::objective_function, OptionBase::buildoption, "The function to be used to compute the leave error.\n" "Current supported values are l1 and l2 (default is l1)."); declareOption(ol, "multiclass_weights_sum", &RegressionTreeMulticlassLeaveProb::multiclass_weights_sum, OptionBase::learntoption, "A vector to count the weight sum of each possible output " "for the sample in this leave.\n"); redeclareOption(ol, "loss_function_factor", &RegressionTreeMulticlassLeaveProb::loss_function_factor, OptionBase::learntoption, "The loss fct factor. Depend of the objective_function.\n"); }
static const PPath& PLearn::RegressionTreeMulticlassLeaveProb::declaringFile | ( | ) | [inline, static] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 72 of file RegressionTreeMulticlassLeaveProb.h.
{return nb_class+1;}
RegressionTreeMulticlassLeaveProb * PLearn::RegressionTreeMulticlassLeaveProb::deepCopy | ( | CopiesMap & | copies | ) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
OptionList & PLearn::RegressionTreeMulticlassLeaveProb::getOptionList | ( | ) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
OptionMap & PLearn::RegressionTreeMulticlassLeaveProb::getOptionMap | ( | ) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
void PLearn::RegressionTreeMulticlassLeaveProb::getOutputAndError | ( | Vec & | output, |
Vec & | error | ||
) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 179 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::abs(), PLearn::TVec< T >::clear(), PLearn::TVec< T >::fill(), PLearn::RegressionTreeLeave::length_, PLearn::RegressionTreeLeave::loss_function_factor, PLearn::RegressionTreeLeave::missing_leave, MISSING_VALUE, multiclass_weights_sum, nb_class, objective_function, PLERROR, PLearn::pow(), and PLearn::RegressionTreeLeave::weights_sum.
Referenced by addRow(), printStats(), and removeRow().
{ #ifdef BOUNDCHECK if(nb_class<=0) PLERROR("In RegressionTreeMulticlassLeaveProb::getOutputAndError() -" " nb_class must be set."); #endif if(length_==0){ output.fill(MISSING_VALUE); error.clear(); return; } int mc_winer = 0; real conf = 0; //index of the max. Is their an optimized version? output[1] = multiclass_weights_sum[0] / weights_sum; for (int mc_ind = 1; mc_ind < nb_class; mc_ind++) { output[mc_ind+1]=multiclass_weights_sum[mc_ind] / weights_sum; if (multiclass_weights_sum[mc_ind] > multiclass_weights_sum[mc_winer]) mc_winer = mc_ind; } output[0] = mc_winer; if (missing_leave) { error[0] = 0.0; error[1] = weights_sum; error[2] = 0.0; } else { conf = multiclass_weights_sum[mc_winer] / weights_sum; error[0] = 0.0; if (objective_function == "l1") { for (int mc_ind = 0; mc_ind < nb_class;mc_ind++) { error[0] += abs(mc_winer - mc_ind) * multiclass_weights_sum[mc_ind]; } } else { for (int mc_ind = 0; mc_ind < nb_class;mc_ind++) { error[0] += pow(mc_winer - mc_ind, 2.) * multiclass_weights_sum[mc_ind]; } } error[0] *= loss_function_factor * length_ / weights_sum; if (error[0] < 1E-10) error[0] = 0.0; if (error[0] > weights_sum * loss_function_factor) error[2] = weights_sum * loss_function_factor; else error[2] = error[0]; error[1] = (1.0 - conf) * length_; } }
TVec< string > PLearn::RegressionTreeMulticlassLeaveProb::getOutputNames | ( | ) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 237 of file RegressionTreeMulticlassLeaveProb.cc.
References nb_class, and PLearn::tostring().
{ TVec<string> ret(nb_class+1); ret[0]="class_pred"; for (int mc_ind = 0; mc_ind < nb_class;mc_ind++) { ret[mc_ind+1]="prob_class_"+tostring(mc_ind); } return ret; }
RemoteMethodMap & PLearn::RegressionTreeMulticlassLeaveProb::getRemoteMethodMap | ( | ) | const [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 53 of file RegressionTreeMulticlassLeaveProb.cc.
void PLearn::RegressionTreeMulticlassLeaveProb::initStats | ( | ) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 110 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::TVec< T >::fill(), PLearn::RegressionTreeLeave::length_, PLearn::RegressionTreeLeave::loss_function_factor, PLearn::RegressionTreeLeave::loss_function_weight, multiclass_weights_sum, nb_class, objective_function, PLearn::pow(), PLearn::TVec< T >::resize(), and PLearn::RegressionTreeLeave::weights_sum.
{ length_ = 0; weights_sum = 0.0; if (loss_function_weight != 0.0) { if(objective_function == "l1") loss_function_factor = 2.0 / loss_function_weight; else loss_function_factor = 2.0 / pow(loss_function_weight, 2); } else { loss_function_factor = 1.0; } multiclass_weights_sum.resize(nb_class); multiclass_weights_sum.fill(0); }
void PLearn::RegressionTreeMulticlassLeaveProb::makeDeepCopyFromShallowCopy | ( | CopiesMap & | copies | ) | [virtual] |
Does the necessary operations to transform a shallow copy (this) into a deep copy by deep-copying all the members that need to be.
This needs to be overridden by every class that adds "complex" data members to the class, such as Vec
, Mat
, PP<Something>
, etc. Typical implementation:
void CLASS_OF_THIS::makeDeepCopyFromShallowCopy(CopiesMap& copies) { inherited::makeDeepCopyFromShallowCopy(copies); deepCopyField(complex_data_member1, copies); deepCopyField(complex_data_member2, copies); ... }
copies | A map used by the deep-copy mechanism to keep track of already-copied objects. |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 93 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::deepCopyField(), PLearn::RegressionTreeLeave::makeDeepCopyFromShallowCopy(), multiclass_weights_sum, and objective_function.
{ inherited::makeDeepCopyFromShallowCopy(copies); deepCopyField(objective_function, copies); deepCopyField(multiclass_weights_sum, copies); }
virtual int PLearn::RegressionTreeMulticlassLeaveProb::outputsize | ( | ) | const [inline, virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 77 of file RegressionTreeMulticlassLeaveProb.h.
{return nb_class+1;}
void PLearn::RegressionTreeMulticlassLeaveProb::printStats | ( | ) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 272 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::endl(), getOutputAndError(), PLearn::RegressionTreeLeave::length_, multiclass_weights_sum, and PLearn::RegressionTreeLeave::weights_sum.
{ cout << " l " << length_; Vec output(2); Vec error(3); getOutputAndError(output,error); cout << " o0 " << output[0]; cout << " o1 " << output[1]; cout << " e0 " << error[0]; cout << " e1 " << error[1]; cout << " ws " << weights_sum; cout << endl; cout << " mws " << multiclass_weights_sum << endl; }
void PLearn::RegressionTreeMulticlassLeaveProb::removeLeave | ( | PP< RegressionTreeLeave > | leave | ) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 260 of file RegressionTreeMulticlassLeaveProb.cc.
References classname(), PLearn::RegressionTreeLeave::length_, multiclass_weights_sum, PLERROR, and PLearn::RegressionTreeLeave::weights_sum.
{ PP<RegressionTreeMulticlassLeaveProb> leave = (PP<RegressionTreeMulticlassLeaveProb>) leave_; if(leave->classname() == classname()){ length_ -= leave->length_; weights_sum -= leave->weights_sum; multiclass_weights_sum -= leave->multiclass_weights_sum; }else PLERROR("In %s::addLeave the leave to add should have the same class. It have %s.", classname().c_str(), leave->classname().c_str()); }
void PLearn::RegressionTreeMulticlassLeaveProb::removeRow | ( | int | row, |
real | target, | ||
real | weight | ||
) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 169 of file RegressionTreeMulticlassLeaveProb.cc.
References PLearn::RegressionTreeLeave::length_, multiclass_weights_sum, PLASSERT, and PLearn::RegressionTreeLeave::weights_sum.
Referenced by removeRow().
{ length_ -= 1; weights_sum -= weight; PLASSERT(length_>=0); PLASSERT(weights_sum>=0); PLASSERT(length_>0 || weights_sum==0); multiclass_weights_sum[int(target)] -= weight; }
void PLearn::RegressionTreeMulticlassLeaveProb::removeRow | ( | int | row, |
Vec | outputv, | ||
Vec | errorv | ||
) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 156 of file RegressionTreeMulticlassLeaveProb.cc.
References removeRow(), and PLearn::RegressionTreeLeave::train_set.
{ real weight = train_set->getWeight(row); real target = train_set->getTarget(row); RegressionTreeMulticlassLeaveProb::removeRow(row,target,weight,outputv,errorv); }
void PLearn::RegressionTreeMulticlassLeaveProb::removeRow | ( | int | row, |
real | target, | ||
real | weight, | ||
Vec | outputv, | ||
Vec | errorv | ||
) | [virtual] |
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 163 of file RegressionTreeMulticlassLeaveProb.cc.
References getOutputAndError(), and removeRow().
{ RegressionTreeMulticlassLeaveProb::removeRow(row,target,weight); RegressionTreeMulticlassLeaveProb::getOutputAndError(outputv,errorv); }
Reimplemented from PLearn::RegressionTreeLeave.
Definition at line 72 of file RegressionTreeMulticlassLeaveProb.h.
Definition at line 67 of file RegressionTreeMulticlassLeaveProb.h.
Referenced by addLeave(), addRow(), declareOptions(), getOutputAndError(), initStats(), makeDeepCopyFromShallowCopy(), printStats(), removeLeave(), and removeRow().
Definition at line 60 of file RegressionTreeMulticlassLeaveProb.h.
Referenced by declareOptions(), getOutputAndError(), getOutputNames(), and initStats().
string PLearn::RegressionTreeMulticlassLeaveProb::objective_function [private] |
Definition at line 61 of file RegressionTreeMulticlassLeaveProb.h.
Referenced by declareOptions(), getOutputAndError(), initStats(), and makeDeepCopyFromShallowCopy().