
11 Label Propagation and Quadratic Criterion

Yoshua Bengio

Olivier Delalleau

Nicolas Le Roux

Various graph-based algorithms for semi-supervised learning have been proposed in

the recent literature. They rely on the idea of building a graph whose nodes are

data points (labeled and unlabeled) and edges represent similarities between points.

Known labels are used to propagate information through the graph in order to label

all nodes. In this chapter, we show how these different algorithms can be cast into

a common framework where one minimizes a quadratic cost criterion whose closed-

form solution is found by solving a linear system of size n (total number of data

points). The cost criterion naturally leads to an extension of such algorithms to

the inductive setting, where one obtains test samples one at a time: the derived

induction formula can be evaluated in O(n) time, which is much more efficient

than solving again exactly the linear system (which in general costs O(kn2) time

for a sparse graph where each data point has k neighbors). We also use this inductive

formula to show that when the similarity between points satisfies a locality property,

then the algorithms are plagued by the curse of dimensionality, with respect to the

dimensionality of an underlying manifold.

11.1 Introduction

Many semi-supervised learning algorithms rely on the geometry of the data induced

by both labeled and unlabeled examples to improve on supervised methods that use

only the labeled data. This geometry can be naturally represented by an empirical

graph g = (V,E) where nodes V = {1, . . . , n} represent the training data and edges

E represent similarities between them (c.f. Section 1.3.3). These similarities are

given by a weight matrix W: Wij is non-zero iff xi and xj are “neighbors”, i.e. theweight matrix

edge (i, j) is in E (weighted by Wij). The weight matrix W can be for instance

the k-nearest neighbor matrix: Wij = 1 iff xi is among the k nearest neighbors of

36 Label Propagation and Quadratic Criterion

xj or vice-versa (and is 0 otherwise). Another typical weight matrix is given by the

Gaussian kernel of width σ:

Wij = e−
‖xi−xj‖2

2σ2 . (11.1)

In general, we assume Wij is given by a symmetric positive function WX (possibly

dependent on the dataset X = (x1, . . . , xn)) by Wij = WX(xi, xj) ≥ 0. This

functional view will be useful in the inductive setting (Section 11.4).

This chapter is organized as follows. In Section 11.2 we present algorithms based

on the idea of using the graph structure to spread labels from labeled examples

to the whole dataset (Szummer and Jaakkola [2001], Zhu and Ghahramani [2002],

Zhou et al. [2004], Zhu et al. [2003]). An alternative approach originating from

smoothness considerations yields algorithms based on graph regularization, which

naturally leads to a regularization term based on the graph Laplacian (Belkin and

Niyogi [2003], Joachims [2003], Zhou et al. [2004], Zhu et al. [2003], Belkin et al.

[2004], Delalleau et al. [2005]). This approach, detailed in Section 11.3, is then shown

to be tightly linked to the previous label propagation algorithms. In Section 11.4

and Section 11.5 we present two extensions of these algorithms: first a simple

way to turn a number of them, originally designed for the transductive setting,

into induction algorithms, then a method to better balance classes using prior

information about the classes distribution. Section 11.6 finally explores theoretical

limitations of these methods which, being based mostly on the local geometry of

the data in small neighborhoods, are subject to the curse of dimensionality when

the intrinsic dimension of the underlying distribution (the dimensionality of the

manifold near which it concentrates) increases, when this manifold is far from being

flat.

11.2 Label propagation on a similarity graph

11.2.1 Iterative algorithms

Given the graph g, a simple idea for semi-supervised learning is to propagate labelslabel propagation

on the graph. Starting with nodes 1, 2, . . . , l labeled1 with their known label (1 or

−1) and nodes l + 1, . . . , n labeled with 0, each node starts to propagate its label

to its neighbors, and the process is repeated until convergence.

An algorithm of this kind has been proposed by Zhu and Ghahramani [2002],

and is described in Algorithm 11.1. Estimated labels on both labeled and unlabeled

data are denoted by Ŷ = (Ŷl, Ŷu), where Ŷl may be allowed to differ from the given

1. If there are M > 2 classes, one can label each node i with a M -dimensional vector (one-
hot for labeled samples, i.e. with 0 everywhere except a 1 at index yi = class of xi), and
use the same algorithms in a one-versus-rest fashion. We consider here the classification
case, but extension to regression is straightforward since labels are treated as real values.

11.2 Label propagation on a similarity graph 37

Algorithm 11.1 Label propagation (Zhu and Ghahramani [2002])

Compute affinity matrix W from (11.1)
Compute the diagonal degree matrix D by Dii ←

P

j Wij

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
Iterate
1. Ŷ (t+1) ← D−1WŶ (t)

2. Ŷl
(t+1)

← Yl

until convergence to Ŷ (∞)

Label point xi by the sign of ŷ
(∞)
i

labels Yl = (y1, . . . , yl). In this particular algorithm, Ŷl is constrained to be equal

to Yl. We propose in Algorithm 11.2 below a slightly different label propagation

scheme (originally inspired from the Jacobi iterative method for linear systems),

similar to the previous algorithm except that:

we advocate forcing Wii = 0, which often works better,

we allow Ŷl 6= Yl (which may be useful e.g. when classes overlap), and

we use an additional regularization term ε for better numerical stability.

Algorithm 11.2 Label propagation (inspired from Jacobi iteration algorithm)

Compute an affinity matrix W such that Wii = 0
Compute the diagonal degree matrix D by Dii ←

P

j Wij

Choose a parameter α ∈ (0, 1) and a small ε > 0
µ← α

1−α
∈ (0, +∞)

Compute the diagonal matrix A by Aii ← I[l](i) + µDii + µε

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
Iterate Ŷ (t+1) ← A−1(µWŶ (t) + Ŷ (0)) until convergence to Ŷ (∞)

Label point xi by the sign of ŷ
(∞)
i

The iteration step of Algorithm 11.2 can be re-written for a labeled example

(i ≤ l)

ŷ
(t+1)
i ←

∑

j Wij ŷ
(t)
j + 1

µyi
∑

j Wij + 1
µ + ε

(11.2)

and for an unlabeled example (l + 1 ≤ i ≤ n)

ŷ
(t+1)
i ←

∑

j Wij ŷ
(t)
j

∑

j Wij + ε
. (11.3)

These two equations can be seen as a weighted average of the neighbors’ current

labels, where for labeled examples we also add the initial label (whose weight is

inversely proportional to the parameter µ). The ε parameter is a regularization

term to prevent numerical problems when the denominator becomes too small. The

38 Label Propagation and Quadratic Criterion

convergence of this algorithm follows from the convergence of the Jacobi iteration

method for a specific linear system, and will be discussed in Section 11.3.3.

Another similar label propagation algorithm was given by Zhou et al. [2004]:

at each step a node i receives a contribution from its neighbors j (weighted by

the normalized weight of the edge (i, j)), and an additional small contribution

given by its initial value. This process is detailed in Algorithm 11.3 below (the

name “label spreading” was inspired from the terminology used by Zhou et al.

[2004]). Compared to Algorithm 11.2, it corresponds to the minimization of a

slightly different cost criterion, maybe not as intuitive: this will be studied later

in Section 11.3.2 and 11.3.3.

Algorithm 11.3 Label spreading (Zhou et al. [2004])

Compute the affinity matrix W from (11.1) for i 6= j (and Wii ← 0)
Compute the diagonal degree matrix D by Dii ←

P

j Wij

Compute the normalized graph Laplacian L← D−1/2WD−1/2

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
Choose a parameter α ∈ [0, 1)
Iterate Ŷ (t+1) ← αLŶ (t) + (1− α)Ŷ (0) until convergence to Ŷ (∞)

Label point xi by the sign of ŷ
(∞)
i

The proof of convergence of Algorithm 11.3 is simple (Zhou et al. [2004]). The

iteration equation being Ŷ (t+1) ← αLŶ (t) + (1− α)Ŷ (0), we have

Ŷ (t+1) = (αL)tŶ (0) + (1− α)

t∑

i=0

(αL)iŶ (0).

The matrix L being similar to P = D−1W = D−1/2LD1/2, it has the same

eigenvalues. Since P is a stochastic matrix by construction, its eigenvalues are in

[−1, 1], and consequently the eigenvalues of αL are in (−1, 1) (remember α < 1).

It follows that when t→∞, (αL)t → 0 and

t∑

i=0

(αL)i → (I− αL)−1

so that

Ŷ (t) → Ŷ (∞) = (1− α)(I− αL)−1Ŷ (0). (11.4)

The convergence rate of these three algorithms depends on specific properties of

the graph such as the eigenvalues of its Laplacian. In general, we can expect it to

be at worst on the order of O(kn2), where k is the number of neighbors of a point

in the graph. In the case of a dense weight matrix, the computational time is thus

cubic in n.

11.2 Label propagation on a similarity graph 39

11.2.2 Markov random walks

A different algorithm based on label propagation on the similarity graph was

proposed earlier by Szummer and Jaakkola [2001]. They consider Markov random

walks on the graph with transition probabilities from i to jtransition

probabilities
pij =

Wij
∑

k Wik
(11.5)

in order to estimate probabilities of class labels. Here, Wij is given by a Gaussian

kernel for neighbors and 0 for non-neighbors, and Wii = 1 (but one could also use

Wii = 0). Each data point xi is associated with a probability P (y = 1|i) of being

of class 1. Given a point xk, we can compute the probability P (t)(ystart = 1|k) that

we started from a point of class ystart = 1 given that we arrived to xk after t steps

of random walk by

P (t)(ystart = 1|k) =

n∑

i=1

P (y = 1|i)P0|t(i|k)

where P0|t(i|k) is the probability that we started from xi given that we arrived to

k after t steps of random walk (this probability can be computed from the pij). xk

is then classified to 1 if P (t)(ystart = 1|k) > 0.5, and to −1 otherwise. The authors

propose two methods to estimate the class probabilities P (y = 1|i). One is based

on an iterative EM algorithm, the other on maximizing a margin-based criterion,

which leads to a closed-form solution (Szummer and Jaakkola [2001]).

It turns out that this algorithm’s performance depends crucially on the hyper-

parameter t (the length of the random walk). This parameter has to be chosen

by cross-validation (if enough data is available) or heuristically (it corresponds

intuitively to the amount of propagation we allow in the graph, i.e. to the scale of

the clusters we are interested in). An alternative way of using random walks on the

graph is to assign to point xi a label depending on the probability of arriving to

a positively labeled example when performing a random walk starting from xi and

until a labeled example is found (Zhu and Ghahramani [2002], Zhu et al. [2003]).

The length of the random walk is not constrained anymore to a fixed value t. In

the following, we will show that this probability, denoted by P (yend = 1|i), is equal

(up to a shift and scaling) to the label obtained with Algorithm 11.1 (this is similar

to the proof by Zhu and Ghahramani [2002]).

When xi is a labeled example, P (yend = 1|i) = δyi1, and when it is unlabeled we

have the relation

P (yend = 1|i) =

n∑

j=1

P (yend = 1|j)pij (11.6)

with the pij computed as in (11.5). Let us consider the matrix P = D−1W,

i.e. such that Pij = pij . We will denote ẑi = P (yend = 1|i) and Ẑ = (Ẑl, Ẑu)

the corresponding vector split into its labeled and unlabeled parts. Similarly, the

40 Label Propagation and Quadratic Criterion

matrices D and W can be split into four parts:

D =

(

Dll 0

0 Duu

)

W =

(

Wll Wlu

Wul Wuu

)

Equation (11.6) can then be written

Ẑu =
(
D−1

uuWul | D−1
uuWuu

)

(

Ẑl

Ẑu

)

= D−1
uu

(

WulẐl + WuuẐu

)

which leads to the linear system

LuuẐu = WulẐl (11.7)

where L = D−W is the un-normalized graph Laplacian. Since Ẑl is known (ẑi = 1

if yi = 1, and 0 otherwise), this linear system can be solved in order to find the

probabilities Ẑu on unlabeled examples. Note that if (Ẑu, Ẑl) is a solution of (11.7),

then (Ŷu, Ŷl) is also a solution, with

Ŷu = 2Ẑu − (1, 1, . . . , 1)>

Ŷl = 2Ẑl − (1, 1, . . . , 1)> = Yl

This allows us to rewrite the linear system (11.7) in terms of the vector of original

labels Yl as follows:

LuuŶu = WulŶl (11.8)

with the sign of each element yi of Ŷu giving the estimated label of xi (which is

equivalent to comparing ẑi to a 0.5 threshold).

The solution of this random walk algorithm is thus given in closed-form by a linear

system, which turns out to be equivalent to iterative Algorithm 11.1 (or equivalently,

Algorithm 11.2 when µ→ 0 and ε = 0), as we will see in Section 11.3.4.1.

11.3 Quadratic cost criterion

In this section, we investigate semi-supervised learning by minimization of a cost

function derived from the graph g. Such methods will be shown to be equivalent to

label propagation algorithms presented in the previous section.

11.3 Quadratic cost criterion 41

11.3.1 Regularization on graphs

The problem of semi-supervised learning on the graph g consists in finding a labeling

of the graph that is consistent with both the initial (incomplete) labeling and the

geometry of the data induced by the graph structure (edges and weights W). Given

a labeling Ŷ = (Ŷl, Ŷu), consistency with the initial labeling can be measured e.g.

by

l∑

i=1

(ŷi − yi)
2 = ‖Ŷl − Yl‖2. (11.9)

On the other hand, consistency with the geometry of the data, which follows from

the Smoothness (or Manifold) Assumption discussed in Section 1.2, motivates aSmoothness

Assumption penalty term of the form

1

2

n∑

i,j=1

Wij(ŷi − ŷj)
2 =

1

2



2

n∑

i=1

ŷ2
i

n∑

j=1

Wij − 2

n∑

i,j=1

Wij ŷiŷj





= Ŷ >(D−W)Ŷ

= Ŷ >LŶ (11.10)

with L = D−W the un-normalized graph Laplacian. This means we penalize rapidgraph Laplacian

changes in Ŷ between points that are close (as given by the similarity matrix W).

Various algorithms have been proposed based on such considerations. Zhu et al.

[2003] force the labels on the labeled data (Ŷl = Yl) then minimize (11.10) over Ŷu.

However, if there is noise in the available labels, it may be beneficial to allow the

algorithm to re-label the labeled data (this could also help generalization in a noise-

free setting where for instance a positive sample had been drawn from a region of

space mainly filled with negative samples). This observation leads to a more general

cost criterion involving a trade-off between (11.9) and (11.10) (Belkin et al. [2004],

Delalleau et al. [2005]). A small regularization term can also be added in order

to prevent degenerate situations, for instance when the graph g has a connected

component with no labeled sample. We thus obtain the following general labeling

cost2:

C(Ŷ) = ‖Ŷl − Yl‖2 + µŶ >LŶ + µε‖Ŷ ‖2. (11.11)

Joachims [2003] obtained the same kind of cost criterion from the perspective of

spectral clustering. The unsupervised minimization of Ŷ >LŶ (under the constraintsspectral

clustering Ŷ >1 = 0 and ‖Ŷ ‖2 = n) is a relaxation of the NP-hard problem of minimizing the

normalized cut of the graph g, i.e. splitting g into two subsets g
+ = (V +, E+) and

2. Belkin et al. [2004] first center the vector Yl and also constrain Ŷ to be centered: these
restrictions are needed to obtain theoretical bounds on the generalization error, and will
not be discussed in this chapter.

42 Label Propagation and Quadratic Criterion

g
− = (V −, E−) such as to minimize

∑

i∈V +,j∈V − Wij

|V +||V −|

where the normalization by |V +||V −| favors balanced splits. Based on this ap-

proach, Joachims [2003] introduced an additional cost which corresponds to our

part ‖Ŷl−Yl‖2 of the cost (11.11), in order to turn this unsupervised minimization

into a semi-supervised transductive algorithm (called Spectral Graph Transducer).

Note however that although very similar, the solution obtained differs from the

straighforward minimization of (11.11) since:

the labels are not necessarily +1 and -1, but depend on the ratio of the number

of positive examples over the number of negative examples (this follows from the

normalized cut optimization),

the constraint ‖Ŷ ‖2 = n used in the unsupervised setting remains, thus leading

to an eigenvalue problem instead of the direct quadratic minimization that will be

studied in the next section,

the eigenspectrum of the graph Laplacian is normalized by replacing the ordered

Laplacian eigenvalues by a monotonically increasing function, in order to focus

on the ranking among the smallest cuts and abstract, for example, from different

magnitudes of edge weights.

Belkin and Niyogi [2003] also proposed a semi-supervised algorithm based on the

same idea of graph regularization, but using a regularization criterion different from

the quadratic penalty term (11.10). It consists in taking advantage of properties

of the graph Laplacian L, which can be seen as an operator on functions definedgraph Laplacian

on nodes of the graph g. The graph Laplacian is closely related to the Laplacian

on the manifold, whose eigenfunctions provide a basis for the Hilbert space of L2

functions on the manifold (Rosenberg [1997]). Eigenvalues of the eigenfunctions

provide a measure of their smoothness on the manifold (low eigenvalues correspond

to smoother functions, with the eigenvalue 0 being associated with the constant

function). Projecting any function in L2 on the first p eigenfunctions (sorted by

order of increasing eigenvalue) is thus a way of smoothing it on the manifold. The

same principle can be applied to our graph setting, thus leading to Algorithm 11.4

(Belkin and Niyogi [2003]) below. It consists in computing the first p eigenvectors

Algorithm 11.4 Laplacian regularization (Belkin and Niyogi [2003])

Compute affinity matrix W (with Wii = 0)
Compute the diagonal degree matrix D by Dii ←

P

j Wij

Compute the un-normalized graph Laplacian L = D−W
Compute the p eigenvectors e1, . . . , ep corresponding to the p smallest eigenvalues of L

Minimize over a1, . . . , ap the quadratic criterion
Pl

i=1

“

yi −
Pp

j=1 ajej,i

”2

Label point xi (1 ≤ i ≤ n) by the sign of
Pp

j=1 ajej,i

11.3 Quadratic cost criterion 43

of the graph Laplacian (each eigenvector can be seen as the corresponding eigen-

function applied on training points), then finding the linear combination of these

eigenvectors that best predicts the labels (in the mean-squared sense). The idea is

to obtain a smooth function (in the sense that it is a linear combination of the p

smoothest eigenfunctions of the Laplacian operator on the manifold) that fits the

labeled data. This algorithm does not explicitely correspond to the minimization

of a non-parametric quadratic criterion such as (11.11) and thus is not covered by

the connection shown in Section 11.3.3 with label propagation algorithms, but one

must keep in mind that it is based on similar graph regularization considerations

and offers competitive classification performance.

11.3.2 Optimization framework

In order to minimize the quadratic criterion (11.11), we can compute its derivative

with respect to Ŷ . We will denote by S the diagonal matrix (n × n) given by

Sii = I[l](i), so that the first part of the cost can be re-written ‖SŶ − SY ‖2. The

derivative of the criterion is then:

1

2

∂C(Ŷ)

∂Ŷ
= S(Ŷ − Y) + µLŶ + µεŶ

= (S + µL + µεI) Ŷ − SY.

The second derivative is:

1

2

∂2C(Ŷ)

∂Ŷ ∂Ŷ >
= S + µL + µεI

which is a positive definite matrix when ε > 0 (L is positive semi-definite as shown

by (11.10)). This ensures the cost is minimized when the derivative is set to 0, i.e.

Ŷ = (S + µL + µεI)
−1

SY. (11.12)

This shows how the new labels can be obtained by a simple matrix inversion. It

is interesting to note that this matrix does not depend on the original labels, but

only on the graph Laplacian L: the way labels are “propagated” to the rest of the

graph is entirely determined by the graph structure.

An alternative (and very similar) criterion was proposed by Zhou et al. [2004],

and can be written:

C ′(Ŷ) = ‖Ŷ − SY ‖2 +
µ

2

∑

i,j

Wij

(

ŷi√
Dii

− ŷj
√

Djj

)2

(11.13)

= ‖Ŷl − Yl‖2 + ‖Ŷu‖2 + µŶ > (I− L) Ŷ

= ‖Ŷl − Yl‖2 + ‖Ŷu‖2 + µŶ >D−1/2 (D−W)D−1/2Ŷ

= ‖Ŷl − Yl‖2 + ‖Ŷu‖2 + µ(D−1/2Ŷ)>L(D−1/2Ŷ)

This criterion C ′ has two main differences with C (11.11):

44 Label Propagation and Quadratic Criterion

the term ‖Ŷ − SY ‖2 = ‖Ŷl − Yl‖2 + ‖Ŷu‖2 not only tries to fit the given labels,

but also to pull to 0 labels of unlabeled samples (this is a similar but stronger

regularization compared to the term µε‖Ŷ ‖2 in the cost C), and

labels are normalized by the square root of the degree matrix elements Dii when

computing their similarity. This normalization may not be intuitive, but is necessary

for the equivalence with the label propagation Algorithm 11.3, as seen below.

11.3.3 Links with label propagation

The optimization algorithms presented above turn out to be equivalent to the

label propagation methods from Section 11.2. Let us first study the optimization

of the cost C(Ŷ) from (11.11). The optimum Ŷ is given by (11.12), but another

way to obtain this solution, besides matrix inversion, is to solve the linear system

using one of the many standard methods available. We focus here on the simple

Jacobi iteration method (Saad [1996]), which consists in solving for each componentJacobi iteration

iteratively. Given the system

Mx = b (11.14)

the approximate solution at step t + 1 is

x
(t+1)
i =

1

Mii



b−
∑

j 6=i

Mijx
(t)
j



 . (11.15)

Applying this formula with x := Ŷ , b := SY and M := S + µL + µεI, we obtain:

ŷ
(t+1)
i =

1

I[l](i) + µ
∑

j 6=i Wij + µε



I[l](i)yi + µ
∑

j 6=i

Wij ŷ
(t)
j





i.e. exactly the update equations (11.2) and (11.3) used in Algorithm 11.2. Con-

vergence of this iterative algorithm is guaranteed by the following theorem (Saad

[1996]): if the matrix M is strictly diagonally dominant, the Jacobi iteration (11.15)

converges to the solution of the linear system (11.14). A matrix M is strictly di-

agonally dominant iff |Mii| >
∑

j 6=i |Mij |, which is clearly the case for the matrix

S+µL+µεI (remember L = D−W with Dii =
∑

i6=j Wij , and all Wij ≥ 0). Note

that this condition also guarantees the convergence of the Gauss-Seidel iteration,

which is the same as the Jacobi iteration except that updated coordinates x
(t+1)
i

are used in the computation of x
(t+1)
j for j > i. This means we can apply equations

(11.2) and (11.3) with Ŷ (t+1) and Ŷ (t) sharing the same storage.

To show the equivalence between Algorithm 11.3 and the minimization of C ′

given in (11.13), we compute its derivative with respect to Ŷ :

1

2

∂C ′(Ŷ)

∂Ŷ
= Ŷ − SY + µ

(

Ŷ − LŶ
)

11.3 Quadratic cost criterion 45

and is zero iff

Ŷ = ((1 + µ)I− µL)
−1

SY

which is the same equation as (11.4) with µ = α/(1 − α), up to a positive factor

(which has no effect on the classification since we use only the sign).

11.3.4 Limit case and analogies

It is interesting to study the limit case when µ→ 0. In this section we will set ε = 0

to simplify notations, but one should keep in mind that it is usually better to use a

small positive value for regularization. When µ→ 0, the cost (11.11) is dominated

by ‖Ŷl − Yl‖2. Intuitively, this corresponds to

1. forcing Ŷl = Yl, then

2. minimizing Ŷ >LŶ .

Writing Ŷ = (Yl, Ŷu) (i.e. Ŷl = Yl) and

L =

(

Lll Llu

Lul Luu

)

the minimization of Ŷ >LŶ with respect to Ŷu leads to

LulYl + LuuŶu = 0⇒ Ŷu = −L−1
uuLulYl. (11.16)

If we consider now equation (11.12) where Ŷl is not constrained anymore, when

ε = 0 and µ → 0, using the continuity of the inverse matrix application at I, we

obtain that

Ŷl → Yl

Ŷu = −L−1
uuLulŶl

which, as expected, gives us the same solution as (11.16).

11.3.4.1 Analogy with Markov random walks

In Section 11.2.2, we presented an algorithm of label propagation based on Markov

random walks on the graph, leading to the linear system (11.8). It is immediate to

see that this system is exactly the same as the one obtained in (11.16). The equiv-

alence of the solutions discussed in the previous section between the linear system

and iterative algorithms thus shows that the random walk algorithm described in

Section 11.2.2 is equivalent to the iterative Algorithm 11.2 when µ → 0, i.e. when

we keep the original labels instead of iteratively updating them by (11.2).

46 Label Propagation and Quadratic Criterion

11.3.4.2 Analogy with electric networks

Zhu et al. [2003] also link this solution to heat kernels and give an electric network

interpretation taken from Doyle and Snell [1984], which we will present here. This

analogy is interesting as it gives a physical interpretation to the optimization and

label propagation framework studied in this chapter. Let us consider an electric

network built from the graph g by adding resistors with conductance Wij between

nodes i and j (the conductance is the inverse of the resistance). The positive labeled

nodes are connected to a positive voltage source (+1V), the negative ones to a

negative voltage source (−1V), and we want to compute the voltage on the unlabeled

nodes (i.e. their label). Denoting the intensity between i and j by Iij , and the voltage

by Vij = ŷj − ŷi, we will use Ohm’s law

Iij = WijVij (11.17)

and Kirchoff’s law on an unlabeled node i > l:

∑

j

Iij = 0. (11.18)

Kirchoff’s law states that the sum of currents flowing out from i (such that Iij > 0)

is equal to the sum of currents flowing into i (Iij < 0). Here, it is only useful to

apply it to unlabeled nodes as the labeled ones are connected to a voltage source,

and thus receive some unknown (and uninteresting) current. Using (11.17), we can

rewrite (11.18)

0 =
∑

j

Wij(ŷj − ŷi)

=
∑

j

Wij ŷj − ŷi

∑

j

Wij

= (WŶ −DŶ)i

= −(LŶ)i

and since this is true for all i > l, it is equivalent in matrix notations to

LulYl + LuuŶu = 0

which is exactly (11.16). Thus the solution of the limit case (when labeled examples

are forced to keep their given label) is given by the voltage in an electric network

where labeled nodes are connected to voltage sources and resistors correspond to

weights in the graph g.

11.4 From transduction to induction

11.4 From transduction to induction 47

The previous algorithms all follow the transduction setting presented in Sec-

tion 1.2.4. However, it could happen that one needs an inductive algorithm, for

instance in a situation where new test examples are presented one at a time andinductive setting

solving the linear system turns out to be too expensive. In such a case, the cost

criterion (11.11) naturally leads to an induction formula that can be computed in

O(n) time. Assuming that labels ŷ1, . . . , ŷn have already been computed by one of

the algorithms above, and we want the label ŷ of a new point x: we can minimize

C(ŷ1, . . . , ŷn, ŷ) only with respect to this new label ŷ, i.e. minimize

constant + µ




∑

j

WX(x, xj)(ŷ − ŷj)
2 + εŷ2





where WX is the (possibly data-dependent) function that generated the matrix W

on X = (x1, . . . , xn). Setting to zero the derivative with respect to ŷ directly yields

ŷ =

∑

j WX(x, xj)ŷj
∑

j WX(x, xj) + ε
(11.19)

a simple inductive formula whose computational requirements scale linearly with

the number of samples already seen.

It is interesting to note that, if WX is the k-nearest neighbor function, (11.19)

reduces to k-nearest neighbor classification. Similarly, if WX is the Gaussian kernel

(11.1), it is equivalent to the formula for Parzen windows or Nadaraya-Watson non-Parzen windows

parametric regression (Nadaraya [1964], Watson [1964]). However, we use in this

formula the learned predictions on the labeled and unlabeled examples as if they

were observed training values, instead of relying only on labeled data.

11.5 Incorporating Class Prior Knowledge

From the beginning of the chapter, we have assumed that the class label is given by

the sign of ŷ. Such a rule works well when classes are well separated and balanced.

However, if this is not the case (which is likely to happen with real-world datasets),

the classification resulting from the label propagations algorithms studied in this

chapter may not reflect the prior class distribution.

A way to solve this problem is to perform class mass normalization (Zhu et al.

[2003]), i.e. to rescale classes so that their respective weights over unlabeled ex-

amples match the prior class distribution (estimated from labeled examples). Until

now, we had been using a scalar label ŷi ∈ [−1, 1], which is handy in the binary

case. In this section, for the sake of clarity, we will use a M -dimensional vector (M

being the number of classes), with each element ŷi,k between 0 and 1 giving a score

(or weight) for class k (see also footnote 1 at the beginning of this chapter). For

instance, in the binary case, a scalar ŷi ∈ [−1, 1] would be represented by the vector
(

1
2 (1 + ŷi),

1
2 (1− ŷi)

)>
, where the second element would be the score for class −1.

48 Label Propagation and Quadratic Criterion

Class mass normalization works as follows. Let us denote by pk the prior proba-

bility of class k obtained from the labeled examples, i.e.

pk =
1

l

l∑

i=1

yi,k.

The mass of class k as given by our algorithm will be the average of estimated

weights of class k over unlabeled examples, i.e.

mk =
1

u

n∑

i=l+1

ŷi,k.

Class mass normalization consists in scaling each class k by the factor

wk =
pk

mk

i.e. to classify xi in the class given by argmaxk wkŷi,k (instead of the simpler decision

function argmaxk ŷi,k, equivalent to sign(ŷi) in the scalar binary case studied in

the previous sections). The goal is to make the scaled masses match the prior class

distribution, i.e. after normalization we have that for all k

wkmk
∑M

j=1 wjmj

= pk.

In general, such a scaling gives a better classification performance when there are

enough labeled data to accurately estimate the class distribution, and when the

unlabeled data come from the same distribution. Note also that if there is a m such

that each class mass is mk = mpk, i.e. the masses already reflect the prior class

distribution, then the class mass normalization step has no effect, as wk = m−1 for

all k.

11.6 Curse of Dimensionality for Semi-Supervised Learning

A large number of the semi-supervised learning algorithms proposed in recent years

and discussed in this book are essentially non-parametric local learning algorithms,

relying on a neighborhood graph to approximate manifolds near which the data

density is assumed to concentrate. It means that the out-of-sample or transductive

prediction at x depends mostly on the unlabeled examples very near x and on

the labeled examples that are close in the sense of this graph. In this section, we

present theoretical arguments that suggest that such methods are unlikely to scale

well (in terms of generalization performance) when the intrinsic dimension of these

manifolds becomes large (curse of dimensionality), if these manifolds are sufficiently

curved (or the functions to learn vary enough).

11.6 Curse of Dimensionality for Semi-Supervised Learning 49

11.6.1 The Smoothness Prior, Manifold Assumption and Non-Parametric

Semi-Supervised Learning

As introduced in Section 1.2, the smoothness assumption (or its semi-supervisedSmoothness and

Cluster

Assumptions

variant) about the underlying target function y(·) (such that y(xi) = yi) is at

the core of most of the algorithms studied in this book, along with the cluster

assumption (or its variant, the low-density separation assumption). The former

implies that if x1 is near x2, then y1 is expected to be near y2, and the latter implies

that the data density is low near the decision surface. The smoothness assumption

is intimately linked to a definition of what it means for x1 to be near x2, and that

can be embodied in a similarity function on input space, WX(·, ·), which is at the

core of the graph-based algorithms reviewed in this chapter, transductive SVMs

(where WX is seen as a kernel), and semi-supervised Gaussian processes (where

WX is seen as the covariance of a prior over functions), both in Part II of this

book, as well as the algorithms based on a first unsupervised step to learn a better

representation (Part IV).

The central claim of this section is that in order to obtain good results with algo-

rithms that rely solely on the smoothness assumption and on the cluster assumption

(or the low-density separation assumption), an acceptable decision surface (in the

sense that its error is at an acceptable level) must be “smooth” enough. This can

happen if the data for each class lie near a low-dimensional manifold (i.e. the man-

ifold assumption), and these manifolds are smooth enough, i.e., do not have high

curvature where it matters, i.e., where a wrong characterization of the manifold

would yield to large error rate. This claim is intimately linked to the well known

curse of dimensionality, so we start the section by reviewing results on generaliza-

tion error for classical non-parametric learning algorithms as dimension increases.

We present theoretical arguments that suggest notions of locality of the learning

algorithm that make it sensitive to the dimension of the manifold near which data

lie. These arguments are not trivial extensions of the arguments for classical non-

parametric algorithms, because the semi-supervised algorithms such as those stud-

ied in this book involve expansion coefficients (e.g. the ŷj in equation (11.19)) that

are non-local, i.e., the coefficient associated with the j-th example xj may depend

on inputs xi that are far from xj , in the sense of the similarity function or kernel

WX(xi, xj). For instance, a labeled point xi far from an unlabeled point xj (i.e.

WX(xi, xj) is small) may still influence the estimated label of xj if there exists a

path in the neighborhood graph g that connects xi to xj (going through unlabeled

examples).

In the last sub-section (11.6.5), we will try to argue that it is possible to build

non-local learning algorithms, while not using very specific priors about the tasknon-local learning

to be learned. This goes against common folklore that when there are not enough

training examples in a given region, one cannot generalize properly in that region.

This would suggest that difficult learning problems such as those encountered in

Artificial Intelligence (e.g., vision, language, robotics, etc) would benefit from the

development of a larger array of such non-local learning algorithms.

50 Label Propagation and Quadratic Criterion

In order to discuss the curse of dimensionality for semi-supervised learning, we

introduce a particular notion of locality. It applies to learning algorithms that can

be labeled as kernel machines, i.e., shown to explicitly or implicitly learn a predictorkernel machine

function of the form

f(x) = b +
n∑

i=1

αikX(x, xi) (11.20)

where i runs over all the examples (labeled and unlabeled), and kX(·, ·) is a

symmetric function (kernel) that is either chosen a priori or using the whole data

set X (and does not need to be positive semi-definite). The learning algorithm is

then allowed to choose the scalars b and αi.

Most of the decision functions learned by the algorithms discussed in this chapter

can be written as in (11.20). In particular, the label propagation Algorithm 11.2

leads to the induction formula (11.19) corresponding to

b = 0

αi = ŷi

kX(x, xi) =
WX(x, xi)

ε +
∑

j WX(x, xj)
(11.21)

The Laplacian regularization algorithm (Algorithm 11.4) from Belkin and Niyogi

[2003], which first learns about the shape of the manifold with an embedding based

on the principal eigenfunctions of the Laplacian of the neighborhood, also falls into

this category. As shown by Bengio et al. [2004], the principal eigenfunctions can beNyström formula

estimated by the Nyström formula:

fk(x) =

√
n

λk

n∑

i=1

vk,ikX(x, xi) (11.22)

where (λk, vk) is the k-th principal (eigenvalue, eigenvector) pair of the Gram matrix

K obtained by Kij = kX(xi, xj), and where kX(·, ·) is a data-dependent equivalent

kernel derived from the Laplacian of the neighborhood graph g. Since the resulting

decision function is a linear combination of these eigenfunctions, we obtain again a

kernel machine (11.20).

In the following, we say that a kernel function kX(·, ·) is local if for all x ∈ X,

there exists a neighborhood N(x) ⊂ X such that

f(x) ' b +
∑

xi∈N(x)

αikX(x, xi). (11.23)

Intuitively, this means that only the near neighbors of x have a significant contri-

bution to f(x). For instance, if kX is the Gaussian kernel, N(x) is defined as the

points in X that are close to x with respect to σ (the width of the kernel). If (11.23)

is an equality, we say that kX is strictly local. An example is when WX is the

k-nearest neighbor kernel in Algorithm 11.2. kX obtained by (11.21) is then also

the k-nearest neighbor kernel, and we have N(x) = Nk(x) the set of the k nearest

11.6 Curse of Dimensionality for Semi-Supervised Learning 51

neighbors of x, so that

f(x) =
∑

xi∈Nk(x)

ŷi

k
.

Similarly, we say that kX is local-derivative if there exists another kernel k̃X

such that for all x ∈ X, there exists a neighborhood N(x) ⊂ X such that

∂f

∂x
(x) '

∑

xi∈N(x)

αi(x− xi)k̃X(x, xi). (11.24)

Intuitively, this means that the derivative of f at point x is a vector contained

mostly in the span of the vectors x− xi with xi a near neighbor of x. For instance,

with the Gaussian kernel, we have kX(x, xi) = e−‖x−xi‖2/2σ2

and

∂kX(x, xi)

∂x
= −x− xi

σ2
exp

(

−‖x− xi‖2
2σ2

)

so that

f(x) ' b +
∑

xi∈N(x)

αi(x− xi)

(

− 1

σ2
exp

(

−‖x− xi‖2
2σ2

))

.

Because here k̃X is proportional to a Gaussian kernel with width σ, the neighbor-

hood N(x) is also defined as the points in X which are close to x with respect to

σ. Again, we say that kX is strictly local-derivative when (11.24) is an equality

(for instance, when kX is a thresholded Gaussian kernel, i.e. kX(x, xi) = 0 when

‖x− xi‖ > δ).

11.6.2 Curse of Dimensionality for Classical Non-Parametric Learning

The term curse of dimensionality has been coined by Bellman [1961] in theCurse of

Dimensionality context of control problems, but it has been used rightfully to describe the poor

generalization performance of local non-parametric estimators as the dimensionality

increases. We define bias as the square of the expected difference between the

estimator and the true target function, and we refer generically to variance as

the variance of the estimator, in both cases the expectations being taken with

respect to the training set as a random variable. It is well known that classical

non-parametric estimators must trade bias and variance of the estimator through

a smoothness hyper-parameter, e.g. kernel bandwidth σ for the Nadarya-Watson

estimator (Gaussian kernel). As σ increases, bias increases and the predictor

becomes less local, but variance decreases, hence the bias-variance dilemma (Gemanbias-variance

dilemma et al. [1992]) is also about the locality of the estimator.

A nice property of classical non-parametric estimators is that one can prove their

convergence to the target function as n → ∞, i.e. these are consistent estimators.

One obtains consistency by appropriately varying the hyper-parameter that controls

the locality of the estimator as n increases. Basically, the kernel should be allowed

52 Label Propagation and Quadratic Criterion

to become more and more local, so that bias goes to zero, but the “effective number

of examples” involved in the estimator at x,

1
∑n

i=1 kX(x, xi)2

(equal to k for the k-nearest neighbor estimator, with kX(x, xi) = 1/k for xi a

neighbor of x) should increase as n increases, so that variance is also driven to 0.

For example one obtains this condition with limn→∞ k = ∞ and limn→∞
k
n = 0

for the k-nearest neighbor. Clearly the first condition is sufficient for variance to

go to 0 and the second for the bias to go to 0 (since k/n is proportional to the

volume around x containing the k nearest neighbors). Similarly, for the Nadarya-

Watson estimator with bandwidth σ, consistency is obtained if limn→∞ σ = 0

and limn→∞ nσ = ∞ (in addition to regularity conditions on the kernel). See the

book by Härdle et al. [2004] for a recent and easily accessible exposition (with

web version). The bias is due to smoothing the target function over the volume

covered by the effective neighbors. As the intrinsic dimensionality of the data

increases (the number of dimensions that they actually span locally), bias increases.

Since that volume increases exponentially with dimension, the effect of the bias

quickly becomes very severe. To see this, consider the classical example of the

[0, 1]d hypercube in R
d with uniformly distributed data in the hypercube. To hold

a fraction p of the data in a sub-cube of it, that sub-cube must have sides of length

p1/d. As d → ∞, p1/d → 1, i.e. we are averaging over distances that cover almost

the whole span of the data, just to keep variance constant (by keeping the effective

number of neighbors constant).

For a wide class of kernel estimators with kernel bandwidth σ, the expected

generalization error (bias plus variance, ignoring the noise) can be written as follows

(Härdle et al. [2004]):

expected error =
C1

nσd
+ C2σ

4,

with C1 and C2 not depending on n nor d. Hence an optimal bandwidth is

chosen proportional to n−1/(4+d), and the resulting generalization error converges in

n−4/(4+d), which becomes very slow for large d. Consider for example the increase

in number of examples required to get the same level of error, in 1 dimension

versus d dimensions. If n1 is the number of examples required to get a level of

error e, to get the same level of error in d dimensions requires on the order of

n
(4+d)/5
1 examples, i.e. the required number of examples is exponential in d.

However, if the data distribution is concentrated on a lower dimensional manifold,

it is the manifold dimension that matters. Indeed, for data on a smooth lower-

dimensional manifold, the only dimension that for instance a k-nearest neighbor

classifier sees is the dimension of the manifold, since it only uses the Euclidean

distances between the near neighbors, and if they lie on such a manifold then the

local Euclidean distances approach the local geodesic distances on the manifold

(Tenenbaum et al. [2000]). The curse of dimensionality on a manifold (acting with

11.6 Curse of Dimensionality for Semi-Supervised Learning 53

Figure 11.1 Geometric illustration of the effect of the curse of dimensionality on
manifolds: the effect depends on the dimension on the manifold, as long as the data are
lying strictly on the manifold. In addition to dimensionality, the lack of smoothness (e.g.
curvature) of the manifold also has an important influence on the difficulty of generalizing
outside of the immediate neighborhood of a training example.

respect to the dimensionality of the manifold) is illustrated in Figure 11.1.

11.6.3 Manifold Geometry: the Curse of Dimensionality for Local Non-

Parametric Manifold Learning

Let us first consider how semi-supervised learning algorithms could learn about

the shape of the manifolds near which the data concentrate, and how either a

high-dimensional manifold or a highly curved manifold could prevent this when the

algorithms are local, in the local-derivative sense discussed above. As a prototypical

example, let us consider the algorithm proposed by Belkin and Niyogi [2003]

(Algorithm 11.4). The embedding coordinates are given by the eigenfunctions fk

from (11.22).

The first derivative of fk with respect to x represents the tangent vector of the

k-th embedding coordinate. Indeed, it is the direction of variation of x that gives

rise locally to the maximal increase in the k-th coordinate. Hence the set of manifold

tangent vectors {∂f1(x)
∂x , ∂f2(x)

∂x , . . . , ∂fd(x)
∂x } spans the estimated tangent plane of

the manifold.

By the local-derivative property (strict or not), each of the tangent vectors at x

is constrained to be exactly or approximately in the span of the difference vectors

x − xi, where xi is a neighbor of x. Hence the tangent plane is constrained to

be a subspace of the span of the vectors x − xi, with xi neighbors of x. This

is illustrated in Figure 11.2. In addition to the algorithm of Belkin and Niyogi

54 Label Propagation and Quadratic Criterion

i

x

x

Figure 11.2 Geometric illustration of the effect of the local derivative property shared
by semi-supervised graph-based algorithms and spectral manifold learning algorithms.
The tangent plane at x is implicitly estimated, and is constrained to be in the span of the
vectors (xi − x), with xi near neighbors of x. When the number of neighbors is small the
estimation of the manifold shape has high variance, but when it is large, the estimation
would have high bias unless the true manifold is very flat.

[2003], a number of non-parametric manifold learning algorithms can be shown

(e.g. see Bengio et al. [2005]) to have the local derivative property (or the strictly

local derivative property): LLE, Isomap, and spectral clustering with Gaussian or

nearest-neighbor kernels.

Hence the local-derivative property gives a strong locality constraint to the

tangent plane, in particular when the set of neighbors is small. If the number of

neighbors is not large in comparison with the manifold dimension, then the locally

estimated shape of the manifold will have high variance, i.e., we will have a poor

estimator of the manifold structure. If the manifold is approximately flat in a large

region, then we could simply increase the number of neighbors. However, if the

manifold has high curvature, then we cannot increase the number of neighbors

without significantly increasing bias in the estimation of the manifold shape. Bias

will restrict us to small regions, and the number of such regions could grow

exponentially with the dimension of the manifold (Figure 11.1).

A good estimation of the manifold structure – in particular in the region near

the decision surface – is crucial for all the graph-based semi-supervised learning

algorithms studied in this chapter. It is thanks to a good estimation of the regions

in data space where there is high density that we can “propagate labels” in the right

places and obtain an improvement with respect to ordinary supervised learning on

the labeled examples. The problems due to high curvature and high dimensionality

of the manifold are therefore important to consider when applying these graph-

based semi-supervised learning algorithms.

11.6 Curse of Dimensionality for Semi-Supervised Learning 55

11.6.4 Curse of Dimensionality for Local Non-Parametric Semi-

Supervised Learning

In this section we focus on algorithms of the type described in Part III of the book

(Graph-Based algorithms), using the notation and the induction formula presented

in this chapter (on label propagation and a quadratic criterion unifying many of

these algorithms).

We consider here that the ultimate objective is to learn a decision surface, i.e.

we have a classification problem, and therefore the region of interest in terms of

theoretical analysis is mostly the region near the decision surface. For example, if

we do not characterize the manifold structure of the underlying distribution in a

region far from the decision surface, it is not important, as long as we get it right

near the decision surface. Whereas in the previous section we built an argument

based on capturing the shape of the manifold associated with each class, here we

focus directly on the discriminant function and on learning the shape of the decision

surface.

An intuitive view of label propagation suggests that a region of the manifold

around a labeled (e.g. positive) example will be entirely labeled positively, as

the example spreads its influence by propagation on the graph representing the

underlying manifold. Thus, the number of regions with constant label should be on

the same order as (or less than) the number of labeled examples. This is easy to see

in the case of a sparse weight matrix W, i.e. when the affinity function is strictly

local. We define a region with constant label as a connected subset of the graph

g where all nodes xi have the same estimated label (sign of ŷi), and such that no

other node can be added while keeping these properties. The following proposition

then holds (note that it is also true, but trivial, when W defines a fully connected

graph, i.e. N(x) = X for all x).

Proposition 11.1 After running a label propagation algorithm minimizing a cost

of the form (11.11), the number of regions with constant estimated label is less than

(or equal to) the number of labeled examples.

Proof By contradiction, if this proposition is false, then there exists a region with

constant estimated label that does not contain any labeled example. Without loss

of generality, consider the case of a positive constant label, with xl+1, . . . , xl+q the

q samples in this region. The part of the cost (11.11) depending on their labels is

C(ŷl+1, . . . , ŷl+q) =
µ

2

l+q
∑

i,j=l+1

Wij(ŷi − ŷj)
2

+ µ

l+q
∑

i=l+1




∑

j /∈{l+1,...,l+q}
Wij(ŷi − ŷj)

2





+ µε

l+q
∑

i=l+1

ŷ2
i .

56 Label Propagation and Quadratic Criterion

The second term is stricly positive, and because the region we consider is maximal

(by definition) all samples xj outside of the region such that Wij > 0 verify

ŷj < 0 (for xi a sample in the region). Since all ŷi are stricly positive for

i ∈ {l + 1, . . . , l + q}, this means this second term can be stricly decreased by

setting all ŷi to 0 for i ∈ {l+1, . . . , l+q}. This also sets the first and third terms to

zero (i.e. their minimum), showing that the set of labels ŷi are not optimal, which

is in contradiction with their definition as the labels that minimize C.

This means that if the class distributions are such that there are many distinct

regions with constant labels (either separated by low-density regions or regions with

samples from the other class), we will need at least the same number of labeled

samples as there are such regions (assuming we are using a strictly local kernel

such as the k-nearest neighbor kernel, or a thresholded Gaussian kernel). But this

number could grow exponentially with the dimension of the manifold(s) on which

the data lie, for instance in the case of a labeling function varying highly along each

dimension, even if the label variations are “simple” in a non-local sense, e.g. if they

alternate in a regular fashion.

When the affinity matrix W is not sparse (e.g. Gaussian kernel), obtaining such

a result is less obvious. However, for local kernels, there often exists a sparse

approximation of W (for instance, in the case of a Gaussian kernel, one can set to

0 entries below a given threshold or that do not correspond to a k-nearest neighbor

relationship). Thus we conjecture the same kind of result holds for such dense weight

matrices obtained from a local kernel.

Another indication that highly varying functions are fundamentally hard to learn

with graph-based semi-supervised learning algorithms is given by the following

theorem (Bengio et al. [2006a]):

Theorem 11.2 Suppose that the learning problem is such that in order to achieve a

given error level for samples from a distribution P with a Gaussian kernel machine

(11.20), then f must change sign at least 2k times along some straight line (i.e.,

in the case of a classifier, the decision surface must be crossed at least 2k times by

that straight line). Then the kernel machine must have at least k examples (labeled

or unlabeled).

The theorem is proven for the case where kX is the Gaussian kernel, but we

conjecture that the same result applies to other local kernels, such as the normalized

Gaussian or the k-nearest-neighbor kernels implicitly used in graph-based semi-

supervised learning algorithms. It is coherent with Proposition 11.1 since both tell

us that we need at least k examples to represent k “variations” in the underlying

target classifier, whether along a straight line or as the number of regions of differing

class on a manifold.

11.7 Discussion 57

11.6.5 Outlook: Non-Local Semi-Supervised Learning

What conclusions should we draw from the previous results? They should help

to better circumscribe where the current local semi-supervised learning algorithms

are likely to be most effective, and they should also help to suggest directions

of research into non-local learning algorithms, either using non-local kernels or

similarity functions, or using altogether other principles of generalization.

When applying a local semi-supervised learning algorithm to a new task, one

should consider the plausibility of the hypothesis of a low-dimensional manifold

near which the distribution concentrates. For some problems this could be very

reasonable a priori (e.g. printed digit images vary mostly due to a few geometric

and optical effects). For others, however, one would expect tens or hundreds of

degrees of freedom (e.g., many Artificial Intelligence problems, such as natural

language processing or recognition of complex composite objects).

Concerning new directions of research suggested by these results, several possible

approaches can already be mentioned:

Semi-supervised algorithms that are not based on the neighborhood graph, such

as the one presented in Chapter 9, in which a discriminant training criterion for

supervised learning is adapted to semi-supervised learning by taking advantage of

the cluster hypothesis, more precisely, the low-density separation hypothesis (see

Section 1.2),

Algorithms based on the neighborhood graph but in which the kernel or similarity

function (a) is non-isotropic (b) is adapted based on the data (with the spread in

different directions being adapted). In that case the predictor will not be either

local nor local-derivative. More generally, the structure of the similarity function at

x should be inferred based not just on the training data in the close neighborhood

of x. For an example of such non-local learning in the unsupervised setting, see

Bengio and Monperrus [2005], Bengio et al. [2006b].

Other data-dependent kernels could be investigated, but one should check whether

the adaptation allows non-local learning, i.e. that information at x could be used

to usefully alter the prediction at a point x′ far from x.

More generally, algorithms that learn a similarity function Sim(x, y) in a non-

local way (i.e. taking advantage of examples far from x and y) should be good

candidates to consider to defeat the curse of dimensionality.

11.7 Discussion

This chapter shows how different graph-based semi-supervised learning algorithms

can be cast into a common framework of label propagation and quadratic criterion

optimization. They benefit from both points of view: the iterative label propagation

methods can provide simple efficient approximate solutions, while the analysis of

58 Label Propagation and Quadratic Criterion

the quadratic criterion helps to understand what these algorithms really do. The

solution can also be linked to physical phenomena such as voltage in an electric

network built from the graph, which provides other ways to reason about this

problem. In addition, the optimization framework leads to a natural extension of the

inductive setting that is closely related to other classical non-parametric learning

algorithms such as k-nearest neighbor or Parzen windows. Induction will be studied

in more depth in the next chapter, and the induction formula (11.19) will turn out to

be the basis for a subset approximation algorithm presented in Chapter 18. Finally,

we have shown that the local semi-supervised learning algorithms are likely to be

limited to learning smooth functions for data living near low dimensional manifolds.

Our approach of locality properties suggests a way to check whether new semi-

supervised learning algorithms have a chance to scale to higher dimensional tasks

or learning less smooth functions, and motivates further investigation in non-local

learning algorithms.

Acknowledgments

The authors would like to thank the editors and anonymous reviewers for their help-

ful comments and suggestions. This chapter has also greatly benefited from advice

from Mikhail Belkin, Dengyong Zhou and Xiaojin Zhu, whose papers first motivated

this research (Belkin and Niyogi [2003], Zhou et al. [2004], Zhu et al. [2003]). The

authors also thank the following funding organizations for their financial support:

Canada Research Chair, NSERC and MITACS.

References

Y. S. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64–69, 1995.

A. K. Agrawala. Learning with a probabilistic teacher. IEEE Transactions on Information Theory,
16:373–379, 1970.

S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions.
Neural Networks, 12(6):783–789, 1999.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large
graphs. In COLT, 2004.

M. Belkin and P. Niyogi. Using manifold structure for partially labeled classification. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
Cambridge, MA, 2003. MIT Press.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey,
1961.

Y. Bengio, O. Delalleau, and N. Le Roux. The curse of dimensionality for local kernel machines.
Technical Report 1258, Département d’informatique et recherche opérationnelle, Université de
Montréal, 2005.

Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable functions for local kernel
machines. In Advances in Neural Information Processing Systems 18. MIT Press, Cambridge,
MA, 2006a.

Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, and M. Ouimet. Learning
eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10):2197–
2219, 2004.

Y. Bengio, H. Larochelle, and P. Vincent. Non-local manifold parzen windows. In Advances in
Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006b.

Y. Bengio and M. Monperrus. Non-local manifold tangent learning. In L.K. Saul, Y. Weiss, and
L. Bottou, editors, Advances in Neural Information Processing Systems 17. MIT Press, 2005.

O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In NIPS, Cambridge, MA,
USA, 2004. MIT Press.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In Tenth
International Workshop on Artificial Intelligence and Statistics, 2005.

T. F. Cox and M. A. Cox. Multidimensional Scaling. Chapman & Hall, 1994.

O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-parametric function induction in
semi-supervised learning. In Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics, 2005.

P. G. Doyle and J. L. Snell. Random walks and electric networks. Mathematical Association of
America, 1984.

B. Fischer, V. Roth, and J. M. Buhmann. Clustering with the connectivity kernel. In NIPS,
volume 16, 2004.

S. C. Fralick. Learning to recognize patterns wothout a teacher. IEEE Transactions on
Information Theory, 13:57–64, 1967.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1–58, 1992.

B. Haasdonk. Feature space interpretation of SVMs with indefinite kernels. IEEE TPAMI, 2004.
In press.

W. Härdle, M. Müller, S. Sperlich, and A. Werwatz. Nonparametric and Semiparametric Models.

112 REFERENCES

Springer, http://www.xplore-stat.de/ebooks/ebooks.html, 2004.

T. Joachims. Transductive learning via spectral graph partitioning. In ICML, 2003.

G. Lebanon. Learning riemannian metrics. In Proceedings of the 19th conference on Uncertainty
in Artificial Intelligence (UAI), 2003.

E. A. Nadaraya. On estimating regression. Theory of Probability and its Applications, 9:141–142,
1964.

C. S. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-positive kernels. In ICML,
pages 639–646, 2004.

M. Ouimet and Y. Bengio. Greedy spectral embedding. In Proceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics, 2005.

S. Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge,
UK, 1997.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, MA,
1996.

L. K. Saul and M. I. Jordan. A variational model for model-based interpolation. In NIPS,
volume 9, 1997.

H. J. Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE
Transactions on Information Theory, 11:363–371, 1965.

M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks. In
NIPS, volume 14, 2001.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

P. Vincent and Y. Bengio. Density-sensitive metrics and kernels. Presented at the Snowbird
Learning Workshop, 2003.

G. S. Watson. Smooth regression analysis. Sankhya - The Indian Journal of Statistics, 26:359–372,
1964.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 682–688, Cambridge, MA, 2001. MIT Press.

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In NIPS, volume 16, 2004.

X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.
Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. In ICML, 2003.

