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Abstract

Nous consid�erons l�estimation par validation crois�ee de l�erreur de g�en�erali�

sation� Nous e�ectuons une �etude th�eorique de la variance de cet estimateur

en tenant compte la variabilit�e due au choix des ensembles d�entra��nement

et des exemples de test� Cela nous permet de proposer deux nouveaux es�

timateurs de cette variance� Nous montrons� via des simulations� que ces

nouvelles statistiques performent bien par rapport aux statistiques consi�

d�er�ees dans �Dietterich� 	

��� En particulier� ces nouvelles statistiques se

d�emarquent des autres pr�esentement utilis�ees par le fait qu�elles m
enent 
a

des tests d�hypoth
eses qui sont puissants sans avoir tendance 
a �etre trop

lib�eraux�

We perform a theoretical investigation of the variance of the cross�validation

estimate of the generalization error that takes into account the variability due

to the choice of training sets and test examples� This allows us to propose

two new estimators of this variance� We show� via simulations� that these

new statistics perform well relative to the statistics considered in �Dietterich�

������ In particular� tests of hypothesis based on these don�t tend to be too

liberal like other tests currently available� and have good power�

Mots cl�es� Erreur de g�en�eralisation� validation crois�ee� estimation de la variance� tests

d�hypoth
eses� niveau� puissance�
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� Generalization Error and its Estimation

When applying a learning algorithm �or comparing several algorithms�� one is typically in�

terested in estimating its generalization error� Its point estimation is rather trivial through

cross�validation� Providing a variance estimate of that estimation� so that hypothesis testing

and�or con�dence intervals are possible� is more di�cult� especially� as pointed out in �Hin�

ton et al�� 	

��� if one wants to take into account various sources of variability such as the

choice of the training set �Breiman� 	

�� or initial conditions of a learning algorithm �Kolen

and Pollack� 	

	�� A notable e�ort in that direction is Dietterich�s work �Dietterich� 	

���

Building upon this work� in this paper we take into account the variability due to the choice of

training sets and test examples� Speci�cally� an investigation of the variance to be estimated

allows us to provide two new variance estimates�

Let us de�ne what we mean by �generalization error� and say how it will be estimated in

this paper� We assume that data is available in the form Zn
� � fZ�� � � � � Zng� For example�

in the case of supervised learning� Zi � �Xi� Yi� � Z � Rp�q � where p and q denote the

dimensions of the Xi�s �inputs� and the Yi�s �outputs�� We also assume that the Zi�s are

independent with Zi � P �Z�� where the generating distribution P is unknown� Let L�D�Z��

where D represents a subset of size n� � n taken from Zn
� � be a function Zn� �Z � R� For

instance� this function could be the loss incurred by the decision that a learning algorithm

trained on D makes on a new example Z�

We are interested in estimating n� � E�L�Zn
� �Zn���� where Zn�� � P �Z� is independent

of Zn
� � The subscript n stands for the size of the training set �Zn

� here�� Note that the above

expectation is taken over Zn
� and Zn��� meaning that we are interested in the performance

of an algorithm rather than the performance of the speci�c decision function it yields on the

data at hand� According to Dietterich�s taxonomy �Dietterich� 	

��� we deal with problems

of type � through �� rather then type 	 through �� We shall call n� the generalization error

even though it can go beyond that as we now illustrate� Here are two examples�

� Generalization error

We may take

L�D�Z� � L�D� �X�Y �� � Q�F �D��X�� Y �� �	�

where F represents a learning algorithm that yields F �D� �F �D� � Rp � Rq �� when

training the algorithm on D� and Q is a loss function measuring the inaccuracy of a

decision� For instance� for classi�cation problems� we could have

Q��y� y� � I ��y 	� y�� ���

where I � � is the indicator function� and in the case of regression�

Q��y� y� �k �y 
 y k�� ���

where k � k is the Euclidean norm� In that case n� is what most people call the

generalization error�

� Comparison of generalization errors

Sometimes� what we are interested in is not the performance of algorithms per se� but

	



how two algorithms compare with each other� In that case we may want to consider

L�D�Z� � L�D� �X�Y �� � Q�FA�D��X�� Y �
Q�FB�D��X�� Y �� ���

where FA�D� and FB�D� are decision functions obtained when training two algo�

rithms �respectively A and B� on D� and Q is a loss function� In this case n� would

be a di�erence of generalization errors�

The generalization error is often estimated via some form of cross�validation� Since there

are various versions of the latter� we lay out the speci�c form we use in this paper�

� Let Sj be a random set of n� distinct integers from f	� � � � � ng�n� � n�� Here n�
represents the size of the training set and we shall let n� � n
 n� be the size of the

corresponding test set�

� Let S�� � � � SJ be such random index sets� sampled independently of each other� and

let Scj � f	� � � � � ng n Sj denote the complement of Sj �

� Let ZSj � fZiji � Sjg be the training set obtained by subsampling Zn
� according to

the random index set Sj � The corresponding test set is ZSc
j
� fZiji � Scjg�

� Let L�j� i� � L�ZSj �Zi�� According to �	�� this could be the error an algorithm

trained on the training set ZSj makes on example Zi� According to ���� this could

be the di�erence of such errors for two di�erent algorithms�

� Let ��j �
�
n�

P
i�Sc

j
L�j� i� denote the usual �average test error� measured on the test

set ZSc
j
�

Then the cross�validation estimate of the generalization error considered in this paper is

n�
n� ��J �

	

J

JX
j��

��j � ���

Note that this an unbiased estimator of n�� � E�L�Zn�
� � Zn����� which is not quite the same

as n��

This paper is about the estimation of the variance of n�
n� ��J � We �rst study theoretically

this variance in Section �� This will lead us to two new variance estimators we develop in

Section �� Section � shows how to test hypotheses or construct con�dence intervals� Section �

describes a simulation study we performed to see how the proposed statistics behave compared

to statistics already in use� Section � concludes the paper�

� Analysis of Var � n�
n�
��J �

In this section� we study Var � n�n� ��J � and discuss the di�culty of estimating it� This section is

important as it enables us to understand why some inference procedures about n�� presently

in use are inadequate� as we shall underline in Section �� This investigation also enables us

to develop estimators of Var � n�n� ��J � in Section �� Before we proceed� we state a lemma that

will prove useful in this section� and later ones as well�

�



Lemma � Let U�� � � � � UK be random variables with common mean �� common variance �

and Cov �Uk� Uk� � � �� �k 	� k�� Let � � �
� be the correlation between Uk and Uk� �k 	� k���

Let �U � k��
PK

k�� Ui and S
�
U � �

K��

PK
k���Uk
 �U�� be the sample mean and sample variance

respectively� Then

�� Var � �U � � � � �����
K � �

�
� � ���

K

�
�

	� If the stated covariance structure holds for any K �with � and � not depending on

K�� then � 
 ��


� E�S�
U � � � 
 ��

Proof

�� This results is obtained from a standard development of Var � �U ��

	� If � � �� then Var � �U � would eventually become negative as K is increased� We thus

conclude that � 
 �� Note that Var � �U � goes to zero as K goes to in�nity if and only

if � � ��


� Again� this only requires careful development of the expectation� The task is somewhat

easier if one uses the identity

S�
U �

	

K 
 	

KX
k��

�U�
k 
 �U�� �

	

�K�K 
 	�

KX
k��

KX
k���

�Uk 
 Uk��
��

Although we only need it in Section �� it is natural to introduce a second lemma here as

it is a continuation of Lemma 	�

Lemma � Let U�� � � � � UK � UK�� be random variables with mean� variance and covariance

as described in Lemma �� In addition� assume that the vector �U�� � � � � UK � UK��� follows the

multivariate Gaussian distribution� Again� let �U � K��
PK

i�k Uk and S�
U � �

K��

PK
k���Uk


�U�� be respectively the sample mean and sample variance of U�� � � � � UK � Then

��
p
	
 � UK����p

S�
U

� tK���

	�
q

���
���K����

p
K� �U���p

S�
U

� tK���

where � � �
� as in Lemma �� and tK�� refers to Student�s t distribution with �K
	� degrees

of freedom�

Proof See Appendix A���

To study Var � n�n� ��J � we need to de�ne the following covariances� In the following� Sj and

S�j are independent random index sets�

� Let �� � ���n�� � Var �L�j� i�� when i is randomly drawn from Scj �

� Let � �� � ���n�� n�� � Cov �L�j� i�� L�j�� i���� with j 	� j�� i and i� randomly and

independently drawn from Scj and Scj� respectively�

�Yes� we know how to count� We just save �� for another quantity to be introduced in ����

�



� Let �� � ���n�� � Cov �L�j� i�� L�j� i��� for i� i� � Scj and i 	� i�� that is i and i� are
sampled without replacement from Scj �

Let us look at the mean and variance of ��j �i�e�� over one set� and
n�
n� ��J �i�e� over J sets��

Concerning expectations� we obviously have E���j � � n�� and thus E� n�n� ��J � � n��� From

Lemma 	� we have

�� � ���n�� n�� � Var ���j � � �� �
�� 
 ��
n�

�
�n� 
 	��� � ��

n�
� ���

For j 	� j�� we have

Cov ���j � ��j� � �
	

n��

X
i�Sc

j

X
i��Sc

j�

Cov �L�j� i�� L�j�� i��� � ��� � �

and therefore �using Lemma 	 again�

Var � n�n� ��J � � �� �
�� 
 ��

J
� ��

�
	�

	
 	

J

�
� �� �

�� 
 ��
J

�
�� 
 ��
n�J

� ���

where 	 � ��
��

� corr���j � ��j� �� Asking how to choose J amounts to asking how large is 	� If it

is large� then taking J 
 	 �rather than J � 	� does not provide much improvement in the

estimation of n���

We shall often encounter ��� ��� �� and �� in the future� so some knowledge about those

quantities is valuable� Here�s what we can say about them�

Proposition � For given n� and n�� we have � � �� � �� � �� and � � �� � ���

Proof For j 	� j� we have

�� � Cov ���j � ��j� � �
q
Var ���j �Var ���j� � � ���

Since �� � Var �L�j� i��� i � Scj and ��j is the mean of the L�j� i��s� then �� � Var ���j � �
Var �L�j� i�� � ��� The fact that limJ�� Var � n�n� ��J � � �� provides the inequality � � ���

Regarding ��� we deduce �� � �� from ��� while � � �� is derived from the fact that

limn���Var ���j � � ���

Naturally the inequalities are strict provided L�j� i� is not perfectly correlated with L�j� i���
��j is not perfectly correlated with ��j� � and the variances used in the proof are positive�

A natural question about the estimator n�
n� ��J is how n�� n� and J a�ect its variance�

Proposition � The variance of n�
n� ��J is non�increasing in J and n��

Proof

� Var � n�
n� ��J � is non�increasing �decreasing actually� unless �� � ��� in J as obvi�

ously seen from ���� This means that averaging over many train
test improves the

estimation of n���

� From ���� we see that to show that Var � n�n� ��J � is non�increasing in n�� it is su�cient

to show that �� and �� are non�increasing in n�� For ��� this follows from ����

�



Regarding ��� we show in Appendix A�	 that ���n�� n�� � ���n�� n
�
�� if n

�
� � n�� All

this to say that for a given n�� the larger the test set size� the better the estimation

of n���

The behavior of Var � n�n� ��J � with respect to n� is unclear� but we conjecture that in

most situations it should decrease in n�� Our arguments go as follows ��

� The variability in n�
n� ��J comes from two sources� sampling decision rules �training

process� and sampling testing examples� Holding n� and J �xed freezes the second

source of variation as it solely depends on those two quantities� not n�� The problem

to solve becomes� how does n� a�ect the �rst source of variation! It is not unreason�

able to say that the decision function yielded by a learning algorithm is less variable

when the training set is larger� We conclude that the �rst source of variation� and

thus the total variation �that is Var � n�n� ��J �� is decreasing in n��

� Note that when L is a test error or a di�erence of test errors� and when the learning

algorithms have a �nite capacity� it can be shown that n�� is bounded with a

given high probability by a decreasing function of n� �Vapnik� 	
���� converging to

the asymptotic training error �which is both the training error and the expected

generalization error when n� � ��� This argument is based on bounds on the

cumulative distribution of the di�erence between the training error and the expected

generalization error� When n� increases� the mass of the distribution of n�� gets

concentrated closer to the training error �and asymptotically it becomes a Dirac at

the training error�� We conjecture that the same argument can be used to show that

the variance of n�� is a decreasing function of n��

Regarding the estimation of Var � n�n� ��J �� we note that we can easily estimate the following

quantities�

� From Lemma 	� we obtain readily that the sample variance of the ��j �s �call it S
�
	�j
� is

an unbiased estimate of ��
�� � ��
��� �����
n�

� Let us interpret this result� Given

Zn
� � the ��j �s are J independent draws �with replacement� from a hat containing all�
n
n�

�
possible values of the ��j �s� The sample variance of those J observations �S�

	�j
�

is therefore an unbiased estimator of the variance of ��j � given Zn
� � i�e� an unbiased

estimator of Var ���j jZn
� �� not Var ���j �� This permits an alternative derivation of the

expectation of the sample variance� Indeed� we have

E�S�
	�j � � E�E�S�

	�j jZn
� �� � E�Var ���j jZn

� ��

� Var ���j �
Var �E���j jZn
� �� � �� 
Var � n�n� ���� � �� 
 ���

Note that E���j jZn
� � �

n�
n� ��� and Var � n�n� ���� � �� both come from Appendix A���

� For a given j� the sample variance of the L�j� i��s �i � Scj � is unbiased for �� 
 ��
according to Lemma 	 again� We may average these sample variances over j to obtain

a more accurate estimate of �� 
 ���

�Here we are not trying to prove the conjecture but to justify our intution that it is correct�

�



We are thus able to estimate unbiasedly any linear combination of ��
�� and ��
��� This

turns out to be all we can hope to estimate unbiasedly as we show in Proposition �� This is

not su�cient to estimate ��� unbiasedly as we know no identity involving ��� �� and ���

Proposition � There is no general non�negative unbiased estimator of Var � n�n� ��J � based on

the L�j� i��s involved in n�
n� ��J �

Proof Let �Lj be the vector of the L�j� i��s involved in ��j and �L be the vector obtained by

stacking the �Lj �s� �L is thus a vector of length n�J � We know that �L has expectation n���n�J
and variance

Var ��L� � ���n�J�
�
n�J � ��� 
 ���IJ � ��n��

�
n�� � ��� 
 ���In�J �

where Ik is the identity matrix of order k� �k is the k� 	 vector �lled with ��s and � denotes

Kronecker�s product� We generally don�t know anything about the higher moments of �L or

expectations of other non�linear functions of �L� these will involve n�� and the ��s �and

possibly other things� in an unknown manner� This forces us to only consider estimators of

Var � n�n� ��J � of the following form

�V � n�n� ��J � �
�L�A�L� b��L

We have

E� �V � n�n� ��J �� � trace�AVar ��L�� � n��
���n�JA�n�J � n��b

��n�J �

Since we wish �V � n�n� ��J � to be unbiased for Var � n�n� ��J �� we want � � b��n�J � ��n�JA�n�J to

get rid of n�� in the above expectation� We take b � �n�J as any other choice of b such

that � � b��n�J simply adds noise of expectation � to the estimator� Then� in order to have

a non�negative estimator of Var � n�n� ��J �� we have to take A to be non�negative de�nite� Then

��n�JA�n�J � �� A�n�J � �n�J � So

E� �V � n�n� ��J �� � ��� 
 ���trace�A�IJ � ��n��
�
n���� � ��� 
 ���trace�A��

This means that only linear combinations of ��� 
 ��� and ��� 
 ��� can be estimated�

� Estimation of Var � n�
n�
��J �

We are interested in estimating n�
n��

�
J � Var � n�n� ��J � where

n�
n� ��J is as de�ned in ���� We

provide two new estimators of Var � n�n� ��J � that shall be compared� in Section �� to estimators

currently in use and presented in Section �� The �rst estimator is simple but may have

a positive or negative bias for the actual variance Var � n�n� ��J �� The second is meant to be

conservative� that is� if our conjecture following Proposition � is correct� its expected value

exceeds the actual variance�

��� First Method� Approximating 	

Let us recall that n�
n� ��J � �

J

PJ
j�� ��j � Let

S�
	�j �

	

J 
 	

JX
j��

���j 
 n�
n� ��J�

� �
�

�



be the sample variance of the ��j �s� According to Lemma 	�

E�S�
	�j � � ���	
 	� �

	
 	

	� ���
J

��

�
	�

	
 	

J

�
�
��
�
	� ���

J

�
�
J � �

���
�

Var � n�n� ��J �
�
J � �

���
� �	��

so that
�
�
J � �

���
�
S�
	�j

is an unbiased estimator of Var � n�n� ��J �� The only problem is that

	 � 	�n�� n�� � ���n��n��
���n��n��

� the correlation between the ��j �s� is unknown and di�cult to

estimate� Indeed� 	 is a function of ��� �� et �� that can not be written as a function of

��� 
 ��� and ��� 
 ���� the only quantities we know how to estimate unbiasedly �besides

linear combinations of these�� We use a very naive surrogate for 	 as follows� Let us recall

that ��j � �
n�

P
i�Sc

j
L�ZSj �Zi�� For the purpose of building our estimator� let us do as if

L�ZSj �Zi� depended only on Zi and n�� Then it is not hard to show that the correlation

between the ��j �s becomes n�
n��n�

� Indeed� when L�ZSj �Zi� � f�Zi�� we have

��� �
	

n�

nX
i��

I��i�f�Zi� and ��� �
	

n�

nX
k��

I��k�f�Zk��

where I��i� is equal to 	 if Zi is a test example for ��� and is equal to � otherwise� Naturally�

I��k� is de�ned similarly� We obviously have Var ����� � Var ����� with

Var ����� � E�Var ����jI�������Var �E����jI������ � E

�
Var �f�Z���

n�

�
�Var �E�f�Z���� �

Var �f�Z���

n�
�

where I���� denotes the n� 	 vector made of the I��i��s� Moreover�

Cov ����� ���� � E�Cov ����� ���jI����� I������ � Cov �E����jI����� I������ E����jI����� I������

� E

�
	

n��

nX
i��

I��i�I��i�Var �f�Zi��

	
� Cov �E�f�Z���� E�f�Z����

�
Var �f�Z���

n��

nX
i��

n��
n�

� � �
Var �f�Z���

n
�

so that the correlation between ��� and ��� ���j and ��j� with j 	� j� in general� is n�
n �

Therefore our �rst estimator of Var � n�n� ��J � is
�
�
J � �o

���o

�
S�
	�j

where 	o � 	o�n�� n�� �

n�
n��n�

� that is
�
�
J � n�

n�

�
S�
	�j
� This will tend to overestimate or underestimate Var � n�n� ��J �

according to whether 	o 
 	 or 	o � 	�

By construction� 	o will be a good substitute for 	 when L�ZSj �Z� does not depend much

on the training set ZSj � that is when the decision function of the underlying algorithm does

not change too much when di�erent training sets are chosen� Here are instances where we

might suspect this to be true�

� The capacity of the algorithm is not too large relative to the size of the training set

�for instance a parametric model that is not too complex��

� The algorithm is robust relative to perturbations in the training set� For instance� one

could argue that the support vector machine �Burges� 	

�� would tend to fall in this

category� Classi�cation and regression trees �Breiman et al�� 	
��� however will typi�

cally not have this property as a slight modi�cation in data may lead to substantially

 



di�erent tree growths so that for two di�erent training sets� the corresponding deci�

sion functions �trees� obtained may di�er substantially on some regions� K�nearest

neighbors techniques will also lead to substantially di�erent decision functions when

di�erent training sets are used� especially if K is small�

��� Second Method� Overestimating Var � n�n� ��J �

Our second method aims at overestimating Var � n�n� ��J �� As explained in the next section�

this leads to conservative inference� that is tests of hypothesis with actual size less than the

nominal size� This is important because techniques currently in use have the opposite defect�

that is they tend to be liberal �tests with actual size exceeding the nominal size�� which is

typically regarded as more undesirable than conservative tests�

We have shown in the previous section that n�
n��

�
J could not be estimated unbiasedly�

However we may estimate unbiasedly n�
n��
��J � Var � n�n��

��J � where n
�
� � bn� c 
 n� � n�� Let

n�
n��
���J be the unbiased estimator� developed below� of the above variance� We argued in the

previous section that� because n�� � n�� Var �
n�
n��

��J � 
 Var � n�n� ��J �� so that n�
n��
���J will tend to

overestimate n�
n��

�
J � that is E� n�n��

���J � �
n�
n��
��J 
 n�

n��
�
J �

Here�s how we may estimate n�
n��
��J without bias� The main idea is that we can get two

independent instances of n�
n��
��J which allows us to estimate n�

n��
��J without bias� Of course

variance estimation from only two observations is noisy� Fortunately� the process by which

this variance estimate is obtained can be repeated at will� so that we may have many unbiased

estimates of n�
n��
��J � Averaging these yields a more accurate estimate of n�

n��
��J �

Obtaining a pair of independent n�
n��
��J is simple� Suppose� as before� that our data

set Zn
� consists of n � n� � n� examples� For simplicity� assume that n is even�� We

have to randomly split our data Zn
� into two distinct data sets� D� and Dc

�� of size bn� c
each� Let ����� be the statistic of interest � n�

n��
��J� computed on D�� This involves� among

other things� drawing J train�test subsets from D�� Let ��c��� be the statistic computed on

Dc
�� Then ����� and ��c��� are independent since D� and Dc

� are independent data sets 
� so

that ������ 
 	�����	�c���
� �� � ���c��� 


	�����	�c���
� �� � �

� ������ 
 ��c����
� is unbiased for n�

n��
��J � This

splitting process may be repeated M times� This yields Dm and Dc
m� with Dm �Dc

m � Zn
� �

Dm�Dc
m � � and jDmj � jDc

mj � bn� c form � 	� � � � �M � Each split yields a pair ����m�� ��
c
�m��

that is such that

E

�
����m� 
 ��c�m��

�

�

	
�

	

�
Var ����m� 
 ��c�m�� �

Var ����m�� �Var ���c�m��

�
� n�

n��
��J �

�When n is odd� everything is the same except that splitting the data in two will result in a

leftover observation that is ignored� Thus Dm and Dc
m are still disjoint subsets of size bn

�
c from Zn� �

but Zn� n �Dm �Dc
m� is a singleton instead of being the empty set�

�Independence holds if the train�test subsets selection process in D� is independent of the process

in Dc
�� Otherwise� ��� and ��c� may not be independent� but they are uncorrelated� which is all we

actually need�

�



This allows us to use the following unbiased estimator of n�
n��
��J �

n�
n��
���J �

	

�M

MX
m��

����m� 
 ��c�m��
�� �		�

Note that� according to Lemma 	� the variance of the proposed estimator is Var � n�n��
���J � �

�

Var �����m� 
 ��c�m��

��
�
r � ��r

M

�
with r � Corr�����m� 
 ��c�m��

�� ����m�� 
 ��c�m���
�� for m 	� m��

We may deduce from Lemma 	 that r 
 �� but simulations yielded r close to �� so that

Var � n�n��
���J � decreased roughly like �

M �

� Inference about n��

We present seven di�erent techniques to perform inference �con�dence interval or test� about

n��� The �rst three are methods already in use in the machine�learning community� the others

are methods we put forward� Among these new methods� two were shown in the previous

section� the other two are the bootstrap and corrected bootstrap� Tests of the hypothesis

H� � n�� � �� �at signi�cance level �� have the following form

reject H� if





 ��
 ��p
���





 
 c� �	��

while con�dence intervals for n�� �at con�dence level 	
 �� will look like

n�� � ���
 c
p
���� ��� c

p
����� �	��

Note that in �	�� or �	��� �� will be an average� ��� is meant to be a variance estimate of �� and

�using the central limit theorem to argue that the distribution of �� is approximately Gaussian�

c will be a percentile from the N��� 	� distribution or from Student�s t distribution� The only

di�erence between the seven techniques is in the choice of ��� ��� and c� In this section we lay

out what ��� ��� and c are for the seven techniques considered and comment on whether each

technique should be liberal or conservative� All this is summarized in Table 	� The properties

�size and power of the tests� of those seven techniques shall be investigated in Section ��

Before we go through all these statistics� we need to introduce the concept of liberal and

conservative inference� We say that a con�dence interval is liberal if it covers the quantity of

interest with probability smaller than the required 	
 �� if the above probability is greater

than 	
�� it is said to be conservative� A test is liberal if it rejects the null hypothesis with

probability greater than the required � whenever the null hypothesis is actually true� if the

above probability is smaller than �� the test is said to be conservative� To determine if an

inference procedure is liberal or conservative� we will ask ourself if ��� tends to underestimate

or overestimate Var ����� Let us consider these two cases carefully�

� If we have Var �	��
E�	��� 
 	� this means that ��� tends to underestimate the actual variance

of �� so that a con�dence interval of the form �	�� will tend to be shorter then it needs

to be to cover n�� with probability �	
 ��� So the con�dence interval would cover

the value n�� with probability smaller than the required �	
��� Such an interval is

called liberal in Statistics� In terms of hypothesis testing� the criterion shown in �	��






will be met too often since ��� tends to be smaller than it should� In other words� the

probability of rejecting H� when H� is actually true will exceed the prescribed ��

� Naturally� the reverse happens if Var �	��
E�	��� � 	� So in this case� the con�dence interval

will tend to be larger then needed and thus will cover n�� with probability greater

than the required �	 
 ��� and tests of hypothesis based on the criterion �	�� will

tend to reject the null hypothesis with probability smaller than � �the nominal level

of the test� whenever the null hypothesis is true�

We shall call Var �	��
E�	��� the political ratio since it indicates that inference should be liberal when

it is greater than 	� conservative when it is less than 	� Of course� the political ratio is not

the only thing determining whether an inference procedure is liberal on conservative� For

instance� if Var �	��
E�	��� � 	� the inference may still be liberal or conservative if the wrong number

of degrees of freedom is used� or if the distribution of �� is not approximately Gaussian�

We are now ready to introduce the statistics we will consider in this paper�

	� t Test statistic

Let the available data Zn
� be split into a training set ZS� of size n� and a test set ZSc

�

of size n� � n
 n�� with n� relatively large �a third or a quarter of n for instance��

One may consider �� � n�
n� ��� to estimate n�� and ��� �

S�L
n�

where S�
L is the sample

variance of the L�	� i��s involved in n�
n� ��� � n��

�

P
i�Sc� L�	� i�


� Inference would be

based on the fact that
n�
n� ��� 
 n��q

S�
L

n�

� N��� 	�� �	��

We use N��� 	� here as n� is meant to be fairly large �greater than ��� say��

Lemma 	 tells us that the political ratio here is

Var � n�n� ����

E
h
S�
L

n�

i �
n��� � ��� 
 ���

�� 
 ��

 	�

so this approach leads to liberal inference� This phenomenon grows worse as n�
increases�

�We note that this statistic is closely related to the McNemar statistic �Everitt� 	���� when the

problem at hand is the comparison of two classi�cation algorithms� i�e� L is of the form �
� with

Q of the form ���� Indeed� let LA�B�	� i� � LA�	� i� � LB�	� i� where LA�	� i� indicates whether

Zi is misclassi�ed �LA�	� i� � 	� by algorithm A or not �LA�	� i� � ��� LB�	� i� is de�ned likewise�

Of course� algorithms A and B share the same training set �S�� and testing set �Sc��� We have
n�
n� ��� � n���n��

n�
� with njk being the number of times LA�	� i� � j and LB�	� i� � k� j � �� 	�

k � �� 	� McNemar�s statistic is devised for testing H� � n�� � � �i�e� the LA�B�	� i��s have

expectation �� so that one may estimate the variance of the LA�B�	� i��s with the mean of the

�LA�B�	� i�� ����s �which is n���n��
n�

� rather than with S�
L� Then �	�� becomes

reject H� if





 n�� � n��p
n�� � n��





 � Z������

which squared leads to the McNemar�s test �not corrected for continuity��

	�



Note that S�
L is a biased estimator of �� �the unconditional variance of L�	� i� �

L�ZS� �Zi�� i 	� S��� but is unbiased for the variance of L�	� i� conditional on the

training set ZS�
�� That is so because� given ZS� � the L�	� i��s are independent

variates� Therefore� although �	�� is wrong� we do have
p
n��

n�
n� ��� 
E� n�n� ���jZS� ��p

S�
L

� N��� 	�

in so far as n� is large enough for the central limit theorem to apply� Therefore this

method really allows us to make inference about E� n�n� ���jZS� � � E�L�	� i�jZS� � �
E�L�ZS� �Zi�jZS� �� i 	� S�� that is the generalization error of the speci�c rule obtained

by training the algorithm on ZS� � not the generalization error of the algorithm per

se� That is� according to Dietterich�s taxonomy �Dietterich� 	

��� it deals with

questions 	 through �� rather than questions � through ��

�� Resampled t test statistic

Let us refresh some notation from Section 	� Particularly� let us recall that n�
n� ��J �

�
J

PJ
j�� ��j � The resampled t test technique� considers �� � n�

n� ��J and ��� �
S���j
J

where S�
	�j

is the sample variance of the ��j �s� Inference would be based on the fact

that
n�
n� ��J 
 n��r

S�
��j

J

� tJ��� �	��

Combining ��� and Lemma 	 gives us the following political ratio

Var � n�n� ��J �

E

�
S�
��j

J

� �
JVar � n�n� ��J �

E�S�
	�j
�

�
J�� � ��� 
 ���

�� 
 ��

 	�

so this approach leads to liberal inference� a phenomenon that grows worse as J in�

creases� Dietterich �Dietterich� 	

�� observed this empirically through simulations�

As argued in Section �� S�
	�j

actually estimates �without bias� the variance of n�
n� ��J

conditional on Zn
� � Thus while �	�� is wrong� we do have

p
J� n�

n� ��J 
E� n�n� ��J jZn
� ��q

S�
	�j

� tJ���

Recall from the proof of Proposition � in Appendix A�� that E� n�n� ��J jZn
� � �

n�
n� ����

Therefore this method really allows us to make inference about n�
n� ���� which is not

too useful� because we want to make inference about n���

�From this� we can rederive that S�
L is biased for the unconditional variance as follows�

E�S�
L� � E�E�S�

LjZS� �� � E�Var �L�	� i�jZS� ��
� E�Var �L�	� i�jZS� �� �Var �E�L�	� i�jZS� �� � Var �L�	� i���

�When the problem at hand is the comparison of two classi�cation algorithms� i�e� L is of the form

�
� with Q of the form ���� this approach is what Dietterich �Dietterich� 	��
� calls the �resampled

paired t test� statistic�

		



�� �x� cv t test

Dietterich �Dietterich� 	

�� used� �� � "����� ��
� � ���Diet �

�
��

P

m���"��m� 
 "�c�m��

�

and c � t
����	�� where the "��m��s and "�c�m��s are
bn	�c
bn	�c����s somewhat similar to the

���m��s and ��c�m��s used in �		�� Speci�cally� Zn
� is split in half M � � times to yield

D�� D
c
�� � � � � D
� D

c

 as in Section �� Then let

���m� � bn
�c��
X
i�Dc

m

L�Dm�Zi�� ��c�m� � bn
�c��
X
i�Dm

L�Dc
m�Zi��

Note that the political ratio is

Var �"�����

E�����
�

���bn
�c� bn
�c�
���bn
�c� bn
�c�
 �


where �
 � Cov �"��m�� "�
c
�m���

Remarks

� As Dietterich noted� this allow inference for bn	�c� which may be substantially

distant from n��

� The choice of M � � seems arbitrary�

� The statistic was developed under the assumption that the "��m��s and "���m�c �s

are 	� independent and identically distributed Gaussian variates� Even in this

ideal case�

tD �
��
 bn	�c�p

���
�

"���� 
 bn	�c�q
�
��

P

m���"��m� 
 "�c�m��

�
�	��

is not distributed as t
 as assumed in �Dietterich� 	

�� because "���� and �"����

"�c���� are not independent� That is easily �xed in two di�erent ways�

� Take the sum from m � � to m � � and replace 	� by � in the denominator

of �	�� which would result in tD � t
�

� Replace the numerator by
p
��

��������c���
� 
 bn	�c�� which would lead to tD �

t
 as "���� � "�c��� and "���� 
 "�c��� are independent�

In all cases� more degrees of freedom could be exploited� statistics distributed

as t� can be devised by appropriate use of the independent variates�

�� Conservative Z

We estimate n�� by �� � n�
n� ��J and use ��� � n�

n��
���J �equation 		� as its conservative

variance estimate� Since n�
n� ��J is the mean of many �Jn� to be exact� L�j� i��s� we

may expect that its distribution is approximatively normal� We may then use

Z �
n�
n� ��J 
 n��q

n�
n��
���J

�	 �

as a N��� 	� variate to perform inference� leading us to use c � Z���	� in �	��

or �	��� where Z���	� is the percentile 	 
 � of the N��� 	� distribution� Some

	Dietterich only considered the comparison of two classi�cation algorithms� that is L of the form

�
� with Q of the form ����

	�



would perhaps prefer to use percentile from the t distribution� but it is unclear

what the degrees of freedom ought to be� People like to use the t distribution in

approximate inference frameworks� such as the one we are dealing with� to yield

conservative inference� This is unnecessary here as inference is already conservative

via the variance overestimation� Indeed� the political ratio is

V ar� n�n� ��J �

E� n�n��
���J �

�
n�
n��

�
J

n�
n��
��J

� 	�

according to the argument following Proposition ��

Regarding the choice of n� �and thus n��� we may take it to be small relatively to n

�the total number of examples available�� One may use n� �
n
�� for instance provided

J is not smallish�

�� Bootstrap

To estimate the variance of �� � n�
n� ��J by the bootstrap �Efron and Tibshirani�

	

��� we must obtain R other instances of that random variable� by redoing the

computation with di�erent splits� call these #��� � � � � #�R� Thus� in total� �R � 	�J

training and testing sets are needed here� Then one could consider ��� � #��� where

#�� is the sample variance of #��� � � � � #�R� and take c � tR������	�� as #�� has R 
 	

degrees of freedom� Of course n�
n� ��J � #��� � � � � #�R are R � 	 identically distributed

random variables� But they are not independent as we �nd� from � �� that the

covariance between them is ��� Using Lemma 	� we have

Var � n�n� ��J �

E�#���
�

n�
n��

�
J

n�
n��

�
J 
 ��

�
J�� � ��� 
 ���

�� 
 ��

 	�

Note that this political ratio is the same as its counterpart for the resampled t�test

because E�#��� � E�
S���j
J �� So the bootstrap leads to liberal inference that should

worsen with increasing J just like the resampled t test statistic� In other words� the

bootstrap only provides a second estimator of �����
J which is more complicated and

harder to compute than
S���j
J which is also unbiased for �����

J �

�� Corrected resampled t	test statistic

From our discussion in Section �� we know that an unbiased estimator of n�
n��

�
J is�

�
J � �

���
�
S�
	�j
� where S�

	�j
is the sample variance of the ��j �s� Unfortunately 	� the

correlation between the ��j �s� is unknown� The resampled t�test boldly puts 	 � ��

We propose here to do as if 	 � 	� � n�
n��n�

as our argument in Section � suggests�

So we use ��� �
�
�
J � n�

n�

�
S�
	�j
� We must say again that this approximation is gross�

but we feel it is better than putting 	 � �� Furthermore� in the ideal case where

the vector of the ��j �s follows the multivariate Gaussian distribution and 	 is actually

equal to 	�� Lemma � states that
n�
n�

	�J� n��p
	��

� tJ���

Finally� let us note that the political ratio

Var � n�n� ��J �

E�����
�

�
J � �

���
�
J � n�

n�

	�



will be greater than 	 �liberal inference� if 	 
 	�� If 	 � 	�� the above ratio is smaller

than 	� so that we must expect the inference to be conservative� Having mentioned

earlier that conservative inference is preferable to liberal inference� we therefore hope

that the ad hoc 	� �
n�

n��n�
will tend to be larger than the actual correlation 	�

 � Corrected bootstrap statistic

Naturally� the correction we made in the resampled t test can be applied to the

bootstrap procedure as well� Namely� we note that
�
	 � J �

���
�
#��� where #�� is the

sample variance of the #�r�s� is unbiased for n�
n��

�
J � Naively replacing 	 by 	� leads us

to use ��� �
�
	 � Jn�

n�

�
#��� Furthermore� in the ideal case where 	 is actually equal

to 	�� and the vector made of n�
n� ��J � #��� � � � #�R follows the multivariate Gaussian

distribution� Lemma � states that
n�
n�

	�J� n��p
	��

� tR��� Finally note that� just like in

the corrected resampled t�test� the political ratio is

Var � n�n� ��J �

E�����
�

�
J � �

���
�
J � n�

n�

�

We conclude this section by providing in Table 	 a summary of the seven inference methods

considered in the present section�

Name �� ��� c Var �	��
E�	���

	� t�test �McNemar� n�
n� ���

�
n�
S�
L Z���	�

n�����������
����� 
 	

�� resampled t n�
n� ��J

�
JS

�
	�j

tJ������	� 	 � J �
��� 
 	

�� Dietterich�s �� � cv
n	�
n	���� ���Diet t
����	� ��

�����
�� conservative Z n�

n� ��J
n�
n��
���J Z���	�

n�
n�
��J

n�
n�
�

��
J

� 	

�� bootstrap n�
n� ��J #�� tR������	� 	 � J �

��� 
 	

�� corrected resampled t n�
n� ��J

�
�
J � n�

n�

�
S�
	�j

tJ������	�
��J �

���

��J
n�
n�

 � corrected bootstrap n�
n� ��J

�
	 � Jn�

n�

�
#�� tR������	�

��J �

���

��J
n�
n�

Table 	� Summary description of the seven inference methods considered in relation to the

rejection criteria shown in �	�� or the con�dence interval shown in �	��� Zp and tk�p refer to

the quantile p of the N��� 	� and Student tk distributions respectively� The political ratio�

that is Var �	��
E�	��� � indicates if inference according to the corresponding method will tend to be

conservative �ratio less than 	� or liberal �ratio greater than 	�� See Section � for further

details�

� Simulation study

We performed a simulation study to investigate the power and the size of the seven statistics

considered in the previous section� We also want to make recommendations on the value

of J to use for those methods that involve n�
n� ��J � Simulation results will also lead to a

recommendation on the choice of M when the conservative Z is used�

	�



We will soon introduce the three kinds of problems we considered to cover a good range of

possible applications� For a given problem� we shall generate 	��� independent sets of data

of the form fZ�� � � � � Zng� Once a data set Zn
� � fZ�� � � � Zng has been generated� we may

compute con�dence intervals and�or a tests of hypothesis based on the statistics laid out in

Section � and summarized in Table 	� A di�culty arises however� For a given n� those seven

methods don�t aim at inference for the same generalization error� For instance� Dietterich�s

method aims at n	�� �we take n even for simplicity�� while the others aim at n�� where

n� would usually be di�erent for di�erent methods �e�g� n� � �n
� for the t�test and n� � �n

��

for methods using n�
n� ��J�� In order to compare the di�erent techniques� for a given n� we

shall always aim at n	��� The use of the statistics other than Dietterich�s �� � cv shall be

modi�ed as follows�

� t test statistic

We take n� � n� � n
� � This deviates slightly from the normal usage of the t test

where n� is one third� say� of n� not one half�

� Methods other that the t	test and Dietterich
s �� � cv

For methods involving n�
n� ��J where J is a free parameter� that is all methods except

the t�test and Dietterich�s ��� cv� we take n� � n� �
n
� � This deviates substantially

from the normal usage where n� would be � to 	� times larger than n�� say� For that

reason� we also take n� � n
� and n� �

n
�� �assume n is a multiple of 	� for simplicity��

This is achieved by throwing away ��$ of the data� Note that when we will address

the question of the choice of J �and M for the conservative Z�� we shall use n� � �n
��

and n� � n
�� � more in line with the normal usage�

� Conservative Z

For the conservative Z� we need to explain how we compute the variance estimate�

Indeed� formula �		� suggests that we have to compute n�
� ���J whenever n� � n� � n

� %

What we do is that we choose n� as we would normally do �	�$ of n here� and do the

variance calculation as usual � n�
n	��n� ��

�
J �

n	��
�n	
��

�
J �� However� in the numerator of

�	 �� we compute both
n	�
n	���J and n�

n	���J �
n	��
n	� ��J instead of n�

n�n� ��J � as explained
above� Recall that we have argued in Section � that n�

n��
�
J was decreasing in n� and

n�� Consequently the variances of
n	�
n	���J and n�

n	���J are smaller than n�
n	��n��

�
J � so

that n�
n	��n� ��

�
J still acts as a conservative variance estimate� that is

E� n�n	��n� ��
�
J � �

n�
n	��n��

�
J � Var � n�n	��n� ��J � 
 Var � n�n	���J � 
 Var �

n	�
n	���J ��

Thus the variance overestimation will be more severe in the case of
n	�
n	���J �

We consider three kinds of problems to cover a good range of possible applications�

	� Prediction in simple normal linear regression

We consider the problem of estimating the generalization error in a simple Gaussian

regression problem� We thus have Z � �X�Y � with X � N��X � �
�
X � and Y jX �

N��� � ��X� �
�
Y jX� where ��Y jX is constant �does not depend on X�� The learning

algorithms are

	�



�a� Sample mean

The decision function is FA�ZS��X� � �
n�

P
i�S Yi � �YS � that is the mean of the

Y �s in the training set ZS� Note that this decision function does not depend on

X � We use a quadratic loss� so that LA�j� i� � �FA�ZSj ��Xi�
Yi�� � ��YSj
Yi���
�b� Linear regression

The decision function is FB�ZS��X� � ��S � ��SX where ��S and ��S are the

intercept and the slope of the ordinary least squares regression of Y on X

performed on the training set ZS� Since we use a quadratic loss� we therefore

have LB�j� i� � �FB�ZSj ��Xi�
 Yi�
� � ���Sj �

��SjXi 
 Yi�
��

On top of inference about the generalization errors of algorithm A � n��A� and

algorithm B � n��B�� we also consider inference about n��A�B � n��A
 n��B � the

di�erence of those generalization errors� This inference is achieved by considering

LA�B�j� i� � LA�j� i�
 LB�j� i��

What�s interesting in the present case is that we can derive analytically the actual

generalization errors n��A and n��B � Indeed we show in Appendix A�� that

n��A �
n� � 	

n�
���Y jX � ����X� �	��

and

n��B �
n� � 	

n�

n� 
 �

n� 
 �
��Y jX � �	
�

Table � describes the four simulations we performed for the regression problem� For

instance� in Simulation 	� we generated 	��� samples of size ���� with �x � 	��

��X � 	� � � 	��� � � 	 and ��Y jX � 
 �so that ����A � ����B � ���
���
�� and

therefore ����A�B � ��� Thus the �rst and third simulation correspond to cases

where the two algorithms generalize equally well �for n� � n
� �� in the second and

fourth case� the linear regression generalizes better than the sample mean� The table

also provides some summary con�dence intervals � for quantities of interest� namely

n��� 	�n�� n�� �
���n��n��
���n��n��

and r�

�� Classi�cation of two Gaussian populations

We consider the problem of estimating the generalization error in a classi�cation

problem with two classes� We thus have Z � �X�Y � with Prob�Y � 	� � Prob�Y �

�� � �
� � X jY � � � N����&�� and X jY � 	 � N����&��� The learning algorithms

are

�a� Regression tree

We perform a least square regression tree �� �Breiman et al�� 	
��� of Y against

X and the decision function is FA�ZS��X� � I �NZS �X� 
 ���� where NZS�X�

is the leaf value corresponding to X of the tree obtained when training on ZS �


Of course con�dence intervals for the generalization errors are not interesting here because we

know analytically what they are� For other kind of problems� this will not be the case�
��The function tree in Splus 
�� for Windows with default options and no pruning was used to

perform the regression tree�
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Simulation 	 Simulation � Simulation � Simulation �

n ��� ��� ���� ����

�X 	� 	� 	� 	�

� 	�� 	�� 	�� 	��

� 	 � ��	 ��	

��X 	 � 	 �

��Y jX 
 �� 
�
 


n	��A 
��
�  �� � 
�

 
���

n	��B 
��
� ����	 
�

 
���

n	��A�B �  ��	 � ����

n	��A �
��  �	������ � ����� ����� �
�
�	�	������ �
�����
�� ��

n	��B �
���
�

�
�� �����
���� �� �
�
�	�	������ ���


�
�����

n	��A�B ���������	
� � ���� ���� ������	�����	� �����
�������

�n	���A 
����  ���� 
�

 
���

�n	���B 
���
 ��� � 
�
� 
��	

�n	���A�B ����  ��� ����� �����

�n	���A �
��	
� 

���� � 	�
��  ��

� �
�
���
�

�� �
�����
��� �

�n	���B �
 � 	� 

�	�� ������������� �
�
���
�

�� ���
���
���� �

�n	���A�B ���������� � � ���� �
� � ������������� ����������� �

	A�
n
� �

n
� � ����������	�� ����� �����	� �����������	� ���� 	����	��

	B�
n
� �

n
� � ����� ����	�� ���� �����	 � ������������� ���� �����	 �

	A�B�n� �
n
� � ����������
�� ������������� ������������� ����

�������

	A�
n
� �

n
�� � ���	�����	 
� ���	�����	
�� ���	�����	
�� ���	� ���	 ��

	B�
n
� �

n
�� � ���	�����	��� ���	�����	��� ���	�����	
�� ���	� ���	 ��

	A�B�n� �
n
�� � ���	�����	��� ���	�����	��� �����
���	��� ���	�	���	���

	A�
�n
�� �

n
�� � ����
����		�� ����
����		 � ����
����			� ���������	���

	B�
�n
�� �

n
�� � ����
����		 � �����
���			� ����
����			� ���������	���

	A�B� �n�� �
n
�� � ����������
	� ���������	�
� �����
������� ���������	�
�

rA �����	������� ����� ������� �������������� ������	�������

rB ������������� ������������� �������������� ������	�����
�

rA�B ���	��������� ���� 	����
�� ���	��������� ����� ���		��

Table �� Description of four simulations for the simple linear regression problem� In each of

the four simulations� 	��� independent samples of size n where generated with �X � �� �� ��X
and ��Y jX as shown in the table� Actual values of the generalization errors n�� are given

according to formulas 	� and 	
� 
�$ con�dence intervals for n��� 	�n�� n�� �
���n��n��
���n��

and

r � Corr�����m� 
 ��c�m��
�� ����m�� 
 ��c�m���

�� de�ned after �		� are provided� The subscripts A�

B and A�B indicates whether we are working with LA� LB or LA�B �

	 



Thus LA�j� i� � I �FA�ZSj ��Xi� 	� Yi� is equal to 	 whenever this algorithm

misclassi�es example i when the training set is ZSj � otherwise it is ��

�b� Ordinary least squares linear regression

We perform the regression of Y against X and the decision function is

FB�ZS��X� � I � ���ZSX 
 �
� � where

��S is the ordinary least squares regres�

sion coe�cient estimates�� obtained by training on the training set ZS� Thus

LB�j� i� � I �FB�ZSj ��Xi� 	� Yi� is equal to 	 whenever this algorithm misclas�

si�es example i when the training set is ZSj � otherwise it is ��

On top of inference about the generalization errors n��A and n��B associated with

those two algorithms� we also consider inference about n��A�B � n��A 
 n��B �

E�LA�B�j� i�� where LA�B�j� i� � LA�j� i�
 LB�j� i��

Table � describes the four simulations we performed for the Gaussian populations

classi�cation problem� Again� we considered two simulations with n � ��� and two

simulations with n � ����� We also chose the parameters ��� ��� &� and &� in such

a way that in Simulations � and �� the two algorithms generalize equally well� in

Simulations 	 and �� the linear regression generalizes better than the regression tree�

The table also provides some summary con�dence intervals for quantities of interest�

namely n��� 	�n�� n�� �
���n��n��
���n��n��

and r�

�� Classi�cation of letters

We consider the problem of estimating generalization errors in the Letter Recognition

classi�cation problem �Blake� Keogh and Merz� 	

��� The learning algorithms are

�a� Classi�cation tree

We perform a classi�cation tree �Breiman et al�� 	
��� �� to obtain its de�

cision function FA�ZS��X�� Here the classi�cation loss function LA�j� i� �

I �FA�ZSj ��Xi� 	� Yi� is equal to 	 whenever this algorithm misclassi�es example

i when the training set is ZSj � otherwise it is ��

�b� First nearest neighbor

We apply the �rst nearest neighbor rule with a distorted distance metric to pull

down the performance of this algorithm to the level of the classi�cation tree �as

in �Dietterich� 	

���� Speci�cally� the distance between two vectors of inputs

X��� and X��� is

d�X���� X���� �
�X

k��

w��k X
i�Ck

�X
���
i 
X

���
i ��

where C� � f	� �� 
� 	�g� C� � f�� �� ��  � �� 	�� 	�� 	�� 	�g and C� � f�� 		� 	�g
denote the sets of components that are weighted by w� 	 and w�� respectively�

Table � shows the values of w considered� We have LB�j� i� equal to 	 whenever

this algorithm misclassi�es example i when the training set is ZSj � otherwise it

is ��

�� ��ZS includes an intercept and correspondingly 	 was included in the input vector X�
��We used the function tree in Splus version 
�� for Windows� The default arguments were used

and no pruning was performed� The function predict with option type��class� was used to

retrieve the decision function of the tree�
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Simulation 	 Simulation � Simulation � Simulation �

n ��� ��� ���� ����

�� ����� ����� ����� �����

�� �	�	� �	�	� �	�	� �	�	�

&� I� I� I� I�
&�

�
�I�

�
�I�

�
�I� ��	 �I�

n	��A �����
������� ���	�����	�
� ����� ������� ���	�����	���

n	��B ������������� ���	�����	��� �����������	� ���	�����	���

n	��A�B ������������� ������	������� ������ ����� �� �
	� 	��
� �� 	��
�

�n	���A ����� ������� ���	�����	� � ����������� � ���	�����	���

�n	���B �����	������� ���	�����	��� ���	

������� ���	�����	���

�n	���A�B �����������
� ������	������� ����������� � �����		������
�

	A�
n
� �

n
� � ����������
�� ����
�������� ������������� �������������

	B�
n
� �

n
� � ����	������
� �����
����	 � ������������� �������������

	A�B�n� �
n
� � ���	�����	��� ���	 �������� ���	�����	��� ���	 
����		�

	A�
n
� �

n
�� � ���	�
������� ������������� ���	
�������� ����� �������

	B�
n
� �

n
�� � ���	�����	��� ���	�����	��� ���	�	���	 �� ���	�
���	���

	A�B�n� �
n
�� � ���	�����	��� ���	�����	� � ����� ���	��� ���		����	���

	A�
�n
�� �

n
�� � ���	� ���	��� ���	�����	� � ���		����	� � ���	�����	���

	B�
�n
�� �

n
�� � �����
���		�� ����  ����
 � ���������	��� �����	���	���

	A�B� �n�� �
n
�� � ����  ����
�� ����
����			� �����
������� ���� ����	���

rA ����� ����	�� �����������
� �������������� ��������������

rB ����������	 � ����������� � ������������ � ��������������

rA�B ����	������	� ����� ����	 � �������������� ������	�����
�

Table �� Description of four simulations for the classi�cation of two Gaussian populations

problem� In each of the four simulations� 	��� independent samples of size n where generated

with ��� ��� &�� &� as shown in the table� 
�$ con�dence intervals for n��� 	�n�� n�� �
���n��n��
���n��

and r � Corr�����m� 
 ��c�m��
�� ����m��
 ��c�m���

�� de�ned after �		� are provided� The

subscripts A� B and A�B indicates whether we are working with LA� LB or LA�B�
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In addition to inference about the generalization errors n��A and n��B asso�

ciated with those two algorithms� we also consider inference about n��A�B �

n��A 
 n��B � E�LA�B�j� i�� where LA�B�j� i� � LA�j� i� 
 LB�j� i�� We sam�

ple� without replacement� ��� examples from the ����� examples available in the

Letter Recognition data base� Repeating this 	��� times� we obtain 	��� sets of

data of the form fZ�� � � � � Z���g� The table also provides some summary con�dence

intervals for quantities of interest� namely n��� 	�n�� n�� �
���n��n��
���n��n��

and r�

Before we comment on Tables �� � and �� let us describe how con�dence intervals shown in

those tables were obtained� First� let us point out that con�dence intervals for generalization

errors in those tables have nothing to do with the con�dence intervals that we may compute

from the statistics shown in Section �� Indeed� the latter can be computed on a single

data set Zn
� � while the con�dence intervals in the tables use 	��� data sets Zn

� as we now

explain� For a given data set� we may compute n�
n� ���
� which has expectation n��� Recall�

from ��� in Section 	� that n�
n� ���
 � �

�


P�

j�� ��j is the average of �� crude estimates of

the generalization error� Also recall from Section � that those crude estimates have the

moment structure displayed in Lemma 	 with � � n�� and � � 	�n�� n�� �
���n��n��
���n��n��

� Call

�� � ����� � � � � ���
�
� the vector of those crude estimates� Since we generate 	��� independent

data sets� we have 	��� independent instances of such vectors� As may be seen in the

Appendix A��� appropriate use of the theory of estimating functions �White� 	
��� then

yields approximate con�dence intervals for n�� and 	�n�� n��� Con�dence intervals for r �

Corr�����m�
 ��c�m��
�� ����m��
 ��c�m���

��� de�ned in Section �� are obtained in the same manner

we get con�dence intervals for 	�n�� n��� Namely� we have 	��� independent instances of the

vector ������� 
 ��c����
�� � � � � ������� 
 ��c�����

��� where the ���m��s and ��c�m� are
n	��
�n	
���
�s as we

advocate the use of J � 	� later in this section�

Table � con�rms our calculations about n�� for the simple linear regression problem as

the con�dence intervals for n�� cover the actual values found according to formulas 	� and

	
� We see that n�� may substantially di�er for di�erent n�� This is most evident in

Table � where con�dence intervals for �
�� di�er from con�dence intervals for ���� in a

noticeable manner� We see that our very naive approximation 	��n�� n�� � n�
n��n�

is not

as bad as one could expect� Often the con�dence intervals for the actual 	�n�� n�� contains

	��n�� n��
��� When this is not the case� the approximation 	��n�� n�� usually appears to

be reasonably close to the actual value of the correlation 	�n�� n��� Furthermore� when we

compare two algorithms� the approximation 	��n�� n�� is not smaller than the actual value of

the correlation 	A�B�n�� n��� which is good since that indicates that the inference based on

the corrected bootstrap and on the corrected resampled t�test will not be liberal� We �nally

note that the correlation r appears to be fairly small� except when we compare algorithms A

and B in the simple linear regression problem� Thus� as we stated at the end of Section ��

we should expect Var � n�n��
���J � to decrease like �

M �

��As mentioned before� the corrected bootstrap and the corrected resampled t�test are typically

used in cases where training sets are � or 	� times larger than test sets� So we must only be concerned

with ��n
�
� n
��
� and �� 
n

��
� n
��
��

�	



��� Sizes and powers of tests

One of the most important thing to investigate is the size �probability of rejecting the null

hypothesis when it is true� of the tests based on the statistics shown in Section � and compare

their powers �probability of rejecting the null hypothesis when it is false�� The four panels of

Figure 	 show the estimated powers of the statistics for the hypothesis H� � n	��A � �� for

various value of �� in the regression problem� We estimate powers �probabilities of rejection�

by proportions of rejection observed in the simulation� We must underline that� despite

appearances� these are not �power curves� in the usual sense of the term� In a �power

curve�� the hypothesized value of n	��A is �xed and the actual value of n	��A varies� Here�

it is the reverse that we see in a given panel� the actual value of n	��A is �xed while the

hypothesized value of n	��A �i�e� ��� is varied� We do this because constructing �power

curves� would be too computationally expensive� Nevertheless� Figure 	 conveys information

similar to conventional �power curves�� Indeed� we can �nd the size of a test by reading its

curve between the two vertical dotted lines� We can also appreciate the progression of the

power as the hypothesized value of n	��A and the actual value of n	��A grow apart� We

shall see in Figure 
 that those curves are good surrogate to �power curves��

Figures � through � are counterparts of Figure 	 for other problems and�or algorithms�

Note that in order to keep the number of line types down in Figure 	 and its counterparts

appearing later� some curves share the same line type� So one must take note of the following�

� In a given panel� you will see four solid curves� They correspond to either the

resampled t�test or the corrected resampled t�test with n� � n
�� or n� � n

� � Curves

with circled points correspond to n� �
n
�� ���$ thrown away�� curves without circled

points correspond to n� � n
� � Telling apart the resampled t�test and the corrected

resampled t�test is easy� the two curves that are well above all others correspond to

the resampled t�test�

� The dotted curves depict the conservative Z test with either n� � n
�� �when it is

circled� or n� �
n
� �when it is not circled��

� You might have noticed that the bootstrap and the corrected bootstrap do not ap�

pear in Figure 	 and all its counterparts �except Figure � and Figure ��� We ignored

them because� as we anticipated from political ratios shown in Table 	� the boot�

strap test behaves like the resampled t�test and the corrected bootstrap test behaves

like the corrected resampled t�test� If we don�t ignore the bootstrap� some �gures

become too crowded� We made an exception and plotted curves corresponding to

the bootstrap in Figures � and �� In those two �gures� the bootstrap and corrected

bootstrap curves are depicted with solid curves �just like the resampled t�test and

corrected resampled t�test� and obey the same logic that applies to resampled t�test

and corrected resampled t�test curves� What you must notice is that these �gures

look like the others except that where you would have seen a single solid curve� you

now see two solid curves that nearly overlap� That shows how similar the resampled

t�test and the bootstrap are� This similitude is present for all problems� no just for

the inference about n
�
�A or n

�
�A�B in the classi�cation of Gaussian populations

��
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Figure 	� Powers of the tests about H� � n
�
�A � �� at level � � ��	 for varying �� for the

regression problem� Each panel corresponds to one of the simulations design described in

Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for the actual
n
�
�A shown in Table �� therefore that is where the actual size of the tests may be read� The

solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated probabilities

of rejection laying above the dotted horizontal line are signi�cantly greater than 	�$ �at

signi�cance level �$�� Where it matters J � 	�� M � 	� and R � 	� were used�
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Figure �� Powers of the tests about H� � n
�
�B � �� at level � � ��	 for varying �� for the

regression problem� Each panel corresponds to one of the simulations design described in

Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for the actual
n
�
�B shown in Table �� therefore that is where the actual size of the tests may be read� The

solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated probabilities

of rejection laying above the dotted horizontal line are signi�cantly greater than 	�$ �at

signi�cance level �$�� Where it matters J � 	�� M � 	� and R � 	� were used�
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Figure �� Powers of the tests about H� � n
�
�A�B � �� at level � � ��	 for varying �� for the

regression problem� Each panel corresponds to one of the simulations design described in

Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for the actual
n
�
�A�B shown in Table �� therefore that is where the actual size of the tests may be read� The

solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated probabilities

of rejection laying above the dotted horizontal line are signi�cantly greater than 	�$ �at

signi�cance level �$�� Where it matters J � 	�� M � 	� and R � 	� were used�
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Figure �� Powers of the tests about H� � n
�
�A � �� at level � � ��	 for varying �� for

the classi�cation of Gaussian populations problem� Each panel corresponds to one of the

simulations design described in Table �� The dotted vertical lines correspond to the 
�$

con�dence interval for the actual n
�
�A shown in Table �� therefore that is where the actual

size of the tests may be read� The solid horizontal line displays the nominal size of the tests�

i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal line are

signi�cantly greater than 	�$ �at signi�cance level �$�� Where it matters J � 	�� M � 	�

and R � 	� were used�
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Figure �� Powers of the tests about H� � n
�
�B � �� at level � � ��	 for varying �� for

the classi�cation of Gaussian populations problem� Each panel corresponds to one of the

simulations design described in Table �� The dotted vertical lines correspond to the 
�$

con�dence interval for the actual n
�
�B shown in Table �� therefore that is where the actual

size of the tests may be read� The solid horizontal line displays the nominal size of the tests�

i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal line are

signi�cantly greater than 	�$ �at signi�cance level �$�� Where it matters J � 	�� M � 	�
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Figure �� Powers of the tests about H� � n
�
�A�B � �� at level � � ��	 for varying ��

for the classi�cation of Gaussian populations problem� Each panel corresponds to one of

the simulations design described in Table �� The dotted vertical lines correspond to the 
�$

con�dence interval for the actual n
�
�A�B shown in Table �� therefore that is where the actual

size of the tests may be read� The solid horizontal line displays the nominal size of the tests�

i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal line are
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Figure  � Powers of the tests about H� � n
�
�B � �� at level � � ��	 for varying �� for

the letter recognition problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for

the actual n
�
�B shown in Table �� therefore that is where the actual size of the tests may

be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated

probabilities of rejection laying above the dotted horizontal line are signi�cantly greater than

	�$ �at signi�cance level �$�� Where it matters J � 	�� M � 	� and R � 	� were used�
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Figure �� Powers of the tests about H� � n
�
�A�B � �� at level � � ��	 for varying �� for

the letter recognition problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for

the actual n
�
�A�B shown in Table �� therefore that is where the actual size of the tests may

be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated

probabilities of rejection laying above the dotted horizontal line are signi�cantly greater than

	�$ �at signi�cance level �$�� Where it matters J � 	�� M � 	� and R � 	� were used�
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�Figures � and ��� We chose to show the bootstrap curves in Figures � and � because

this is where the plots looked the least messy when the bootstrap curves were added�

Here�s what we can draw from those �gures�

� The most striking feature of those �gures is that the actual size of the resampled

t�test and the bootstrap procedure are far away from the nominal size 	�$� This is

what we expected in Section �� The fact that those two statistics are more liberal

when n� � n
� than they are when n� � n

�� ���$ of the data thrown away� suggests

that 	�n�� n�� is increasing in n�� This is in line with what one can see in Tables ��

� and �� and the simple approximation 	��n�� n�� �
n�

n��n�
�

� We see that the sizes of the corrected resampled t�test �and corrected bootstrap� are

in line with what we could have forecasted from Tables �� � and �� Namely the test

is liberal when 	�n�� n�� 
 	��n�� n��� conservative when 	�n�� n�� � 	��n�� n��� and

pretty much on target when 	�n�� n�� does not di�er signi�cantly from 	��n�� n���

For instance� on Figure 	 the sizes of the corrected resampled t�test are close to the

nominal 	�$� We see in Table � that 	A�n�� n�� does not di�er signi�cantly from

	��n�� n��� Similarly� in Figures � and  � the corrected resampled t�test appears to

be signi�cantly liberal when n� �
n
�� ���$ of the data thrown away� �
� We see that

	A�
n
� �

n
�� � is signi�cantly greater than 	��

n
� �

n
�� � � �

� in Table �� and 	B�
n
� �

n
�� � is

signi�cantly greater than 	��
n
� �

n
�� � �

�
� in Table �� However� in those same �gures�

we see that the corrected resampled t�test that do not throw data away is conservative

and� indeed� we can see that 	A�
n
� �

n
� � is signi�cantly smaller than 	��

n
� �

n
� � �

�
� in

Table ��and 	B�
n
� �

n
� � is signi�cantly smaller than 	��

n
� �

n
� � �

�
� in Table ��

� The conservative Z with n� �
n
� is too conservative� However� when n� �

n
�� �so that

n�
n�

� �� more in line with normal usage�� the conservative Z has more interesting

properties� It does not quite live up to its name since it is at times liberal� but barely

so� Its size is never very far from 	�$ �like ��$ for instance�� making it the best

inference procedure among those considered in terms of size�

� The t�test and Dietterich�s ��� cv are usually well behaved in term of size� but they

are sometimes fairly liberal as can be seen in some panels of Figures �� � and ��

� When their sizes are comparable� the powers of the t�test� Dietterich�s � � � cv�

conservative Z throwing out ��$ of the data and corrected resampled t�test throwing

out ��$ of the data are fairly similar� If we have to break the tie� it appears that the

t�test is the most powerful� Dietterich�s �� � cv is the least powerful procedure and

��Actually in Figure � we do see that the corrected resampled t�test with n� � n
��

is liberal in

Simulations � and 
 despite the fact that �A�B�
n
�
� n
��
� do not di�er signi�cantly from �

�
in Simula�

tion � and �A�B�
n
�
� n
��
� is barely signi�cantly smaller than �

�
in Simulation 
� But� as we mentioned

before� the political ratio Var���


E����

is not the only thing determining whether inference is liberal or

conservative� What happens in this particular case is that the distribution of n�
n� ���� is asymmetric�

n�
n� ��� did not appear to su�er from this problem� The comparison of algorithm A and B for the

regression problem is the only place where this phenomenon was substantial in our simulation� That

is why curves �other than t�test and Dietterich�s � � � cv that are based on n�
n� ���� are asymmetric

and bottom out before the vertical dotted lines� We don�t observe this in other �gures�

�	



0.55 0.60 0.65 0.70 0.75

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MU

P
O

W
E

R

Corrected resampled t 
Dietterich’s 5x2cv
t−test (McNemar)
Conservative Z 

−0.05 0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MU

P
O

W
E

R

Corrected resampled t 
Dietterich’s 5x2cv
t−test (McNemar)
Conservative Z 

Figure 
� Real power curves �circle lines� and their surrogates �not circled� in the letter

recognition problem� In the left panel� we see �real� and �surrogate� power curves for the

the null hypothesis H� � �
��B � ���
�� In the right panel� we see �real� and �surrogate�

power curves for the the null hypothesis H� � �
��A�B � ����	� See the end of Section ��	 for

more details on their constructions� Here� the �corrected resampled t� and the �conservative

Z� statistics are those which do not throw away data�

the corrected resampled t�test and the corrected conservative Z lay in between� The

fact that the conservative Z and the corrected resampled t�test perform well despite

throwing ��$ of the data indicates that these methods are very powerful compared

to Dietterich�s �� � cv and the t�test� This may be seen in Figure 	 where the size

of the corrected resampled t�test with the full data is comparable to the size of other

tests� The power of the corrected resampled t�test is then markedly superior to the

powers of other tests with comparable size� In other �gures� we see the power of the

corrected resampled t�test with full data and�or conservative Z with full data catch

on �as we move away from the null hypothesis� the powers of other methods that

have larger size�

As promised earlier� we now illustrate that the �gures shown so far are good sur�

rogates to actual real power curves� For the letter recognition problem� we have the

opportunity to draw real power curves since we have simulated data under six di�er�

ent schemes� Recall from Table � that we have simulated data with �
��B approxima�

tively equal to ����	� ���
�� ������ ������ ���
�� �� �	 and �
��A�B approximatively equal to

��	�	� ���
�� ����
� ������ ����	�
����� in Simulations 	 through � respectively� The circled

lines in Figure 
 depict real power curves� For instance� in the left panel� the power of tests

for H� � �
��B � ���
� has been obtained in all six simulations� enabling us to draw the

circled curves� The non�circled curves correspond to what we have been plotting so far�

Namely� in Simulation �� with computed the powers of tests for H� � �
��B � �� with

�� � ����	� ���
�� ������ ������ ���
�� �� �	� enabling us to draw the non�circled curves� We

��



see that circled and non�circled curves agree relatively well� leading us to believe that our

previous plots are good surrogates to real power curves�

��� The choice of J

In Section ��	� the statistics involving n�
n� ��J used J � 	�� We look at how those statistics

behave with varying J �s� in order to formulate a recommendation on the choice of J � We

are going to do so with n� �
�n
�� and n� �

n
�� � which correspond to a more natural usage for

these statistics� Of the seven statistics displayed in Section � �see also Table 	�� �ve involved
n�
n� ��J � We ignore the bootstrap and the corrected bootstrap as political ratios provided in

Section � and empirical evidence in Section ��	 suggest that these statistics are virtually

identical to the resampled t�test and the corrected resampled t�test �but require a lot more

computation�� We therefore only consider the resampled t�test� the corrected resampled t�test

and the conservative Z here�

The investigation of the properties of those statistics will again revolve around their sizes

and powers� You will therefore see that �gures in this section �Figures 	� to 	 � are similar

to those of the Section ��	� In a given plot� we see the powers of the three statistics when

J � �� J � 	�� J � 	� and J � ��� Therefore a total of twelve curves are present in each

plot�

Here�s what we can draw from those �gures�

� Again� the �rst thing that we see is that the resampled t�test is very liberal� However�

things were even worst in Section ��	� That is due to the fact that 	� �n�� �
n
�� � is smaller

than 	�n� �
n
�� � and 	�n� �

n
� �� We also see that the statistic is more liberal when J is

large� as it should be according to the theoretical discussion of that statistic in

Section ��

� The conservative Z lives up to its name�

� Regarding corrected resampled t�test� the plots again only con�rms what we might

have guessed from Tables �� � and �� Namely the resampled t�test is conservative

when 	� �n�� �
n
�� � is signi�cantly greater than 	��

�n
�� �

n
�� � � ��	� liberal when 	� �n�� �

n
�� �

is signi�cantly smaller then ��	� and has size very close to ��	 otherwise� When it

is liberal or conservative� things tend to grow worst when J increases� see Figure 	�

for the liberal case� That makes sense since the ratio Var �	��
E�	��� �

��J �

���

��J
n�
n�

�see Table 	�

is monotonic in J �increasing when 	 
 n�
n��n�

� decreasing when 	 � n�
n��n�

��

� Obviously� the greater J is� the greater the power will be� Note that increasing J

from � to 	� brings about half the improvement in the power obtained by increasing J

from � to ��� Similarly� increasing J from 	� to 	� brings about half the improvement

in the power obtained by increasing J from 	� to ��� With that in mind� we feel that

one must take J to be at least equal to 	� as J � � leads to unsatisfactory power�

Going beyond J � 	� gives little additional power and is probably not worth the

computational e�ort� We could tackle this question from a theoretical point of view�

We know from ��� that Var � n�n� ��J � � ��
�
	� ���

J

�
� Take 	 � ��	 for instance �that

is 	��
�n
�� �

n
�� ��� Increasing J from 	 to � reduces the variance by ��$� Increasing J

��
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Figure 	�� Powers of the tests about H� � �n	���A � �� at level � � ��	 for varying ��
and J for the regression problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for

the actual �n	���A shown in Table �� therefore that is where the actual size of the tests may

be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated

probabilities of rejection laying above the dotted horizontal line are signi�cantly greater than

	�$ �at signi�cance level �$�� For the conservative Z� M � 	� was used�

��
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Figure 		� Powers of the tests about H� � �n	���B � �� at level � � ��	 for varying ��
and J for the regression problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for

the actual �n	���B shown in Table �� therefore that is where the actual size of the tests may

be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated

probabilities of rejection laying above the dotted horizontal line are signi�cantly greater than

	�$ �at signi�cance level �$�� For the conservative Z� M � 	� was used�

��
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Figure 	�� Powers of the tests about H� � �n	���A�B � �� at level � � ��	 for varying ��
and J for the regression problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval

for the actual �n	���A�B shown in Table �� therefore that is where the actual size of the

tests may be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$�

Estimated probabilities of rejection laying above the dotted horizontal line are signi�cantly

greater than 	�$ �at signi�cance level �$�� For the conservative Z� M � 	� was used�

��
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Figure 	�� Powers of the tests about H� � 	n
��
�A � �� at level � � ��	 for varying �� and

J for the classi�cation of Gaussian populations problem� Each panel corresponds to one

of the simulations design described in Table �� The dotted vertical lines correspond to the


�$ con�dence interval for the actual 	n
��
�A shown in Table �� therefore that is where the

actual size of the tests may be read� The solid horizontal line displays the nominal size of

the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$�� For the conservative Z�

M � 	� was used�

� 
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Figure 	�� Powers of the tests about H� � 	n
��
�B � �� at level � � ��	 for varying �� and

J for the classi�cation of Gaussian populations problem� Each panel corresponds to one

of the simulations design described in Table �� The dotted vertical lines correspond to the


�$ con�dence interval for the actual 	n
��
�B shown in Table �� therefore that is where the

actual size of the tests may be read� The solid horizontal line displays the nominal size of

the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$�� For the conservative Z�

M � 	� was used�

��
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Figure 	�� Powers of the tests about H� � 	n
��
�A�B � �� at level � � ��	 for varying �� and

J for the classi�cation of Gaussian populations problem� Each panel corresponds to one

of the simulations design described in Table �� The dotted vertical lines correspond to the


�$ con�dence interval for the actual 	n
��
�A�B shown in Table �� therefore that is where the

actual size of the tests may be read� The solid horizontal line displays the nominal size of

the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$�� For the conservative Z�

M � 	� was used�

�
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Figure 	�� Powers of the tests about H� � 	n
��
�B � �� at level � � ��	 for varying �� and J

for the letter recognition problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for

the actual 	n
��
�B shown in Table �� therefore that is where the actual size of the tests may

be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated

probabilities of rejection laying above the dotted horizontal line are signi�cantly greater than

	�$ �at signi�cance level �$�� For the conservative Z� M � 	� was used�
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Figure 	 � Powers of the tests about H� � 	n
��
�A�B � �� at level � � ��	 for varying �� and J

for the letter recognition problem� Each panel corresponds to one of the simulations design

described in Table �� The dotted vertical lines correspond to the 
�$ con�dence interval for

the actual 	n
��
�A�B shown in Table �� therefore that is where the actual size of the tests may

be read� The solid horizontal line displays the nominal size of the tests� i�e� 	�$� Estimated

probabilities of rejection laying above the dotted horizontal line are signi�cantly greater than

	�$ �at signi�cance level �$�� For the conservative Z� M � 	� was used�

�	



from � to 
 further halves the variance� Increasing J from 
 to � only halves the

variance� We thus see that the bene�t of increasing J quickly becomes faint�

� Since the conservative Z is fairly conservative� it rarely has the same size as the

corrected resampled t�test� making power comparison somewhat di�cult� But it

appears that the two methods have equivalent powers which makes sense since they

are both based on n�
n� ��J � We can see this in Figures 	� and 	 where the two tests

have about the same size and similar power�

Based on the above observations� we believe that J � 	� is a good choice� it provides

good power with reasonable computational e�ort� If computational e�ort is not an issue� one

may take J 
 	�� but must not expect a great gain in power� Another reason in favor of not

taking J too large is that the size of the resampled t�test gets worst with increasing J when

that method is liberal or conservative�

Of course the choice of J is not totally independent of n� and n�� Indeed� if one uses

a larger test set �and thus a smaller train set�� then we might expect 	 to be larger and

therefore J � 	� might then be su�ciently large�

Although it is not related to the choice of J � we may comment on the choice of the

inference procedure as �gures in this section are the most informative in that regard� If one

wants an inference procedure that is not liberal� the obvious choice is the conservative Z�

However� if one prefers in inference procedure with size close to the nominal size � and is

ready to accept departures in the liberal side as well as in the conservative side� then the

corrected resampled t appears to be a good choice� However� as we shall see shortly� we can

make the conservative Z more or less conservative by playing with M � The advantage of the

corrected resampled t is that it requires little computing in comparison to the conservative

Z�

Finally� as we did earlier� we may assess to what extent the Figures 	� through 	 are good

surrogates to actual real power curves� Remember that for the letter recognition problem�

we have the opportunity to draw real power curves since we have simulated data under six

di�erent schemes� Recall from Table � that we have simulated data with ����B approxi�

matively equal to ���� � ���

� ������ ����
� ���	�� �� �� and ����A�B approximatively equal

to ��	�	� ����
� ������
����	�
����	�
��	�� in Simulations 	 through � respectively� The

circled lines in Figure 	� depict real power curves� For instance� in the left panel� the power

of tests for H� � ����B � ����
 has been obtained in all six simulations� enabling us to

draw the circled curves� The non�circled curves correspond to what we usually plot in this

paper� Namely� in Simulation �� we computed the powers of tests for H� � ����B � �� with

�� � ���� � ���

� ������ ����
� ���	�� �� ��� enabling us to draw the non�circled curves� We

see that circled and non�circled curves agree very well� leading us to believe that our previous

plots are good surrogates to real power curves�

��� Choice of M

When using the conservative Z� we have so far always used M � 	�� We study the behavior

of this statistic for various values of M in order to formulate a recommendation on the choice

��
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Figure 	�� Real power curves �circle lines� and their surrogates �not circled� in the letter

recognition problem� In the left panel� we see �real� and �surrogate� power curves for the

the null hypothesis HO � ����B � ����
 In the right panel� we see �real� and �surrogate�

power curves for the the null hypothesis HO � ����A�B � 
����	� See the end of Section ���

for more details on their constructions�

of M � Again we consider the case where n� � �n
�� and n� � n

�� � The investigation will

again revolve around the size and power of the statistic� We see in Figures 	
 through ��

that the conservative Z is more conservative when M is large� We see that there is not a

great di�erence in the behavior of the conservative Z when M � 	� and when M � ��� For

that reason� we recommend using M � 	�� The di�erence between M � 	� and M � � is

more noticeable� M � � leads to inference that is less conservative� which is not a bad thing

considering that with M � 	� it tends to be a little bit too conservative� With M � ��

the conservative Z is sometimes liberal� but barely so� Using M � � would probably go

against the primary goal of the statistic� that is provide inference that is not liberal� Thus

� � M � 	� appears to be a reasonable choice� Within this range� pick M large if non�

liberal inference is important� otherwise take M small if you want the size of the test to be

closer to the nominal size � �you then accept the risk of performing inference that could be

slightly liberal�� Of course� computational e�ort is linear in M so that taking M small has

an additional appeal�

� Conclusion

We have tackled the problem of estimating the variance of the cross�validation estimator of

the generalization error� In this paper� we pay special attention to the variability introduced

by the selection of a particular training set� whereas most empirical applications of machine

learning methods concentrate on estimating the variability of the estimate of generalization

error due to the �nite test set�

��



60 70 80 90 100 110 120 130

0.
2

0.
4

0.
6

0.
8

SIMULATION  1

mu0

P
O

W
E

R

M=20
M=10
M=5

50 60 70 80 90

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

SIMULATION  2

mu0

P
O

W
E

R

M=20
M=10
M=5

9.0 9.5 10.0 10.5 11.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

SIMULATION  3

mu0

P
O

W
E

R

M=20
M=10
M=5

8.0 8.5 9.0 9.5 10.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

SIMULATION  4

mu0

P
O

W
E

R

M=20
M=10
M=5

Figure 	
� Powers of the conservative Z �with J � 	�� about H� � �n	���A � �� at level

� � ��	 for varying �� and M for the regression problem� Each panel corresponds to one

of the simulations design described in Table �� The dotted vertical lines correspond to the


�$ con�dence interval for the actual �n	���A shown in Table �� therefore that is where the

actual size of the tests may be read� The solid horizontal line displays the nominal size of

the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$��
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Figure ��� Powers of the conservative Z �with J � 	�� about H� � �n	���B � �� at level

� � ��	 for varying �� and M for the regression problem� Each panel corresponds to one

of the simulations design described in Table �� The dotted vertical lines correspond to the


�$ con�dence interval for the actual �n	���B shown in Table �� therefore that is where the

actual size of the tests may be read� The solid horizontal line displays the nominal size of

the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$��
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Figure �	� Powers of the conservative Z �with J � 	�� about H� � �n	���A�B � �� at level

� � ��	 for varying �� and M for the regression problem� Each panel corresponds to one

of the simulations design described in Table �� The dotted vertical lines correspond to the


�$ con�dence interval for the actual �n	���A�B shown in Table �� therefore that is where

the actual size of the tests may be read� The solid horizontal line displays the nominal size

of the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$��
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Figure ��� Powers of the conservative Z �with J � 	�� about H� � 	n
��
�A � �� at level � � ��	

for varying �� and M for the classi�cation of Gaussian populations problem� Each panel

corresponds to one of the simulations design described in Table �� The dotted vertical lines

correspond to the 
�$ con�dence interval for the actual 	n
��
�A shown in Table �� therefore

that is where the actual size of the tests may be read� The solid horizontal line displays

the nominal size of the tests� i�e� 	�$� Estimated probabilities of rejection laying above the

dotted horizontal line are signi�cantly greater than 	�$ �at signi�cance level �$��
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Figure ��� Powers of the conservative Z �with J � 	�� about H� � 	n
��
�B � �� at level � � ��	

for varying �� and M for the classi�cation of Gaussian populations problem� Each panel

corresponds to one of the simulations design described in Table �� The dotted vertical lines

correspond to the 
�$ con�dence interval for the actual 	n
��
�B shown in Table �� therefore

that is where the actual size of the tests may be read� The solid horizontal line displays

the nominal size of the tests� i�e� 	�$� Estimated probabilities of rejection laying above the

dotted horizontal line are signi�cantly greater than 	�$ �at signi�cance level �$��
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Figure ��� Powers of the conservative Z �with J � 	�� about H� � 	n
��
�A�B � �� at level

� � ��	 for varying �� and M for the classi�cation of Gaussian populations problem� Each

panel corresponds to one of the simulations design described in Table �� The dotted vertical

lines correspond to the 
�$ con�dence interval for the actual 	n
��
�A�B shown in Table ��

therefore that is where the actual size of the tests may be read� The solid horizontal line

displays the nominal size of the tests� i�e� 	�$� Estimated probabilities of rejection laying

above the dotted horizontal line are signi�cantly greater than 	�$ �at signi�cance level �$��
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�B � �� at level

� � ��	 for varying �� and M for the letter recognition problem� Each panel corresponds to

one of the simulations design described in Table �� The dotted vertical lines correspond to

the 
�$ con�dence interval for the actual 	n
��
�B shown in Table �� therefore that is where

the actual size of the tests may be read� The solid horizontal line displays the nominal size

of the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$��
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�A�B � �� at level

� � ��	 for varying �� and M for the letter recognition problem� Each panel corresponds to

one of the simulations design described in Table �� The dotted vertical lines correspond to

the 
�$ con�dence interval for the actual 	n
��
�A�B shown in Table �� therefore that is where

the actual size of the tests may be read� The solid horizontal line displays the nominal size

of the tests� i�e� 	�$� Estimated probabilities of rejection laying above the dotted horizontal

line are signi�cantly greater than 	�$ �at signi�cance level �$��
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A theoretical investigation of the variance to be estimated shed some valuable insight on

reasons why some estimators currently in use underestimate the variance� We found that

there is no general non�negative unbiased estimator of the variance of a large class of cross�

validation estimates based only on the individual test errors involved in the computation of

this estimate� This analysis allowed us to construct two variance estimates that take into

account both the variability due to the choice of the training sets and the choice of the test

examples� One of the proposed estimators looks similar to the �� � cv method �Dietterich�

	

�� and is speci�cally designed to overestimate the variance to yield conservative inference�

The other may overestimate or underestimate the real variance� but is typically not too far

o� the target�

We performed a simulation where the new techniques put forward were compared to test

statistics currently used in the machine learning community� We tackle both the inference

for a generalization error of an algorithm and the comparison of the generalization errors

of two algorithms� We considered two kinds of problems� classi�cation and prevision of a

continuous output� Various algorithms were considered� linear regression� regression trees�

classi�cation trees and the nearest neighbor algorithm� Over this wide range of problems and

algorithms� we found that the new tests behave better in terms of size and have powers that

are unmatched by any known techniques �with comparable size��
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Appendix

A�	 Proof of Lemma �

Let U � �U�� � � � � UK � UK��� and U� � �U�� � � � � UK�� Let H be a �K 
 	� �K matrix

such that HH � � IK�� and H�K � �K�� �the lines of H form an orthogonal basis of the

space orthogonal to �K�� Let A be the following ��K 
 	� � 	 � 	�� �K � 	� matrix�

A �

�
�


H �K��
�p
K
��K �

��K 	

�
�� �

Since U � NK���E�U ��Var �U ��� we have

AU �

�
� HU�p

K �U

UK��

�
A � NK���E�AU ��Var �AU ���

with

E�AU � � AE�U � � A���K��� � �

�
� �K��p

K

	

�
A �

�
� E�HU��

E�
p
K �U �

E�UK���

�
A �

Regarding the variance� note that A is an orthonormal matrix since its lines are orthogonal

to each other and have unit lengths� Therefore

Var �AU � � AVar �U �A� � A���	
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K���A

�

� ��	
 ��IK�� � ��A�K���
�� � ��	
 ��IK�� � ��

�
� �K��p

K

	

�
A
��

�

�
�
 ��	
 ��IK�� ��K�����

����K���
��K� � 	
 ��

p
K��p

K�� ��	
 � � ��

�
��

�

�
�
 Var �HU�� ��K�����

����K���
Var �

p
K �U � Cov �

p
K �U�UK���

Cov �UK���
p
K �U � Var �UK���
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where v�� � vv��

De�ne T � �HU���HU�� Since HU� � NK����K��� ��	 
 ��IK���� we have T
������ �

��K��� From the structure of Var �AU � we have that

� HU� is independent of
p
K �U and thus T and �U are independent�

� HU� is independent of UK�� and thus T and UK�� are independent�

Therefore we have p
K �U�

p
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To complete the proof� we have to show that T �
PK

k���Uk 
 �U�� �
PK

k�� U
�
k 
K �U�� Let

B be the upper left K �K sub�matrix of A� Note that B is an orthonormal matrix since its

lines are orthogonal to each other and have unit Euclidean norm� Thus

KX
k��

U�
k � U �

��B
�B�U� � U �

��H
�H �K�����

K���U�

� �HU���HU� �K��U �
��K���

�
K��U� � T �K �U��

A�� Proof of Proposition �

We �rst need to introduce two objects�

� Let C�S� n�� denote the set of all possible subsets of n� distinct elements from S�

where S is itself a set of distinct positive integers �of course n� must not be greater

than jSj� the cardinality of S�� For instance� the cardinality of C�S� n�� is jC�S� n��j ��jSj
n�

�
� i�e� the number of ways to choose n� distinct elements from S�

� Let

#��S� n�� �
	

jC�S� n��j�jSj 
 n��

X
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X
i�Sns

L�Zs�Zi��

Let
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�ng�n��
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where n � n� � n� and C�f	� � � � � ng� n�� represents� here� all the possible ways to choose n�
integers from f	� � � � � ng for the purpose of constructing training sets� We note that n�

n� ���
represents two di�erent things�

� First n�
n� ��� � limJ�� n�

n� ��J � limJ�� �
J

PJ
j�� ��j � Indeed� what happens when J

goes to in�nity is that all possible errors �there are
�
n��n�
n�

�
n� di�erent ways to choose

a training set and a training example� appear with relative frequency �

�n��n�n�
�n�

� In

other words� n�
n� ��� is like n�

n� ��J except that all
�
n��n�
n�

�
possible training sets are

chosen exactly once� Brie)y� sampling in�nitely often with replacement is equivalent

to sampling exhaustively without replacement �i�e� a census�� From ��� we have

�� � ���n�� n�� � lim
J��

Var � n�n� ��J � � Var � n�n� �����

� We also have n�
n� ��� � E�L�ZSj �Zi�jZn

� �� where the expectation is taken over the

random index set Sj and i 	� Sj �

��



We show later �we keep the fun part for the end� that� for � � n�� � n� � n
 n��

#��f	� � � � � ng� n�� � 	

jC�f	� � � � � ng� n� � n���j
X

s�C�f��


�ng�n��n���
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Obviously� the #��s� n���s are identically distributed so that �


���n�� n�� � Var �#��f	� � � � � ng� n��� � Var �#��f	� � � � � n� � n��g� n��� � ���n�� n
�
���

To complete the proof� we only need to show that identity ���� is true� We must �rst observe

that choosing a random �training� set of size n� and a test example outside the training set

can be performed in the following way�

� Choose S � C�f	� � � � � ng� n� � n��� at random�

� Choose a training set T � C�S� n�� at random and a test example K � S n T at

random�

Indeed� �t � C�f	� � � � � ng� n�� and k � f	� � � � � ng n t�
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This being established� we �nally have
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A�� Inference when vectors have moments as in Lemma �

Suppose that we have n independent and identically distributed random vectors

T�� � � � � Ti� � � � � Tn where Ti � �Ti��� � � � � Ti�K��� Suppose that Ti��� � � � � Ti�K has the moment

structure displayed in Lemma 	� Call �Ti �
�
K

PK
k�� Ti�k� Let � � ��� �� �� be the vector of

parameters involved in Lemma 	� Consider the following unbiased estimating function
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��Let U�� � � � � Un be variates with equal variance and let  U � �
n
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Ui� then we have Var �  U � �
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Let �� be such that g���� � ��� then� according to �White� 	
�����
��j � Z���	�

q
�V ���j �
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�

with �V ���j � �
h
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i
j�j
� is a con�dence interval at approximate con�dence

level �	
 ��� For instance� in the case of �� this yields
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where �T
 �
�
n

Pn
i��

�Ti is the mean of all the �Ti�s�

A�� n��A and n��B for the Gaussian regression problem

We have �n� �	� couples Zi � �Xi� Yi� as described above �	��� To obtain n��A� we �rst

note that Yi � N��� � ���X � �
�
Y jX � ����

�
X�� so that

n��A � E�� �Y
Yn����
�� � Var � �Y
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where �Y � n��
�

Pn�
i�� Yi�

Things are a little more complicated for n��B � They go as follows�
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with �� � ����� ����
�� where ��� and ��� are the intercept and the slope of the ordinary least

squares regression of Y on X performed on the training set Zn�
� � fZ�� � � � � Zn�g� Now
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where X denotes the usual design matrix� �X � n��
�

Pn�
i��Xi and T �

Pn�
i���Xi 
 �X���

Since the Xi�s are independent and identically distributed normal variates� then we know

�from Appendix A�	 or textbooks� that �X and T are independent with T
��
X

� �n��� so that
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� Putting all this together leads us to
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So we have
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