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Abstract

Several unsupervised learning algorithms based on an eigendecomposition pro-
vide either an embedding or a clustering only for given training points, with no
straightforward extension for out-of-sample examples short of recomputing eigen-
vectors. This paper provides algorithms for such an extension for Local Linear
Embedding (LLE), Isomap, Laplacian Eigenmaps, Multi-Dimensional Scaling (all
algorithms which provide lower-dimensional embedding for dimensionality reduc-
tion) as well as for Spectral Clustering (which performs non-Gaussian clustering).
These extensions stem from a unified framework in which these algorithms are
seen as learning eigenfunctions of a kernel. LLE and Isomap pose special chal-
lenges as the kernel is training-data dependent. Numerical experiments on real
data show that the generalizations performed have a level of error comparable to
the variability of the embedding algorithms to the choice of training data.

1 Introduction

Inthe last few years, many unsupervised learning algorithms have been proposed which
share the use of an eigendecomposition for obtaining a lower-dimensional embedding
of the data that characterizes a non-linear manifold near which the data would lie: Local
Linear Embedding (LLE)Roweis and Saul, 2000ilsomap Tenenbaum, de Silva and
Langford, 200p and Laplacian EigenmapB¢lkin and Niyogi, 2003 There are also

many variants of Spectral Clustering/¢iss, 1999 Ng, Jordan and Weiss, 2002n

which such an embedding is an intermediate step before obtaining a clustering of the
data that can capture flat, elongated and even curved clusters. The two tasks (manifold



learning and clustering) are linked because the clusters that spectral clustering manages
to capture can be arbitrary curved manifolds (as long as there is enough data to locally
capture the curvature of the manifold).

2 Common Framework

In this paper we consider five types of unsupervised learning algorithms that can be
cast in the same framework, based on the computation of an embedding for the training
points obtained from the principal eigenvectors of a symmetric matrix.

Algorithm 1

1. Start from a data set D = {x1,...,x,} withn points in some space. Construct
an X n “neighborhood” or similarity matrix M. Let us denote Kp(.,.) (or K for
shorthand) the two-argument function (sometimes dependent on D) which produces
M by Mij = KD(ZL'Z', l'j).

2. Optionally transform M, yielding a “normalized” matrix M. Equivalently, this
corresponds to applying a symmetric two-argument function K to each pair of exam-
ples (x;,2;) to obtain M;;.

3. Compute the m largest eigenvalues /\;. and eigenvectors v; of M. Only positive
eigenvalues should be considered.

4. The embedding of each example x; is the vector y; with y;; the i-th element of
the j-th principal eigenvector v; of M. Alternatively (MDS and Isomap), the embed-

ding is e;, with e;; = /)\;-yij. If the first m eigenvalues are positive, then e;.e; is the
best approximation of M using only m coordinates, in the squared error sense.

In the following, we consider the specializations of Algorithm 1 for different un-
supervised learning algorithms. L6t be thei-th row sum of the affinity matrix\/:

Si=Y_ M. 1)
J

We say that two pointéa, b) arek-nearest-neighbors of each otheif a is among the
k nearest neighbors éfin D U {a} or vice-versa.

2.1 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) starts from a notion of distance or affifityhat is
computed between each pair of training examples. We consider here metricGRS (
and Cox, 1991 For the normalization step 2 in Algorithm 1, these distances are con-
verted to equivalent dot products using the “double-centering” formula:

~ 1 1 1 1

The embedding;;. of exampler; is given byy/ A, v;, wherev ;. is thek-th eigenvector
of M. Note that if M;; = |ly; — y;||*> thenM;; = (v; — §).(y; — ¥), a centered
dot-product, wherg is the average value gf.



2.2 Spectral Clustering

Spectral clusteringWeiss, 1999 can yield impressively good results where traditional
clustering looking for “round blobs” in the data, such as K-means, would fail miser-
ably. It is based on two main steps: first embedding the data points in a space in which
clusters are more “obvious” (using the eigenvectors of a Gram matrix), and then apply-
ing a classical clustering algorithm such as K-means, e.g. &&gnJordan and Weiss,
200). Before applying K-means, it has been found useful as discussetfaisg,

1999 to normalize the coordinates of each point to have unit norm, i.e. to project the
embedded points on the unit sphere, mappingjttrecoordinate of the embedding

of thei-th example (i.e. the-th element of thg-th eigenvector) bm The affinity
matrix M is formed using a kernel such as the Gaussian kernel. Several normalization
steps have been proposed. Among the most successful ones, as advocateidsn (
1999 Ng, Jordan and Weiss, 2002s the following:

- M;;

M;; = :
T /SiS;

To obtainm clusters, the firstn principal eigenvectors ofi/ are computed and K-
means applied on the resulting unit-norm coordinates.

@)

2.3 Laplacian Eigenmaps

Laplacian Eigenmaps is a recently proposed dimensionality reduction procBeikie (
and Niyogi, 2003 that has been proposed feemi-supervised learningrhe authors
use an approximation of the Laplacian operator such as the Gaussian kernel or the ma-
trix whose elements, j) is 1 if x; andx; are k-nearest-neighbors and 0 otherwise.
Instead of solving an ordinary eigenproblem, the following generalized eigenproblem
is solved:

(S = M)y; = \iSy; (4)

with eigenvalues\;, eigenvectorg; andS defined in eq.X). The smallest eigenvalue

is left out and the eigenvectors corresponding to the other small eigenvalues are used
for the embedding. This is the same embedding that is computed with the spectral clus-
tering algorithm from Shi and Malik (1997) . As noted We¢iss, 1999(Normalization
Lemma 1), an equivalent result (up to a componentwise scaling of the embedding) can
be obtained by considering the principal eigenvectgrsf the normalized matrix de-

fined in eq. B).

2.4 Isomap

Isomap Tenenbaum, de Silva and Langford, 2D@@neralizes MDS to non-linear
manifolds. They are based on replacing Euclidean distance by an approximation of the
geodesic distance on the manifold. We defineghedesic distance with respect to a
data setD, a distancel(u, v) and a neighborhooé as follows:

D(a,b) = mind_d(pi, pis1) (5)



wherep is a sequence of points of length> 2 with p; = a, p; = b, p; € D Vi €
{2,...,1— 1} and {;,p;11) are k-nearest-neighbors. The lendtls free in the min-
imization. The Isomap algorithm obtains the normalized matdixrom which the
embedding is derived by transforming the raw pairwise distances matrix as follows:
(1) compute the matridf;; = Dz(a:i,xj) of squared geodesic distances with respect
to the dataD and (2) apply to this matrix the distance-to-dot-product transformation
(eq. @), as for MDS. Like for MDS, the embedding is;, = +/Azvi rather than

Yik = Vik-

2.5 LLE

The Local Linear Embedding (LLE) algorithnRéweis and Saul, 2000ooks for an
embedding that preserves the local geometry in the neighborhood of each data point.
First, a sparse matrix of local predictive weights; is computed, such th@j Wi =
1, W;; = 0if z; is not a k-nearest-neighbor of andzj(Wijxj — x;)? is minimized.
Then the matrix

M=I-W)I-W) (6)

is formed (possibly with the addition of a small diagonal term for regularization.) The
embedding is obtained from the lowest eigenvectors/ff except for the smallest
eigenvector which is uninteresting because ilisl, ... 1), with eigenvalue 0. Note
that the lowest eigenvectors 8f are the largest eigenvectors bf = I — M to fit
Algorithm 1. The embedding is given by, = v;.

3 From Eigenvectors to Eigenfunctions

To obtain an embedding for a new data point, we propose to use thethybr-

mula Baker, 1977, which has been used successfully to speed-up kernel methods
computations by focussing the heavier computations (the eigendecomposition) on a
subset of examples. The use of this formula can be justified by considering the con-
vergence of eigenvectors and eigenvalues, as the number of examples inda&ses (
1977 Williams and Seeger, 200&hawe-Taylor and Williams, 2003(Williams and
Seeger, 2000also noted that the Nystrom formula is equivalent to the kernel PCA
projection Gcholkopf, Smola and Miller, 1998.

If we start from a data sdb, obtain an embedding for its elements, and add more
and more data, the embedding for the point®irconverges (for eigenvalues that are
unique). Ghawe-Taylor and Williams, 2093jive bounds on the convergence error.

In the limit, each eigenvector converges to an eigenfunction for the linear operator
defined below. It means that tli¢h element of thé-th eigenvector converges to the
application of the:-th eigenfunction ta;.

Consider a Hilbert spack,, of functions with the following inner product:

(f9)y = [ F@g(p(a)ds



with a density functiop(x). The kernelK can be associated with a linear operatgr
inH,:

z) = / K (2,9)f(0)p()dy. 7)

We don’t know the generating densjiybut we can approximate the above inner prod-
uct and linear operator by those defined with the empirical distribytiohn “empir-
ical” Hilbert space}; is thus defined using the empirical distributiprinstead ofp.
Note that the proposition below can be applean if the kernel is not positive semi-
definite although the embedding algorithms we have studied are restricted to using the
principal coordinates associated with positive eigenvalues.

Proposition 1

Let K (a, b) be a kernel function, not necessarily positive semi-definite, with a dis-
crete spectrum, that gives rise to a symmetric matixvith entrlesM” = K(x“ xj)
upon a dataseD = {z1,...,2,}. Let(vg, Ax) be an (eigenvector,eigenvalue) pair
that solvesMuvy, = Aguy. Let (fx» A},) be an (eigenfunction,eigenvalue) pair that
solvesK; fi, = A, fi, With  the empirical distribution oveD. Letey,(z) = y(z)vAx
or y,(z) denote the embedding associated with a new paiffthen

Moo= oh ®)
fila) = S R (w) ©)
" i=1
fk(xz) = \/ﬁvik (10)
w@ = 0 LS k) (11)
b \/ﬁ )\k Pt R a2
ye(zi) = Yk,  ex(zi) = e (12)

If K (z,y) = ¢(z).0(y) andL 3=, ¢(z;) = 0 then forhy, > 0, e () is the kernel PCA
projection with kernelx .

See Bengio et al., 2008for a proof and further justifications of the above formulae.
The generalized embedding for Isomap and MD8yi&r) = /Axyx(z) whereas the
one for spectral clustering, Laplacian eigenmaps and LU (s).

4 Extending to new Points

Using Proposition 1, one obtains a natural extension of all the unsupervised learning
algorithms of sectiof that can be mapped to Algorithm 1, provided we can write down
a continuous kernel functioR that gives rise to the matri/ on D. We consider each
of them in turn below.

OnceXK is defined, it can be used in the equatiaf)(of Proposition 1 (optionally
multiplied by\/\;) in order to generalize the embedding to a new data point



4.1 Extending MDS
For MDS, a normalized kernel can be defined as follows, using a continuous version of
the double-centering eqR)

K(a,b) = —=(d*(a,b) — B [d*(z,b)] — Eu[d*(a,2")] + Ep o [d*(z,2")]) (13)

1
2
whered(a, b) is the original distance function and the expectations are taken over the
empirical dataD. An extension of metric MDS to new points has already been pro-
posed in Gower, 1968, in which one solves exactly for the coordinates of the new
point that are consistent with its distances to the training points, which in general re-
quires adding a new dimension.df(z;, z;) = ||z; — x;||?, the extension of MDS to
a new pointz using eq.12 yields the projection of on the principal components of
D, sinceK (z;, ;) = (v; — E[z]).(z; — E[z]) (where expectation is ovep).

4.2 Extending Spectral Clustering and Laplacian Eigenmaps

Both the version of Spectral Clustering and Laplacian Eigenmaps described above are
based on an initial kernek’, such as the Gaussian or nearest-neighbor kernel. An
equivalent continuous normalized kernel is:

B B l K(aa b)
BRIV oRT < e R T (]

where the expectations are taken over the empirical Bata

4.3 Extending Isomap

Isomap is a bit more challenging than the previous algorithms because we must be
careful in how we define the geodesic distance. It must be done in such a way that the
test point is not required in computing the geodesic distance between training points,
otherwise we would have to recompute all the geodesic distances. A reasonable solu-
tion is to use the definition ab(a, b) in eq. 6), which only uses the training points

in the intermediate points on the path franto 6. We obtain a normalized kernel by
applying the continuous double-centering from &) to D?:

K(a,b) = —%(DQ(a, b) — E,[D*(x,b)] — En[D?(a,2")] + By w [D?(x,2")]). (14)

An m-dimensional manifold embedded R? is isometricif there is a bijective
mappingc between points imn-dimensional Euclidean space and points on the mani-
fold (with d coordinates) such that the geodesic distance on the manifdRi‘jiequals
the Euclidean distance of the corresponding poiniRth.

A formula has already been propose Silva and Tenenbaum, 20a8 approxi-
mate Isomap using only a subset of the examples (the “landmark” points) to compute
the eigenvectors. Using the notation of this paper, that formula is

1 -, .
ex(z) = oS Z vir(Ew [D*(2, 1)) — D? (2, 1)). (15)



whereE, is an average over the data set. The formula is applied to obtain an embed-
ding for the non-landmark examples.

Corollary 2

The embedding proposed in Proposition 1 for Isomag«)) is equal to formula 5
(Landmark Isomap) whef (z, y) is defined as in ed.4.

Proof: the proof relies on a property of the Gram matrix for Isomap (and MDS),
i.e. that) ", M;; = 0, by construction. Thereforél, 1,...1) is an eigenvector with
eigenvalue 0, and all the other eigenvectgrbave the property . v;;, = 0 because of

orthogonality with(1, 1, ... 1). Writing (E,/[D?(z, z;)] — D?(z, z;)) = K (z,x;) +

(B v [D?(z',z")] — Ep[D?(x,2'))) yields for eq.15 ﬁ((zi v K (z, 1)) +
2By o [D?*(2',2")] — Eyp [D*(z,2")]) 32, vir, where the last sum is 0, which makes
eq.15equal toeg ().

Corollary 3

If the dataD and the test point come from a convex region on asdimensional
isometric manifold then, as the number of examples oo, the extension of Isomap
to a new pointr using eq. {2) (timesy/\;) yields the projection of on the principal
components of the corresponding low-dimensional data points.

Sketch of the proof: using the main theorem iml¢ Silva and Tenenbaum, 2003
the geodesic distances estimatedIbyonverge to the geodesic distances on the un-
derlying manifold. In that cas& converges to a dot product of centered data, and

applying Proposition 1 we obtain the result.

4.4 Extending LLE

The extension of LLE is the most challenging one because it does not fit as well the
framework of Algorithm 1: thel/ matrix for LLE does not have a clear interpretation
in terms of distance or dot product, and adding a new point would seem to require
re-computing all the weights.

To directly associate a kernel function to the mappidgn eq. ©) would yield a
kernel K (x, y) with a singularity at: = y (to account for the identity matrix). Instead
we consider the matri®/ = I — M, which has the same eigenvectors (therefore the
same embedding is obtained) but eigenvaluies ) instead of\ (so we care about
the largest eigenvalues, not the smallest ones). To obtain a kernel that geférates
we must first associate a functiar(a, b) to the matrixi?” of regression weights such
that we obtairiV;; = w(x;, ;). We first define a locat x k& Gram matrix around an
arbitrary pointz:

C(@)ij = (& = Zn@) (@ = Zn()) Loy eN(@) Lang N (@)

where N (z) is the subset ok elements fromD that are thek nearest neighbors af
andn(i) is the index of the-th such neighbor of. Then we definev(a, b) as follows:

>, CH(®@)jq
w(a,b) = 1b:wn<]‘>EN(a)m.
pq

Note that the above definition mak®s, w(a,z;) = 1 andy_,(w(a,b)x; — a)? min-
imized, as required. Note also that we are using the training points to predict the test



pointz but not vice-versa. Note that for training points we recd¥gf = w(zx;, z;).
We thus obtained the equivalent kernel

K(a,b) = w(a,b) + w(b,a) — Zw(x“ a)w(z;,b).

When neither norb are inD, K (a,b) = 0. When both are ith we obtaink (z;, z;) =
M;;. When only one is itD, we obtain respectiveli{ (z, z;) = w(z, x;) or K (z;, z) =
w(z, x;).

5 Experiments

We want to evaluate whether the precision of the generalizations suggested in the pre-
vious section is comparable to the intrinsic perturbations of the embedding algorithms.
The perturbation analysis will be achieved by considering splits of the data in three
sets,D = F'U R; U R, and training either with’ U R, or F' U Ry, comparing the
embeddings oiF'. For each algorithm described in sectignve apply the following
procedure;

1. We chooseF' ¢ D with m = |F| samples. The remaining — m samples
in D/F are split into two equal size subsets and R,. We train (obtain the
eigenvectors) ovef'U R; andF'UR,. When eigenvalues are close, the estimated
eigenvectors are unstable and can rotate in the subspace they span. Thus we
estimate an affine alignment between the two embeddings using the points in
F, and we calculate the Euclidean distance between the aligned embeddings
obtained for each; € F'.

2. For each sample; € F, we also train ove{F' U Ry }/{s;}. We apply the exten-
sion to out-of-sample points to find the predicted embedding ahd calculate
the Euclidean distance between this embedding and the one obtained when train-
ing with F'U Ry, i.e. withs; in the training set.

3. We calculate the mean difference (and its standard error, shown in the figure)
between the distance obtained in step 1 and the one obtained in step 2 for each
samples; € F', and we repeat this experiment for various sizes'of

The results obtained for MDS, Isomap, spectral clustering and LLE are shown in
figure 1 for different values ofn. Experiments are done over a database of 698 syn-
thetic face images described by 4096 component that is availaitp atisomap.stanford.edu
Qualitatively similar results have been obtained over other databases such as lono-
sphere [ittp://www.ics.uci.edu/ “mlearn/MLSummary.html ) and swis-
sroll (http://www.cs.toronto.edu/ “roweis/lle/ ). Each algorithm gen-
erates a two-dimensional embedding of the images, following the experiments reported
for Isomap. The number of neighbors is 10 for Isomap and LLE, and a Gaussian kernel
with a standard deviation of 0.01 is used for spectral clustering / Laplacian eigenmaps.
95% confidence intervals are drawn beside each mean difference of error on the figure.



As can be expected, the mean difference between the two distances is almost mono-
tonically decreasing as the numberof overlapping samples grows, mostly because
the training set embedding variability decreases as the number of points exchanged
(n — m) decreases. Furthermore, we find in most cases that the out-of-sample error
is less than or comparable to the training set embedding stability. In fact, the out-of-
sample error is always less than the variability induced on the training set embedding
when more than a few training points are exchanged.

-
x10~ x10
T

L L L L L L L L L L L L L L
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

00151

0.005

~0.005 L L L L L L L 001

Figure 1: Training set variability minus out-of-sample error, wrt number of training
set overlapping points. Top left: MDS. Top right: spectral clustering or Laplacian

eigenmaps. Bottom left: Isomap. Bottom right: LLE. Error bars are 95% confidence
intervals.

6 Conclusions

In this paper we have presented an extension to four unsupervised learning algorithms
based on a spectral embedding of the data: MDS, spectral clustering, Laplacian eigen-
maps, Isomap and LLE. This extension allows one to apply a trained model to out-
of-sample points without having to recompute eigenvectors. It introduces a practical
notion of generalization for these algorithms as well as a new method to measure it. The



experiments on real high-dimensional data show that the average distance between the
out-of-sample and in-sample embeddings is comparable or lower than the variation in
in-sample embedding due to replacing a few points in the training set.
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