
Continuous Neural Networks

Nicolas Le Roux and Yoshua Bengio

Dept. IRO, Université de Montréal

P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, QC, Canada

{lerouxni,bengioy}@iro.umontreal.ca
Technical Report 1281

Département d’Informatique et Recherche Opérationnelle

August 21st, 2006

Abstract

This article extends neural networks to the case of an uncountable number of hidden units, in several
ways. In the first approach proposed, a finite parametrization is possible, allowing gradient-based
learning. While having the same number of parameters as an ordinary neural network, its internal
structure suggests that it can represent some smooth functions much more compactly. Under mild
assumptions, we also find better error bounds than with ordinary neural networks. Furthermore, this
parametrization may help reducing the problem of saturation of the neurons. In a second approach, the
input-to-hidden weights are fully non-parametric, yielding a kernel machine for which we demonstrate
a simple kernel formula. Interestingly, the resulting kernel machine can be made hyperparameter-free
and still generalizes in spite of an absence of explicit regularization.

1 Introduction

In (Neal, 1994) neural networks with an infinite number of hidden units were introduced, showing that
they could be interpreted as Gaussian processes, and this work served as inspiration for a large body of
work on Gaussian processes. Neal’s work showed a counter-example to two common beliefs in the machine
learning community: (1) that a neural network with a very large number of hidden units would overfit and
(2) that it would not be feasible to numerically optimize such huge networks. In spite of Neal’s work, these
beliefs are still commonly held. In this paper we return to Neal’s idea and study a number of extensions
of neural networks to the case where the number of hidden units is uncountable, showing that they yield
implementable algorithms with interesting properties.

Consider a neural network with one hidden layer (and h hidden neurons), one output neuron and a
transfer function g. Let us denote V the input-to-hidden weights, ai(i = 1, . . . , h) the hidden-to-output
weights and β the output unit bias (the hidden units biases are included in V).

The output of the network with input x is then

f(x) = β +
∑

i

aig(x̃ · Vi) (1)

1

where Vi is the i-th column of matrix V and x̃ is the vector with 1 appended to x. The output of the i-th
hidden neuron is g(x̃ · Vi). For antisymmetric functions g such as tanh, we can without any restriction
consider the case where all the ai’s are nonnegative, since changing the sign of ai is equivalent to changing
the sign of Vi.

In ordinary neural networks, we have an integer index i. To obtain an uncountable number of hidden
units, we introduce a continuous-valued (possibly vector-valued) index u ∈ R

m. We can replace the usual
sum over hidden units by an integral that goes through the different weight vectors that can be assigned
to a hidden unit:

f(x) = β +

∫

E⊂Rm

a(u)g[x̃ · V (u)] du (2)

where a : E → R is the hidden-to-output weight function, and V : E → R
d+1 is the input-to-hidden

weight function.
How can we prevent overfitting in these settings? In this paper we discuss three types of solutions:

(1) finite-dimensional representations of V , (2) L1 regularization of the output weights with a and V

completely free, (3) L2 regularization of the output weights, with a and V completely free.
Solutions of type 1 are completely new and give new insights on neural networks. Many possible

parametrizations are possible to map the “hidden unit index” (a finite-dimensional vector) to a weight
vector. This parametrization allows us to construct a representation theorem similar to Kolmogorov’s, i.e.
we show that functions from K compact of R

d to R can be represented by d+1 functions from [0, 1] to R.
Here we study an affine-by-part parametrization, with interesting properties. In particular, it is shown that
approximation error can be bounded in O(h−2) where h is proportional to the number of free parameters,
whereas ordinary neural networks enjoy a O(h−1) error bound. Solutions of type 2 (L1 regularization)
were already presented in (Bengio et al., 2005) so we do not focus on them here. They yield a convex
formulation but with an infinite number of variables, requiring approximate optimization when the number
of inputs is not tiny. Solutions of type 3 (L2 regularization) give rise to kernel machines that are similar
to Gaussian processes, albeit with a type of kernel not commonly used in the literature. We show that an
analytic formulation of the kernel is possible when hidden units compute the sign of a dot product (i.e.,
with formal neurons). Interestingly, experiments suggest that this kernel is more resistant to overfitting
than the Gaussian kernel, allowing to train working models with no hyper-parameters whatsoever.

2 Affine neural networks

2.1 Core idea

We study here a special case of the solutions of type (1), with a finite-dimensional parametrization of the
continuous neural network, based on parametrizing the term V (u) in eq. 2, where u is scalar.

f(x) = β +

∫

E⊂R

a(u)g[x̃ · V (u)] du (3)

where V is a function from the compact set E to R
d+1 (d being the dimension of x).

If u is scalar, we can get rid of the function a and include it in V . Indeed, let us consider a primitive A

of a. It is invertible because a is nonnegative and one can consider only the u such that a(u) > 0 (because
the u such that a(u) = 0 do not modify the value of the integral). Making the change of variable t = A(u)
(choosing any primitive A), we have dt = a(u)d(u). V (u) will become V (A−1(t)) which can be written

2

VA(t) with VA = V ◦ A−1. An equivalent parametrization is therefore

f(x) = β + α

∫

A−1(E)

g[x̃ · VA(t)] dt.

This formulation shows that the only thing to optimize will be the function V , and the scalars α and β,
getting rid of the optimization of the hidden-to-output weights. In the remainder of the paper, VA will
simply be denoted V . If we want the domain of integration to be of length 1, we have to make another
change of variable z = t−t0

α where α is the length of E and t0 = inf(A−1(E)).

f(x) = α

∫ 1

0

g[x̃ · V (z)] dz. (4)

Let us denote by φ the mapping defined by

φV,α,β = x 7→ β + α

∫ 1

0

g[x̃ · V (z)] dz

Lemma 1. When V is a piecewise-constant function such that V (z) = Vi when pi−1 ≤ z < pi with

a0 = 0, α =
∑

i ai and pi = 1
α

∑i
j=0 aj, we have an ordinary neural network:

β + α

∫ 1

0

g[x̃ · V (z)] dz = β +
∑

i

aig(x̃ · Vi) (5)

The proof is provided in the Appendix.
At this point, we can make an important comment. If x ∈ R

d we can rewrite x̃ · V (z) = V d+1(z) +
∑d

i=1 xiV
i(z) where V i is a function from [0, 1] to R and xi is the i-th coordinate of x. But f is a function

from K compact of R
d to R. Using the neural network function approximation theorem of (Hornik,

Stinchcombe and White, 1989), the following theorem therefore follows:
Theorem 1. Any Borel measurable function f from K compact of R

d to R can, with an arbitrary precision,
be defined by d + 1 functions V i from [0, 1] to R and two reals α and β with the relation

f(x) = β + α

∫ 1

0

tanh

(

d
∑

i=1

V i(z) · xi + V n+1(z)

)

dz

The proof is provided in the Appendix.
This result is reminiscent of Kolmogorov’s superposition theorem (Kolmogorov, 1957), but here we

show that the functions V i can be directly optimized in order to obtain a good function approximation.

2.2 Approximating an Integral

In this work we consider a parametrization of V involving a finite number of parameters, and we optimize
over these parameters. Since f is linked to V by an integral, it suggests to look at parametrizations
yielding good approximation of an integral. Several such parametrizations already exist:

• piecewise constant functions, used in the rectangle method. This is the simplest approximation,
corresponding to ordinary neural networks (eq. 1),

3

• piecewise affine functions, used in the trapezoid method. This approximation yields better results
and will be the one studied here, which we coin “Affine Neural Network”.

• polynomials, used in Simpson’s method, which allow even faster convergence. However, we were not
able to compute the integral of polynomials through the function tanh.

2.3 Piecewise Affine Parametrization

Using a piecewise affine parametrization, we consider V of the form:

V (z) = Vi−1 +
z − pi−1

pi − pi−1
(Vi − Vi−1) when pi−1 ≤ z < pi,

that is to say V is linear between pi−1 and pi, V (pi−1) = Vi−1 and V (pi) = Vi for each i. This will ensure
the continuity of V .

In addition, we will set Vn+1 = V1 to avoid border effects and obtain an extra segment for the same
number of parameters.

Rewriting pi − pi−1 = ai and V (z) = Vi(z) for pi−1 ≤ z < pi, the output f(x) for an input example x

can be written:

f(x) =
∑

i

∫ pi

z=pi−1

tanh [Vi(z) · x̃] dz

f(x) =
∑

i

ai

(Vi − Vi−1) · x̃
ln

(

cosh(Vi · x̃)

cosh(Vi−1 · x̃)

)

(6)

In the case where Vi · x̃ = Vi−1 · x̃, the affine piece is indeed constant and the term in the sum becomes
ai tanh(Vi · x̃), as in a usual neural network. To respect the continuity of function V , we should restrict
the ai to be positive, since pi must be greater than pi−1.

2.3.1 Is the continuity of V necessary?

As said before, we want to enforce the continuity of V . The first reason is that the trapezoid method
uses continuous functions and the results concerning that method can therefore be used for the affine
approximation. Besides, using a continuous V allows us to have the same number of parameters for the
same number of hidden units. Indeed, using a piecewise affine discontinuous V would require twice as
many parameters for the input weights for the same number of hidden units.

The reader might notice at that point that there is no bijection between V and f . Indeed, since V is
only defined by its integral, we can switch two different pieces of V without modifying f .

2.4 Extension to multiple output neurons

The formula of the output is a linear combination of the ai, as in the ordinary neural network. Thus, the
extension to l output neurons is straightforward using the formula

fj(x) =
∑

i

aij

(Vi − Vi−1) · x̃
ln

(

cosh(Vi · x̃)

cosh(Vi−1 · x̃)

)

(7)

for j = 1, . . . , l.

4

2.5 Piecewise affine versus piecewise constant

Consider a target function f∗ that we would like to approximate, and a target V ∗ that gives rise to it.
Before going any further, we should ask two questions:

• is there a relation between the quality of the approximation of f ∗ and the quality of approximation
of V ∗?

• are piecewise affine functions (i.e. the affine neural networks) more appropriate to approximate an
arbitrary function than the piecewise constant ones (i.e. ordinary neural networks)?

We remind the reader that the function φ is defined by

φV,α,β = x 7→ β + α

∫ 1

0

g[x̃ · V (z)] dz.

Theorem 2. ∀x,∀V ∗,∀α∗,∀β∗,∀V , we have

|φV,α∗,β∗(x) − φV ∗,α∗,β∗(x)| ≤ 2α∗
∫ 1

z=0

tanh (|(V (z) − V ∗(z)) · x̃|) dz

The proof is provided in the Appendix.
Thus, if V is never far from V ∗ and x is in a compact set K, we are sure that the approximated

function will be close to the true function. This justifies the attempts to better approximate V ∗.
We can then make an obvious remark: if we restrict the model to a finite number of hidden neurons, it

will never be possible to have a piecewise constant function equal to a piecewise affine function (apart from
the trivial case where all affine functions are in fact constant). On the other hand, any piecewise contant
function composed of h pieces can be represented by a continuous piecewise affine function composed of
at most 2h pieces (half of the pieces being constant and the other half being used to avoid discontinuities),
given that we allow vertical pieces (which is true in the affine framework).

Are affine neural networks providing a better parametrization than the ordinary neural networks? The
following theorem suggests it:
Theorem 3. Let f∗ = φV ∗,α∗,β∗ with V ∗ a function with a finite number of discontinuities and C1 on each
interval between two discontinuities. Then there exists a scalar C, a piecewise affine continuous function
V with h piecesand two scalars α and β such that, for all x, |φV,α,β(x) − f∗(x)| ≤ Ch−2 (pointwise
convergence).

The proof is provided in the Appendix. In comparison, we can only guarantee a bound in O(h−1) for
ordinary neural networks.

An interesting question would be to characterize the set of such functions f ∗. It seems that the answer
is far from trivial.

Besides, one must note that these are upper bounds. It therefore does not guarantee that the optimiza-
tion of affine neural networks will always be better than the one of ordinary neural networks. Furthermore,
one shall keep in mind that both methods are subject to local minima of the training criterion. However,
we will see in the following section that the affine neural networks appear less likely to get stuck during
the optimization than ordinary neural networks.

2.6 Implied prior distribution

Up to now we have only considered a parametrized class of functions. We know that gradient descent or
ordinary L2 regularization are more likely to yield small values of the parameters, the latter directly cor-
responding to a zero-mean Gaussian prior over the parameters. Hence to visualize and better understand

5

this new parametrization, we define a zero-mean Gaussian prior distribution on the parameters β, ai and
Vi (1 ≤ i ≤ h), and sample from the corresponding functions.

We sampled from each of the two neural networks (ordinary discrete net and continuous affine net)
with one input neuron, different numbers of hidden units (nh pieces) and zero-mean Gaussian priors with
variance σu for input-to-hidden weights, variance σa for the input biases, variance σb for the output bias
and variance wv√

h
for hidden-to-output weights (scaled in terms of the number of hidden units h, to keep

constant the variance of the network output as h changes). Randomly obtained samples are shown in
figure 1. The x axis represents the value of the input of the network and the y axis is the associated
output of the network.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: Functions generated by an ordinary neural network (top) and an affine
neural network (bottom) with σu = 5, nh = 2 (first column), σu = 20, nh = 2
(second column), σu = 100, nh = 2 (third column), σu = 5, nh = 10000 (fourth
column) and σu = 100, nh = 10000 (fifth column). We always have σa = σu

and σb = wv = 1.

The different priors over the functions show a very specific trend: when σu grows, the ordinary (tanh)
neural network tends to saturate whereas the affine neural network does so much less often. This can
easily be explained by the fact that, if |Vi · x̃| and |Vi+1 · x̃| are both much greater than 1, hidden unit
i stays in the saturation zone when V is piecewise constant (ordinary neural network). However, with a
piecewise affine V , if Vi · x̃ is positive and Vi+1 · x̃ is negative (or the opposite), we will go through the
non-saturated zone, in which gradients on Vi and Vi+1 flow well compared to ordinary neural networks.
This might yield easier optimization of input-to-hidden weights, even though their value is large.

6

O1 . . . Op

. . . hv1
. . . hv2

. . . hvk
. . .

xt,1 xt,2 . . . xt,d

Figure 2: Architecture of a continuous neural network

3 Non-Parametric Continous Neural Networks

This section returns on the strong link between kernel methods and continuous neural networks, first
presented in (Neal, 1994). It also exhibits a clear connection with Gaussian processes, with a newly
motivated kernel formula. Here, we start from eq. 2 but use as an index u the elements of R

d+1 themselves,
i.e. V is completely free and fully non-parametric: we integrate over all possible weight vectors.

To make sure that the integral exists, we select a set E over which to integrate, so that the formulation
becomes

f(x) =

∫

E

a(u)g(x · u) du (8)

= < a, gx > (9)

with <,> the usual dot product of L2(E) and gx the function such that gx(u) = g(x · u).

3.1 L1-norm Output Weights Regularization

Although the optimization problem becomes convex when the L1-norm of a is penalized, it involves an
infinite number of variables. However, we are guaranteed to obtain a finite number of hidden units with
non-zero output weight, and both exact and approximate optimization algorithms have been proposed for
this case in (Bengio et al., 2005). Since this case has already been well treated in that paper, we focus
here on the L2 regularization case.

3.2 L2-norm Output Weights Regularization

In some cases, we know that the optimal function a can be written as a linear combination of the gxi
with

the xi’s the training examples. For example, when the cost function is of the form

c ((x1, y1, f(x1)), ..., (xm, ym, f(xm))) + Ω(‖f‖H)

with ‖f‖H is the norm induced by the kernel k defined by k(xi, xj) =< gxi
, gxj

>, we can apply the
representer theorem (Kimeldorf and Wahba, 1971).

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−867.5

−867

−866.5

−866

−865.5

−865

−864.5

−864

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2444

−2443.5

−2443

−2442.5

−2442

−2441.5

−2441

−2440.5

−2440

−2439.5

Figure 3: Two functions drawn from the Gaussian process associated to the
above kernel function.

It has been known for a decade that, with Gaussian priors over the parameters, a neural network with
a number of hidden units growing to infinity converges to a Gaussian process (chapter 2 of (Neal, 1994)).
However, Neal did not compute explicitly the covariance matrices associated to specific neural network
architectures. Such covariance functions have already been analytically computed (Williams, 1997), for
the cases of sigmoid and Gaussian transfer functions. However, this has been done using a Gaussian prior
on the input-to-hidden weights. The formulation presented here corresponds to a uniform prior (i.e. with
no arbitrary preference for particular values of the parameters) when the transfer function is sign. The
sign function has been used in (Neal, 1994) with a Gaussian prior on the input-to-hidden weights, but the
explicit covariance function could not be computed. Instead, approximating locally the Gaussian prior
with a uniform prior, Neal ended up with a covariance function of the form k(x, y) ≈ A − B||x − y||. We
will see that, using a uniform prior, this is exactly the form of kernel one obtains.

3.3 Kernel when g is the sign Function

Theorem 4. A neural network with an uncountable number of hidden units, a uniform prior over the
parameters and a sign transfer function is a Gaussian process whose kernel is of the form

k(xi, xj) = 1 − C‖xi − xj‖

Such a kernel can be made hyperparameter-free for kernel regression, kernel logistic regression or SVMs.
The proof is provided in the Appendix.

3.3.1 Function sampling

As presented in (Neal, 1994), the functions generated by this Gaussian process are Brownian (see figure 3).
Contrary to other transfer functions and frameworks, this covariance function does not have any hyper-
parameter. Indeed, the solution is invariant if the covariance function is modified by adding a constant
to k(x, y), since the optimal solution for kernel regression or SVM is a weight vector whose elements sum
to 0. Moreover, changing the covariance function by a multiplicative factor is equivalent to accordingly
multiply the weight decay on the output weights. It is also possible to set a weight decay equal to 0.
The problem becomes ill-defined as many vectors yield a cost of 0. However, all solutions lead to the
same function. This setting suppresses the remaining hyperparameter for the sign kernel (a more detailed
explanation is in the appendix).

8

3.3.2 Experiments on the USPS dataset

We tried this new hyper-parameter free kernel machine on the USPS dataset, with quadratic training cost.

Algorithm λ = 10−3 λ = 10−6 λ = 10−12 Test
Ksign 2.27±0.13 1.80±0.08 1.80±0.08 4.07

G. σ = 1 58.27±0.50 58.54±0.27 58.54±0.27 58.29
G. σ = 2 7.71±0.10 7.78±0.21 7.78±0.21 12.31
G. σ = 4 1.72±0.11 2.09±0.09 2.10±0.09 4.07
G. σ = 6 1.67*±0.10 2.78±0.25 3.33±0.35 3.58*
G. σ = 7 1.72±0.10 3.04±0.26 4.39±0.49 3.77

Table 1: sign kernel vs Gaussian kernel on USPS dataset with 7291 training
samples, with different Gaussian widths σ and weight decays λ. For each kernel,
the best value is in bold. The star indicates the best overall value. The first
three columns are validation error ± standard deviation. The last one is the
test error.

To evaluate the stability of the sign kernel, we compared it with the Gaussian kernel on the USPS
dataset. We optimized the hyperparameters of the Gaussian kernel on the test set (optimization on the
validation set yields 4.0% test error). As there are no hyperparameters for the sign kernel, this clearly is
in favor of the Gaussian kernel. We can see in table 1 that the Gaussian kernel is much more sensitive to
hyperparameters, whereas the performance of the sign kernel is the same for λ varying from 10−3 to 0.
We show the mean and the standard deviation of the error over 10 runs.

3.3.3 LETTERS dataset

Similar experiments have been performed on the LETTERS dataset. Again, whereas the sign kernel does
not get the best overall result, it performs comparably to the best Gaussian kernel (see table 2).

Algorithm λ = 10−3 λ = 10−6 λ = 10−9 Test
Ksign 5.36 ± 0.10 5.22 ± 0.09 5.22 ± 0.09 5.5

G. σ = 2 5.47 ± 0.14 5.93 ± 0.15 5.92 ± 0.14 5.8
G. σ = 4 4.97* ± 0.10 11.06 ± 0.29 12.50 ± 0.35 5.3*
G. σ = 6 6.27 ± 0.17 8.47 ± 0.20 17.61 ± 0.40 6.63
G. σ = 8 8.45 ± 0.19 6.11 ± 0.15 18.69 ± 0.34 9.25

Table 2: sign kernel vs Gaussian kernel on LETTERS dataset with 6000 training
samples, with different Gaussian widths σ and weight decays λ. For each kernel,
the best value is in bold red. The best overall value is in italic and in blue (in
train and in test). The first three columns are validation error ± standard
deviation. The last one is test error for λ that minimizes validation error.

9

3.4 Conclusions, Discussion, and Future Work

We have studied in detail two formulations of uncountable neural networks, one based on a finite parametriza-
tion of the input-to-hidden weights, and one that is fully non-parametric. The first approach delivered a
number of interesting results: a new function approximation theorem, an affine parametrization in which
the integrals can be computed analytically, and an error bound theorem that suggests better approxima-
tion properties than ordinary neural networks.

As shown in theorem 1, function V can be represented as d + 1 functions from R to R, easier to learn
than one function from R

d+1 to R. We did not find parametrizations of those functions other than the
continuous piecewise affine one with the same feature of analytic integration. To obtain smooth functions
V with restricted complexity, one could set the functions V to be outputs of another neural network taking
a discrete index in argument. However, this has not yet been exploited and will be explored in future
work.

The second, non-parametric, approach delivered another set of interesting results: with sign activation
functions, the integrals can be computed analytically, and correspond to a hyperparameter-free kernel
machine that yields performances comparable to the Gaussian kernel. These results raise a fascinating
question: why are results with the sign kernel that good with no hyper-parameter and no regularization?
To answer this, we should look at the shape of the covariance function k(x, y) = 1 − C‖x − y‖, which
suggests the following conjecture: it can discriminate between neighbors of a training example while being
influenced by remote examples, whereas the Gaussian kernel does either one or the other, depending on
the choice of σ.

References

Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O., and Marcotte, P. (2005). Convex neural networks. In Advances

in Neural Information Processing Systems.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators.
Neural Networks, 2:359–366.

Kimeldorf, G. and Wahba, G. (1971). Some results on tchebychean spline functions. Journal of Mathematics

Analysis and Applications, 33:82–95.

Kolmogorov, A. (1957). On the representation of continuous functions of many variables by superposition of
continuous functions of one variable and addition. Kokl. Akad. Nauk USSR, 114:953–956.

Neal, R. (1994). Bayesian Learning for Neural Networks. PhD thesis, Dept. of Computer Science, University of
Toronto.

Williams, C. (1997). Computing with infinite networks. In Mozer, M., Jordan, M., and Petsche, T., editors,
Advances in Neural Information Processing Systems 9. MIT Press.

10

Appendix: Proofs of the Theorems

In all the following proofs, we will define the function φV,α,β by

φV,α,β = x 7→ β + α

∫ 1

0

tanh (V (z) · x) dz

Lemma 1. When V is a piecewise-constant function such that

V (z) = Vi when pi−1 ≤ z < pi

with a0 = 0, α =
∑

i ai and pi = 1
α

∑i
j=0 aj, we have

β + α

∫ 1

0

g[x̃ · V (z)] dz = β +
∑

i

aig(x̃ · Vi) (10)

Proof.

β + α

∫ 1

0

g[x̃ · V (z)] dz = β + α
∑

i

∫ pi

pi−1

g[x̃ · V (z)] dz

= β + α
∑

i

∫ pi

pi−1

g(x̃ · Vi) dz

= β + α
∑

i

(pi − pi−1)g(x̃ · Vi)

= β + α
∑

i

ai

α
g(x̃ · Vi)

= β +
∑

i

aig(x̃ · Vi)

Theorem 1. Any Borel measurable function f from K compact of R
d to R can, with an arbitrary precision,

be defined by d + 1 functions V i from [0, 1] to R and two reals α and β with the relation

f(x) = β + α

∫ 1

0

tanh

(

d
∑

i=1

V i(z) · xi + V n+1(z)

)

dz

Proof. Let f be an arbitrary Borel Measurable function on a compact set K and ε > 0. By the universal
approximation theorem (Hornik, Stinchcombe and White, 1989), we know that there are input weights
vi, i = 1, . . . , n, output weights ai, i = 1, . . . , n and an output bias b such that

sup
x∈K

∣

∣

∣

∣

∣

f(x) − b −
n
∑

i=1

ai tanh(vi · x)

∣

∣

∣

∣

∣

< ε

11

By optionnally replacing vi by −vi, we can restrict all the ai to be positive. Defining α =
∑

i ai and V

such that V (z) = vi if
Pi−1

k=1
ai

α ≤ z <
Pi

k=1

α , we have

sup
x∈K

∣

∣

∣

∣

f(x) − b −
∫ 1

z=0

tanh (V (z) · x) dz

∣

∣

∣

∣

< ε

Therefore, for all ε > 0, there exists a function V from [0, 1] to R
d+1 and two reals α and β such that

supx∈K |f(x) − φ(V, α, β)| < ε.
But as V can be decomposed in d + 1 functions from [0, 1] to R, any Borel measurable function f can,

with an arbitrary precision, be defined by

• d + 1 functions from [0, 1] to R

• two scalars α and β.

Theorem 2. ∀x,∀V ∗,∀α∗,∀β∗,∀V , we have

|φV,α∗,β∗(x) − φV ∗,α∗,β∗(x)| ≤ 2α∗
∫ 1

z=0

tanh (|(V (z) − V ∗(z)) · x̃|) dz

Proof.

|φ(V, α∗, β∗)(x) − f∗(x)|

= |α∗|
∣

∣

∣

∣

∫ 1

z=0

(tanh [V (z) · x̃] − tanh [V ∗(z) · x̃]) dz

∣

∣

∣

∣

= |α∗|
∣

∣

∣

∣

∫ 1

z=0

tanh [(V (z) − V ∗(z)) · x̃] (1 − tanh [V (z) · x̃] tanh [V ∗(z) · x̃]) dz

∣

∣

∣

∣

≤ |a∗|
∫ 1

z=0

|tanh [(V (z) − V ∗(z)) · x̃]| dz × sup
z

|1 − tanh [V (z) · x̃] tanh [V ∗(z) · x̃]|

But supz |1 − tanh [V (z) · x̃] tanh [V ∗(z) · x̃]| < 2. Thus,

|φ(V, α∗, β∗)(x) − f∗(x)| ≤ 2|a∗|
∫ 1

z=0

|tanh [(V (z) − V ∗(z)) · x̃]| dz

|φ(V, α∗, β∗)(x) − f∗(x)| ≤ 2|a∗|
∫ 1

z=0

tanh [| (V (z) − V ∗(z)) · x̃|] dz (11)

Theorem 3. Let f∗ = φV ∗,α∗,β∗ with V ∗ a function with a finite number of discontinuities and C1 on each
interval between two discontinuities. Then there exists a scalar C, a piecewise affine continuous function
V with h piecesand two scalars α and β such that, for all x, |φV,α,β(x) − f∗(x)| ≤ Ch−2 (pointwise
convergence).

12

Proof. Let V ∗ be an arbitrary continuous function on [pi−1, pi]. Then, choosing the constant function

V : z 7→ V ∗(pi−1) + V ∗(pi)

2
yields for all z in [pi−1, pi]:

|V ∗(z) − V (z)| ≤ pi − pi−1

2
M1(V

∗, [pi−1, pi]) (12)

where M1(V, I) = maxz∈I |V ′(z)| (M1(V, I) is the maximum absolute value of the first derivative of V on
the interval I).

Now let V ∗ be a function in C1 (that is, a function whose derivative is continuous everywhere) and

choose the affine function V : z 7→ V ∗(pi−1) +
z − pi−1

pi − pi−1
(V ∗(pi) − V ∗(pi−1). The trapezoid method tells

us that the following inequality is verified:

|V ∗(z) − V (z)| ≤ (z − pi−1)(pi − z)

2
M2(V

∗, [pi−1, pi])

where M2(V, I) = maxz∈I |V ′′(z)| (M2(V, I) is the maximum absolute value of the second derivative of V

on the interval I). Using the fact that, for all z in [pi−1, pi], (z − pi−1)(pi − z) ≤ (pi−pi−1)
2

4 , we have

|V ∗(z) − V (z)| ≤ (pi − pi−1)
2

8
M2(V

∗, [pi−1, pi]) (13)

Besides, theorem 2 states that

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ 2|α∗|
∫ 1

z=0

tanh (|(V (z) − V ∗(z)) · x̃|) dz

But

•
∫ 1

z=0

tanh (|(V (z) − V ∗(z)) · x̃|) dz ≤ sup
[0,1]

tanh (|(V (z) − V ∗(z)) · x̃|)

• tanh (|(V (z) − V ∗(z)) · x̃|) ≤ |(V (z) − V ∗(z)) · x̃|
Thus,

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ 2|α∗| sup
[0,1]

|(V (z) − V ∗(z)) · x̃| (14)

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ 2|α∗| sup
[0,1]

|(V (z) − V ∗(z)) · x̃|

≤ 2|α∗| sup
[0,1]

∣

∣

∣

∣

∣

∑

i

xi(Vi(z) − V ∗
i (z))

∣

∣

∣

∣

∣

≤ 2|α∗|
∑

i

|xi| sup
[0,1]

|Vi(z) − V ∗
i (z)|

In the case of a piecewise constant function, this inequality becomes:

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ 2|α∗|
∑

i

|xi| sup
j

pj − pj−1

2
M1(V

∗
i , [pj−1, pj])

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ |α∗|M1(V
∗
i , [0, 1])

∑

i

|xi| sup
j

(pj − pj−1) (15)

13

In the case of a piecewise affine function, this inequality becomes:

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ 2|α∗|
∑

i

|xi| sup
j

(pj − pj−1)
2

8
M2(V

∗
i , [pj−1, pj])

|φ(V, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ |α∗|M1(V
∗
i , [0, 1])

4

∑

i

|xi| sup
j

(pj − pj−1)
2 (16)

If V ∗ has a k discontinuities and V has h pieces (corresponding to a neural network with h hidden
neurons), we can place pd,i at the i-th discontinuity and split each interval between two discontinuities
into h

k pieces. The maximum value of pj − pj−1 is thus lower than k
h (since the pj are between 0 and 1).

We thus have the following bounds:

|φ(VC , α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ C2

h
(17)

|φ(VA, α∗, β∗)(x) − φ(V ∗, α∗, β∗)(x)| ≤ C2

h2
(18)

where VC is a piecewise constant function and VA is a piecewise affine function. C1 and C2 are two
constants (the xi are bounded since we are on a compact).

This concludes the proof.

Theorem 4. A neural network with an uncountable number of hidden units, a uniform prior over the
parameters and a sign transfer function is a Gaussian process whose kernel is of the form

k(xi, xj) = 1 − C‖xi − xj‖

Besides, such a kernel can be made hyperparameter-free for kernel linear regression, kernel logistic regres-
sion or SVM,

Proof. For the sake of shorter notation, we will denote the sign function by s and warn the reader not to
get confused with the sigmoid function.

We wish to compute

k(x, y) =< gx, gy >= Ev,b [s(v · x + b)s(v · y + b)] .

Since we wish to define a uniform prior over v and b, we cannot let them span the whole space (Rn in the
case of v and R in the case of b). However, the value of the function sign does not depend on the norm of
its argument, so we can restrict ourselves to the case where ‖v‖ = 1. Furthermore, for values of b greater
than δ, where δ is the maximum norm among the samples, the value of the sign will be constant to 1 (and
-1 for opposite values of b). Therefore, we only need to integrate b on the range [−δ, δ].

Defining a uniform prior on an interval depending on the training examples seems contradictory. We
will see later that, as long as the interval is big enough, its exact value does not matter.

Let us first consider v fixed and compute the expectation over b. The product of two sign functions
is equal to 1 except when the argument of one sign is positive and the other negative. In our case, this
becomes:

{

v · x + b < 0
v · y + b > 0

or

{

v · x + b > 0
v · y + b < 0

14

which is only true for b between −min(v · x, v · y) and −max(v · x, v · y), which is an interval of size
|v · x − v · y| = |v · (x − y)|.

Therefore, for each v, we have

Eb [s(v · x + b)s(v · y + b)] =
(2δ − 2 |v · (x − y)|)

2δ

= 1 − |v · (x − y)|
δ

.

We must now compute

k(x, y) = 1 − Ev

[|v · (x − y)|
δ

]

(19)

It is quite obvious that the value of the second term only depends on the norm of (x − y) due to the
symmetry of the problem. The value of the kernel can thus be written

k(x, y) = 1 − C‖x − y‖ (20)

Writing k(x, y) = 1 − C‖x − y‖, we have

C =
1

δS(d, 1)

∫

v/‖v‖=1

∣

∣

∣

∣

v · (x − y)

‖x − y‖

∣

∣

∣

∣

dv

=
2

δS(d, 1)

∫ π/2

0

cos(θ)S (d − 1, sin(θ)) dθ

=
2S(d − 1, 1)

δS(d, 1)(d − 1)

where S(d, r) is the surface of the hypersphere Sd of radius r and d is the dimensionality of the data.
Therefore,

k(x, y) = 1 − 2S(d − 1, 1)

δS(d, 1)(d − 1)
‖x − y‖

Then, noticing that

√

d − 1

2π
<

S(d − 1, 1)

S(d, 1)
<

√

d

2π
,

we have
1

δ

√

2

π(d − 1)
<

2S(d − 1, 1)

δS(d, 1)(d − 1)
<

√
2d

δ(d − 1)π
.

As we could have integrated over a slightly larger integral than the minimum required, we can set our
kernel function to be

k(x, y) = 1 −
√

2

δ
√

(d − 1)π
‖x − y‖ (21)

with d the dimensionality of the data and δ the maximum L2-norm among the samples. The coefficient
in front of the term ‖x − y‖ has a slightly different form when d = 1 or d = 2.

Let us now denote by K the matrix whose element (i, j) is K(xi, xj). The solution in kernel logistic
regression, kernel linear regression and SVM is of the form Kα where α is the weight vector. It appears
that the weight vector is orthogonal to e = [11 . . . 1]′.

15

Thus, adding a constant value c to every element of the covariance matrix changes the solution from
Kα to (K + cee′)α = Kα + ee′α = Kα.

Therefore, the covariance matrix is defined to an additive constant.
Besides, in kernel logistic regression, kernel linear regression and SVM, the penalized cost is of the

form
C(K,λ, α) = L(Kα, Y) + λα′Kα

We can see that C(K,λ, α) = C(cK, cλ, α
c). Thus, multiplying the covariance matrix by a constant c and

the weight decay by the same constant yields an optimal solution α∗ divided by c. However, the product
Kα remains the same.

In our experiments, the value of the weight decay had very little influence. Furthermore, the best results
have always been obtained for a weight decay equal to 0. This means that no matter the multiplicative
factor by which K is multiplied, the result will be the same.

This concludes the proof that this kernel can be made hyperparameter-free.

16

