Discovering Shared Structure in Manifold
Learning

Yoshua Bengio and Martin Monperrus
Dept. IRO, Université de Montréal
P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, Qc, Canada
{bengi oy, monperrm@ro. unontreal . ca
Technical Report 1250, July 2nd 2004,
Département d’Informatique et Recherche Opérationnelle

July 6, 2004

Abstract

We claim and present arguments to the effect that a large class of manifold
learning algorithms that are essentially local will suffer from at least four generic
problems associated with (1) noise in the data, (2) curvature of the manifold, (3)
dimensiondlity of the manifold, and (4) the presence of many manifolds with little
data per manifold. This analysis suggests non-local manifold learning agorithms
which attempt to discover shared structure in the tangent planes at different posi-
tions. A criterion for such an algorithm is proposed and experiments estimating a
tangent plane prediction function are presented. The function has parameters that
are shared across space rather than estimated based on the local neighborhood, as
in current non-parametric manifold learning algorithms. The results show clearly
the advantages of this approach with respect to local manifold learning algorithms.

1 Introduction

A central objective of statistical machine learning is to discover structure in the joint
distribution between random variables, so as to be able to make predictions about new
combinations of values of these variables. An extremely simplified way to describe
such structure is to characterize the regions of high density versus the regions of low
density. For example, clustering algorithms attempt to discover regions of high density
that are centered around “cluster centers” or prototypes. Manifold learning algorithms
generalize clustering by allowing the regions to have more general shapes. In particular,
for very high-dimensional but structure-rich data (such as speech, language, or images),
it makes sense to expect most directions of variations around a given observation to be
unlikely, i.e. locally, the regions of high density are high-dimensional pancakes.

There has been in recent years a lot of work on unsupervised learning based on
characterizing a possibly non-linear manifold near which the data would lie, such as



Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum, de
Silva and Langford, 2000), kernel Principal Components Analysis (PCA) (Scholkopf,
Smola and Miiller, 1998), Laplacian Eigenmaps (Belkin and Niyogi, 2003), and Man-
ifold Charting (Brand, 2003). These are all essentially non-parametric methods which
represent the manifold on the basis of local neighborhood relations, very often con-
structed using the nearest neighbors graph (the graph with one vertex per observed
example, and arcs between near neighbors). The above methods characterize the man-
ifold through an embedding which associates each training example (an input object)
with a low-dimensional coordinate vector (the coordinates on the manifold). Other
closely related methods characterize the manifold as well as “noise” around it. Most of
these methods consider the density as a mixture of flattened Gaussians, e.g. mixtures
of factor analyzers (Ghahramani and Hinton, 1996), Manifold Parzen windows (Vin-
cent and Bengio, 2003), and other local PCA models such as mixtures of probabilistic
PCA (Tipping and Bishop, 1999). This is not an exhaustive list, and recent work also
combines modeling through a mixture density and dimensionality reduction (Teh and
Roweis, 2003; Brand, 2003).

In this paper we claim that there is a fundamental weakness with all of these meth-
ods (and the other similar non-parametric density estimation methods), due to the lo-
cality of learning: we show that the local tangent plane of the manifold at a point «
is defined based mostly on the near neighbors of x according to some possibly data-
dependent kernel K. A consequence of that weakness is that it is difficult to gen-
eralize to new combinations of values x that are “far” from the training examples x;,
where being “far” is a notion that should be understood in the context of several fac-
tors: the quantity of training data near x, the amount of noise around the manifold (the
examples do not lie exactly on the manifold), and the dimensionality of the manifold.
For example, if the manifold curves quickly around z, neighbors need to be closer for a
locally linear approximation to be meaningful, which means that more data are needed
in such high-curvature regions. Intrinsic dimensionality of the manifold compounds
that problem because the amount of data thus needed will grow exponentially with this
dimensionality. Thus saying that y is “far” from = means that y is far from the tangent
plane at x.

This problem is fundamentally linked to the generalization principles used in a
learning algorithm in order to be able to say something about a new example. In this
paper we propose as a requirement for “high-dimensional” learning algorithms that
they be non-local, i.e. that what is learned about the data in one region of input space
could be used to help discover or predict structure in other far-away regions. We claim
that this is a necessary condition to be able to generalize when the dimensionality, the
noise and/or the curvature of the manifolds that characterize the density are high.

One way to address that problem is to estimate the tangent planes of the manifolds
as a function of x, with parameters that can be estimated not only from the data around
x but from the whole dataset. Note that there can be more than one manifold (e.g.
in vision, one may imagine a different manifold for each “class” of object), but the
structure of these manifolds may be related, something that many previous manifold
learning methods did not take advantage of. Here we present experiments using multi-
layer neural networks to represent those tangent planes, on a variety of tasks illustrating
the weaknesses of the local manifold learning algorithms enumerated above. The main



advantage of non-local approaches such as the one introduced here is that it has at least
the potential to capture shared structure in many regions of input space. On the
other hand, a theoretical disadvantage of the proposed approach with respect to the
local learning algorithms is that the optimization problem involved in learning is more
difficult and generally non-convex. Fortunately, the experiments suggest that simple
stochastic gradient descent may be sufficient to learn such shared structure.

2 Local Manifold Learning

By “local manifold learning”, we mean a method that derives information about the
local structure of the manifold (i.e. implicitly its tangent directions) at = based mostly
on the training examples “around” x, where “proximity” may be the Euclidean distance
or defined indirectly through a kernel.

Let us consider in turn a few of the most common local manifold learning methods
to verify that this definition applies. In some cases it is pretty obvious, in others it is
less.

2.1 Spectral Embedding Algorithms

As shown in (Bengio et al., 2004), there is a large group of manifold learning methods
(as well as the spectral clustering methods) that share several characteristics. These
include LLE (Roweis and Saul, 2000), Isomap (Tenenbaum, de Silva and Langford,
2000), kernel Principal Components Analysis (PCA) (Scholkopf, Smola and Mdiller,
1998) and Laplacian Eigenmaps (Belkin and Niyogi, 2003). They first build a data-
dependent Gram matrix M with n x n entries Kp(z;, x;), where D = {z1,...,2,}
is the training set and K is a data-dependent kernel, and compute the eigenvector-
eigenvalue pairs {(vg, Ax)} of M. The embedding of the training set is obtained di-
rectly from the principal eigenvectors vy, of M (the i-th element of vy, gives the k-th

coordinate of x;’s embedding, possibly scaled by @/%, i.e. eg(x;) = vi) and the

embedding for a new example can be estimated using the Nystrom formula (Bengio
et al., 2004):

1 n
er(x) = N Zv;“-KD(J;,xi)
i=1

for the k-th coordinate of =, where )\, is the k-th eigenvalue of M (the optional scaling

by 1/’\7—5 would also apply). Here we will talk about “neighbors” of = to be those

x; for which K (x, x;) is significantly different from zero, when K (x, ;) decreases
quickly as x; is taken farther away from z. The above equation says that the embedding
for a new example z is a local interpolation of the manifold coordinates of its neighbors
x4, With interpolating weights given by Lﬂ;””) To see more clearly how the tangent
plane may depend only on the neighbors of x, consider the relation between the tangent
plane and the embedding function:

. der ()
thetangent plane at x issimply the subspace spanned by the vectors = =.




In the case of very “local” kernels like that of LLE, spectral clustering with Gaus-
sian kernel, Laplacian Eigenmaps or kernel PCA with Gaussian kernel, that derivative
only depends significantly on the near neighbors of x:
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For example, for a Gaussian kernel the derivative quickly becomes 0 as ||z — x|
increases.

The case of Isomap is less obvious but we show below that it is also local. Let
D(a,b) denote the graph geodesic distance going only through a, b and points from
the training set. As shown in (Bengio et al., 2004), the corresponding data-dependent
kernel can be defined as Kp(z,2;) = —3(D(x,2:)* — 5 >, D(x,2;)* — D; + D)
where D; = L 37 D(x;,x;)* and D = 1 3. D;. Let N'(z, ;) denote the index j of
the training set example z; that is a neighbor of z that minimizes ||z — || +D(x;, z;).
Then
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which is a linear combination of vectors (x — xy), where xj is a neighbor of z. This
clearly shows that the tangent plane at = associated with Isomap is included in the
subspace spanned by the vectors (x — x) where z;, isa neighbor of z.

The fact that the estimated tangent plane at 2 must essentially lie in the subspace
spanned by the near neighbors of 2 means that such methods cannot say anything
meaningful when those neighbors are too far to give information about the true local
tangent plane. Unfortunately, as we have argued, when the manifold is high dimen-
sional, noisy, and curved, the neighbors of z are likely to often be too far to correctly
estimate the true local plane.

2.2 Mixture of Pancakes Density M odels

There are also a variety of local manifold learning algorithms which can be classified
as “mixtures of pancakes” (Ghahramani and Hinton, 1996; Tipping and Bishop, 1999;
Vincent and Bengio, 2003; Teh and Roweis, 2003; Brand, 2003). These are generally
mixtures of Gaussians with a particular covariance structure. When the covariance
matrix is approximated using its principal eigenvectors, this leads to “local PCA” types
of methods. For these methods the local tangent directions directly correspond to the
principal eigenvectors of the local covariance matrices. Again it is clear with these
methods that the learning is local since it is mostly the examples around the Gaussian
center that determine its covariance structure. The problem is not so much due to the
form of the density as a mixture of Gaussians. The problem is that the local parameters
(e.g. local principal directions) are estimated mostly based on local data. There is
usually a non-local interaction between the different Gaussians, but its role is mainly
of global coordination, e.g. where to set the Gaussian centers to allocate them properly



where there is data, and optionally how to orient the principal directions so as to obtain
a globally coherent coordinate system for embedding the data.

Note that some of these methods (Teh and Roweis, 2003; Brand, 2003) provide
both an embedding and a density model: the embedding is derived from the density
model, represented by a mixture of pancake-like Gaussians. The central question that
we will study below is how to estimate these Gaussians, using more than just local
neighborhood information.

tangent image | " ﬁ?

gent directions

high—contrast image

tangent image

tang?}ections

Figure 1: The manifold of trandations of a high-contrast image has very high curva-
ture. The tangent plane for an image translated by only one pixel looks similar but
changes abruptly since the edges are only one-pixel wide and are also shifted by one
pixel. Hence the two tangent planes are almost orthogonal.

2.3 WhereLocal Manifold L earning Would Fail

It is easy to imagine at least four failure causes for local manifold learning methods,
and combining them will create even greater problems:

1. Noise around the manifold: data are not exactly lying on the manifold, i.e. the
pancake is thick. In the case of PCA with d principal components and decreasing

d .
eigenvalues \q, Ao, .. ., this happens if Ajil is not large enough or if Z;MA
i=d+1 "\
is not large enough. If that ratio is small then it takes more data to properly
estimate the principal components. In the case of non-linear manifolds, the pres-
ence of noise means that more data around each pancake region will be needed

to properly estimate the tangent directions of the manifold in that region. With




such noisy data, the tangent plane estimated from a local-PCA like method will
often point away from the manifold, because a neighbor ;. of  may be forming
a vector z — x;, which forms a large angle with the tangent plane.

. High curvature of the manifold. The above local manifold learning methods
essentially approximate the manifold by the union of many locally linear patches.
For this to work, there must be at least d close enough examples in each patch
(in the sense of being close to the tangent plane at the center of the patch) for this
to work. With noise, more data will be needed. With a high curvature manifold,
more — smaller — patches will be needed, and the number of required patches will
grow exponentially with the dimensionality of the manifold. To emphasize that
this is a serious problem, consider the manifold of translations of a high-contrast
image, in Figure 1. The tangent direction corresponds to the change in image
due a small translation, i.e. it is non-zero only at edges in the image. After a
one-pixel translation, the edges have moved by one pixel, and may not overlap
much with the edges of the original image if it had high contrast. This is indeed
a very high curvature manifold.

. High intrinsic dimension of the manifold. We have already seen that high
manifold dimensionality d is hurtful because O(d) examples are required in each
patch and O(r<) patches (for some r depending on curvature and noise) are nec-
essary to span the manifold. In the translation example, if the image resolution is
increased then many more training images will be needed to capture the curva-
ture around the translation manifold with locally linear patches. Yet the physical
phenomenon responsible for translation is expressed by a simple equation, which
does not get more complicated with increasing resolution.

. Presence of many manifoldswith little data per manifold. In many real-world
contexts there is not only one global manifold but a large number of manifolds
which however share something about their structure. A simple example is the
manifold of transformations (view-point, position, lighting,...) of 3D objects in
2D images. There is one manifold per object instance (corresponding to the suc-
cessive application of small amounts of all of these transformations). The man-
ifolds associated with different object instances may be connected to each other
(i.e. when there is a continuum of plausible object images going from one to the
other). However in general image data, there will be a large number of different
object classes, each corresponding to a manifold disconnected from the other. If
there are only a few examples for each such class then it is almost impossible to
learn the manifold structures using only local manifold learning. However, if the
manifold structures are generated by a common underlying phenomenon (as in
changes due to view-point, position, lighting, etc...) then a non-local manifold
learning method could potentially learn all of these manifolds and even general-
ize to manifolds for which a single instance is observed.



2.4 Relation to Non-Parametric Semi-Supervised L earning

We claim that the problems outline above also plague non-parametric semi-supervised
learning algorithms, such as (Szummer and Jaakkola, 2002; Chapelle, Weston and
Scholkopf, 2003; Belkin and Niyogi, 2003; Zhu, Ghahramani and Lafferty, 2003; Zhu,
Lafferty and Ghahramani, 2003; Zhou et al., 2004). These algorithms basically rely on
a local kernel and the nearest neighbor graph to “propagate” label information from la-
beled examples to unlabeled examples. If the classes are well separated in comparison
to that kernel (i.e., generally with respect to Euclidean distance), than these methods
can be very helpful. However, it is again easy to come up with simple examples where
this approach would fail, because of noise around the manifold, dimensionality of the
manifold, curvature of the manifold, and not enough data to characterize each manifold
as a patchwork of local linear pancakes.
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Figure 2: Non-parametric semi-supervised learning works best on low dimensional
data where there is enough data locally to estimate the manifol ds associated with each
class. The labeled examples (with a circle) are enough correctly capture the class of
the unlabeled examples (red points on the left vs blue points on the right).

The basic idea behind these algorithms is that we can do better than supervised
learning because we can “follow” the manifold near which the data lie, as shown in
figure 2. However, this assumes that we have characterized such manifold properly,



and we have well explained how this can failed if the manifold is estimated relying
essentially on the neighbors of each unlabeled example.

If the estimation of the manifolds tangent plane is poor, than “label propagation” is
likely to bring the wrong class information to large chunks of unlabeled examples.

3 Non-Local Manifold Tangent L earning

In order to better deal with the challenges described in section 2.3, we propose to
compute a smooth of local learning algorithms: not only the local neighbors should be
used to estimate the local tangent plane, i.e. shared structure (if there is one) should be
exploited.

To discover such shared structure we propose here to characterize the manifolds in
the data distribution through a matrix-valued function F'(x) that predicts at = € R"
a basis for the tangent plane of the manifold near =, hence F(z) € R*™ for a d-
dimensional manifold.

We are going to consider a simple supervised learning setting to train this function.
As with Isomap, we consider that the vectors (x — x;) with x; a neighbor of = span
a noisy estimate of the manifold tangent space. We propose to use them to define
a “target” for training F'(x). In our experiments we simply collected the k nearest
neighbors of each example x, but better selection criteria could be devised. Points on
the predicted tangent subspace can be written F’(z)w with w € R? the combining
weight vector. This is illustrated in figure 3.

Figure 3: The manifold tangent plane around z, with a neighbor y. The estimated
tangent plane is the set of linear combinations F'w = »_, w; F;. We choose w that
make F"w the projection of i on the estimated tangent plane.

Several criteria are possible to match the neighbors differences with the subspace
defined by F'(x). One that yields to a simple analytic solution is simply to minimize
the distance between the « — x; vectors and their projection on the subspace defined
by F(z). The weight vector w;; € R? that matches neighbor z; of example z; is
thus an extra free parameter that has to be optimized. Fortunately the solution to this

Lpossibly also using an e-ball around z, or more sophisticated criteria in which we allow further away
neighborsin the directions of low curvature and high variability.



optimization is obtained easily and analytically. The overall training criterion involves
a double optimization over function F' and projection weights w,; of what we call the
relative projection error:

[l

min Z |[F" (w)wey — (2 — ;) )

gt S AT [z — ;]2
where N (x) denotes the selected set of near neighbors of x. The normalization by
|[x: — x;]|* is to avoid giving more weight to the neighbors that are further away.
Recall that the subspace goes through the origin, so examples that are further away but
at the same angle with respect to the subspace will have greater projection error. Taking
the above ratio amounts to minimizing the square of the sinus of this angle. To perform
the above minimization, we can do coordinate descent (which guarantees convergence
to a minimum), i.e. alternate changes in F' and changes in w’s which at each step go
down the total criterion. Since the minimization over the w’s can be done separately
for each example x; and neighbor z, it is equivalent to minimize

|F" (e)wij — (wr — ;)|

@)
[lze — a2

over vector w,; for each such pair (done analytically) and compute the gradient of the

above over F' (or its parameters) to move F' slightly (we used stochastic gradient on

the parameters of F'). The solution for w,; is obtained by solving the linear system

Fx)F (2w, = F(xt)w. 4)

In our implementation this is done robustly through a singular value decomposition
F'(z;) = USV' and wy; = B(z; — x;) where B can be precomputed for all the
neighbors of z;: B = (Zizl ls, >V VY% /S?) F(x,). The gradient of the criterion
with respect to the 4-th row of F(z), holding w,; fixed, is simply

2 I (F (@) — (w0 — ) (5)

— [lay — ]

where wy;; is the i-th element of w;. In practice, it is not necessary to store more than
one wy; vector at a time. In the experiments, F'(-) is parameterized as a an ordinary one
hidden layer neural network with n inputs and d x n outputs. It is trained by stochastic
gradient descent, one example x; at a time.

Although the above algorithm provides a characterization of the manifold, it does
not directly provide an embedding nor a density function. However, once the tangent
plane function is trained, there are ways to use it to obtain all of the above. The simplest
method is to apply existing algorithms that provide both an embedding and a density
function based on a Gaussian mixture with pancake-like covariances, once the local
principal components (i.e. the local tangent planes) have been estimated. For example
one could use (Teh and Roweis, 2003) or (Brand, 2003), with each Gaussian being
centered at a data point or at a representative point, and the covariance matrix can
be constructed from F’(x)diag(c?(x))F (), where o2 (x) should estimate Var(w;)
around z.



3.1 PreviousWork on Non-L ocal Manifold L earning

The non-local manifold learning algorithm presented here (find F'(-) which minimizes
the criterion in eq. 2) is similar to the one proposed in (Rao and Ruderman, 1999) to
estimate the generator matrix of a Lie group. That group defines a one-dimensional
manifold generated by following the orbit x(t) = %*x(0), where G is an n x n
matrix and ¢ is a scalar manifold coordinate. Note that Lie groups are appropriate
to approximately model some transformations on images such as translation, but not
others (e.g. rotation, lighting change). A multi-dimensional manifold can be obtained
by replacing Gt above by a linear combination of multiple generating matrices. In (Rao
and Ruderman, 1999) the matrix exponential is approximated to first order by (I +
Gt), and the authors estimate G for a simple signal undergoing translations, using as a
criterion the minimization of Y - min, ||(I + Gt)x — &||?, where Z is a neighbor of =
in the data. Note that the Lie grou’p has a tangent plane that is a linear function of z;, i.e.
Fi(x) = Gz. By minimizing the above across many pairs of examples, a good estimate
of G for the artificial data was recovered by (Rao and Ruderman, 1999). The proposal
here extends this approach to multiple dimensions and non-linear relations between
2 and the tangent planes. Note also the earlier work on Tangent Distance (Simard,
LeCun and Denker, 1993), in which the tangent planes are not learned but used to build
a nearest neighbor classifier that is based on the distance between the tangent subspaces
around two examples to be compared.

The main advantage of the approach proposed here over local manifold learning is
that the parameters of the tangent plane predictor can be estimated using data from very
different regions of space, thus in principle allowing to be less sensitive to all four of
the problems described in 2.3, thanks to sharing of information across these different
regions. Of course, higher dimensionality (of the manifold and of the raw data) requires
more parameters because F' : R” — R%*™, The proposed algorithm could in particu-
lar be improved with respect to the problem of the curvature, because we are still going
to try to estimate the local tangent using the linear relation between x and its neigh-
boring examples. However the estimation of F'(z) across all the data should smooth
out some of the noise and hopefully some of the local effect of curvature. To fully take
curvature into account, one possibility is to try to follow the manifold to go from
to its neighbors (e.g. using a Newton optimization approach as proposed in (Simard,
LeCun and Denker, 1993)). Another is to parameterize the curvature locally (e.g. as in
Lie group manifold learning (Rao and Ruderman, 1999), but approximating the matrix
exponential with more than its first order Taylor expansion). However, “matching” x’s
neighbors to « becomes more difficult, whereas with the simple algorithm proposed
here this matching can be done analytically.

4 Experimental Results

The objective of the experiments is to validate the proposed algorithm: does it estimate
well the true tangent planes? does it learn better than a local manifold learning algo-
rithm? Note that all the tasks tested involve tangent planes that are not a linear function
of x, i.e. can’t be represented by a Lie group based manifold of the form F(z) = Gx.
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Generalization of Tangent Learning
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Figure 4: Task 1, 2-D data with 1-D sinusoidal manifolds: the method indeed captures
the tangent planes. The small segments are the estimated tangent planes. Red points
are training examples.

Error Measurement In addition to visualizing the results for the low-dimensional
data, we measure performance by considering how well the algorithm learns the local
tangent distance, as measured by the normalized projection error of nearest neighbors
(eg. 3). We compare the errors of four algorithms, always on test data not used to
estimate the tangent plane: (a) analytic (using the true manifold’s tangent plane at «
computed analytically), (b) tangent learning (using the neural-network trained tan-
gent plane predictor F'(x), trained using the k£ > d nearest neighbors in the training
set of each training set example), (c) Dim-NN (using the d nearest neighbors of z in
the training set), (d) Local PCA (using the d principal components of the k nearest
neighbors of x in the training set).

In all the experiments we found that all the randomly initialized neural networks
converged to similarly good solutions. The number of hidden units was not optimized,
although preliminary experimentation showed phenomena of overfitting and underfit-
ting due to too small or too large number hidden units was possible.

11
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Figure 5: Comparative results on task 2. Relative projection error for k-th nearest
neighbor, w.r.t. k£ from1to 5, for the four compared methods.

Task 1 We first consider a low-dimensional but multi-manifold problem. The data
{z;} are in two dimensions and coming from a set of 40 1-dimensional manifolds.
Each manifold is composed of 4 near points obtained from a randomly based sinus,
ieVi e 1.4,z; = (a+t;,sin(a + t;) + b, where a, b, and ¢; are randomly chosen.
Four neighbors were used for training both the Tangent Learning algorithm and the
benchmark local non-parametric estimator (local PCA of the 4 neighbors). Figure 4
shows the training set and the tangent planes recovered, both on the training example
and generalization away from the data. The neural network has 10 hidden units. This
problem is particularly difficult for local manifold learning, which does very poorly
here: the out-of-sample relative prediction error are respectively 0.09 for the analytic
plane, 0.25 for tangent learning, 0.88 for Dim-NN, and 0.81 for local PCA.

Task 2 This is a higher dimensional manifold learning problem, with 41 dimen-
sions. The data are generated by sampling Gaussian curves. Each curve is of the form
(i) = e =(=2+i/10*/t2 with i € {0,1,...,40}. The manifold coordinates are ¢; and
to, sampled uniformly, respectively from (—1,1) and (.1,3.1). Normal noise (stan-
dard deviation = 0.001) is added to each point. 100 example curves were generated

12



testing on MNIST digits | Average relative projection error

analytic tangent plane 0.27
tangent learning 0.43
Dim-NN or Local PCA 1.50

Table 1: Average relative projection error on the 2000 test digit images, for the algo-
rithms compared, as well as for the analytic tangent plane (of image rotations).

1.
| |

. - :

=l I |

aa | -

= a4 6 = 1oai=z=aia

Figure 6: From left to right: a test image, its analytic rotation tangent vector, the tangent
vector predicted by the neural network, the tangent vector predicted by local PCA. Red
means positive and blue means negative.

for training and 200 for testing. The neural network has 100 hidden units. Figure 5
shows the relative projection error for the four methods on this task, for the k-th near-
est neighbor, for increasing values of k. First, the error decreases because of the effect
of noise (near noisy neighbors may form a high angle with the tangent plane). Then,
it increases because of the curvature of manifold (further away neighbors form a larger
angle). Note that in this case, the algorithm learned a bit more the closed curvature than
the tangent plane. That’s why the “Tangent Learning” error is better that the analytic
one for k = 2.

Task 3 This is a high-dimensional multi-manifold task, involving digit images to
which we have applied slight rotations, in such a way as to have the knowledge of the
analytic formulation of the manifolds. There is one rotation manifold for each instance
of digit from the database, but only two examples for each manifold: one real image
from the MNIST dataset and one slightly rotated image. 1000 x 2 examples are used
for training and 1000 x 2 for testing. In this context we use & = 1 nearest neighbor
only and the number of manifold dimensions is d = 1.

The average relative projection error for the nearest neighbor are given in table 1.
The tangent learning neural network has 100 hidden units and was trained for 100
stochastic gradient epochs. In the case of images, it is possible to visualize what the
model has learned, since the tangent direction also corresponds to an image. The pre-
dicted tangent direction for rotation is shown in figure 6. Note that the predicted direc-
tion may disagree in sign with the analytic tangent direction but it is very close to it,
whereas a local PCA prediction is poorer.

An even more interesting experiment consists in applying the trained predictor on a
novel image that comes from a very different distribution but one that shares the same
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Figure 7: From left to right: a truly out-of-sample test image, the tangent vector pre-
dicted by the neural network, and the tangent vector predicted by local PCA. Red means
positive and blue means negative.

manifold structure, i.e. images of other characters that are not digits.

As a representative example, we show the predicted tangent direction for rotation
on the image of character ’M’, in figure 7.

To the trained eye it is clear from figure 7 that the neural network prediction is quite
good, whereas the local PCA predictor is much poorer. To make that clearer we have
used the predicted tangent planes to follow the manifold by small steps (this is very
easy to do in the case of a one-dimensional manifold). Figure 8 shows the effect of a
few such steps and a larger number of steps, both for the neural network predictor and
for the local PCA predictor.

This example illustrates the crucial point that non-local tangent plane learning is
able to generalize to truly novel cases, where local manifold learning fails.

5 Conclusion

The central claim of this paper is that there are fundamental problems with non-parametric
local approaches to manifold learning, due to the presence of noise around the man-
ifold, due to the curvature of the manifold, its dimensionality, and the presence of
several disjoint manifolds. To address these problems, we propose that learning al-
gorithms should be designed in such a way that they can share information about the
tangent structure of the manifold, coming from different regions of space. In this spirit
we have proposed a simple learning algorithm based on predicting the tangent plane
at = with a function F'(z) whose parameters are estimated based on the whole data
set. Note that the same four problems are present with non-parametric approaches to
semi-supervised learning (e.g. as in (Szummer and Jaakkola, 2002; Chapelle, Weston
and Scholkopf, 2003; Belkin and Niyogi, 2003; Zhu, Ghahramani and Lafferty, 2003)),
which rely on proper estimation of the manifold in order to propagate label information.
Future work should investigate how to better handle the curvature problem, e.g.
by following the manifold (using the local tangent estimates), to estimate a manifold-
following path between pairs of neighboring examples. The algorithm can also be

14



Figure 8: Left column: original image. Middle: applying a small amount of the pre-
dicted rotation. Right: applying a larger amount of the predicted rotation. Top: using
the estimated tangent plane predictor. Bottom: using local PCA, which is clearly much
worse.

extended in a straightforward way to obtain a Gaussian mixture or a mixture of factor
analyzers (with the factors or the principal eigenvectors of the Gaussian centered at
obtained from F'(x)). This view can also provide an alternative criterion to optimize
F(z) (the local log-likelihood of such a Gaussian). This criterion also tells us how
to estimate the missing information (the variances along the eigenvector directions).
Since we can estimate F'(x) everywhere, a more ambitious view would consider the
density as a “continuous” mixture of Gaussians (with an infinitesimal component lo-
cated everywhere in space).
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