
Spectral Clustering and Kernel PCA are Learning
Eigenfunctions

Yoshua Bengio, Pascal Vincent, Jean-François Paiement
Olivier Delalleau, Marie Ouimet, and Nicolas Le Roux
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Abstract

In this paper, we show a direct equivalence between spectral clustering and ker-
nel PCA, and how both are special cases of a more general learning problem, that
of learning the principal eigenfunctions of a kernel, when the functions are from a
function space whose scalar product is defined with respect to a density model. This
defines a natural mapping for new data points, for methods that only provided an em-
bedding, such as spectral clustering and Laplacian eigenmaps. The analysis hinges on
a notion of generalization for embedding algorithms based on the estimation of under-
lying eigenfunctions, and suggests ways to improve this generalization by smoothing
the data empirical distribution.

1 Introduction

Clustering and manifold learning are intimately related: clusters and manifolds both are
zones of high density. Up to recently, both tasks have been treated quite separately with
different unsupervised learning procedures, but recent work with kernel methods, as well
as the results in this paper, are changing that perspective.
Spectral clustering can give very impressive results and has attracted much interest in
the last few years (Weiss, 1999; Ng, Jordan and Weiss, 2002). These methods can yield
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impressively good results where traditional clustering looking for “round blobs” in the
data, such as K-means, would fail miserably. They are based on two main steps: first
embedding the data points in a space in which clusters are more “obvious” (using the
eigenvectors of a Gram matrix), as seen in Figure 1, and then applying an algorithm to
separate the clusters, such as K-means, e.g. as in (Ng, Jordan and Weiss, 2002).

⇒

Figure 1: Example of the transformation learned as part of spectral clustering. Input data
on the left, transformed data on the right. Colors and cross/circle drawing are only used
to show which points get mapped where: the mapping reveals both the clusters and the
internal structure of the two manifolds.

One problem with spectral clustering is that the procedure provides a cluster assignment
and an embedding for the training points, not for new points. A similar method for di-
mensionality reduction by spectral embedding has been proposed in (Belkin and Niyogi,
2003), based on so-called Laplacian eigenmaps. Belkin and Niyogi propose to use such
transformations in a semi-supervised and transductive setting: the unlabeled test set and
the input part of the training set are used to learn a mapping to a more revealing represen-
tation, and the transformed training set is used with a supervised learning algorithm.
Kernel PCA is another unsupervised learning method that was proposed earlier and that
is based on the simple idea of performing Principal Components Analysis in the feature
space of a kernel (Schölkopf, Smola and Müller, 1998). In this paper we study an un-
derlying problem of learning eigenfunctions which allows to draw links between all these
methods and propose extensions to them. In particular, we show a direct equivalence
between the embedding computed in spectral clustering and the mapping computed with
kernel PCA, and how both are special cases of a more general learning problem, that of
learning the principal eigenfunctions of a kernel, when the functions are from a function
space whose scalar product is defined with respect to a density model. We also show how
the formula for extending the embedding to new points can be applied even in the case
when the kernel is not positive semi-definite.
A consequence is that a natural mapping is defined, which can be applied to new points,
for methods such as spectral clustering and Laplacian eigenmaps for which only an em-
bedding of the training points was available. Another consequence is that the analysis
suggests ways to improve the “generalization” obtained on new points, using a smooth of
the empirical distribution.
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2 Notation and Definitions

Let D = {x1, . . . , xn} be a data set sampled i.i.d from an unknown distribution with con-
tinuous density p and let p̂ be the corresponding empirical distribution. Consider the space
Hq of continuous functions f defined everywhere that are square integrable as follows:

∫

f2(x)q(x)dx < +∞

where q(x) ≥ 0 is a weighting function. The scalar product on Hq is

〈f, g〉q =

∫

f(x)g(x)q(x)dx.

One must note that even though we will use functions for the sake of simplicity, we ac-
tually do not work on functions but on equivalence classes: we say two continuous func-
tions f and g belong to the same equivalence class (with respect to q) if and only if
∫

(f(x)− g(x))2q(x)dx = 0 (if q is strictly positive, then each equivalence class contains
only one function).
We’ll consider here two variants of this space. When we choose q = p we obtain the
“underlying” Hilbert space Hp. But since p is unknown, we consider an “empirical”
Hilbert space Hp̂ defined with the weighting function q = p̂, for which

〈f, g〉p̂ =
1

n

n
∑

i=1

f(xi)g(xi).

Let K(x, y) be a symmetric kernel (a 2-argument symmetric function, not necessarily
positive semi-definite) with a discrete spectrum, and define an associated linear operator
in Hq as follows:

(Kqf)(x) =

∫

K(x, y)f(y)q(y)dy.

If we take q = p̂, we obtain the equation

(Kp̂f)(x) =
1

n

n
∑

i=1

K(x, xi)f(xi).

Note that the above operator application converges (in probability) as n → ∞ to (Kpf)(x)
since it is an average and the latter is the corresponding expectation.
In general, the eigensystem for Kq is defined by Kqfk = λkfk, which for Kp̂ rewrites
into

1

n

n
∑

i=1

K(xj , xi)fk(xi) = λkfk(xj) (1)

for all xj ∈ D. Note that we adopt the convention that eigenvectors and eigenfunctions
have norm 1 in their respective space, and that they are ordered in non-increasing value
of the corresponding eigenvalues. Also note that we only care about eigenvectors and
eigenfunctions for which the corresponding eigenvalue is not 0.
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Let M be the n×n Gram matrix obtained from D and K by Mij = K(xi, xj). Let V be
the matrix with the orthonormal eigenvectors vk of M in its columns, i.e. V ′V = I and

n
∑

j=1

K(xi, xj)Vjk = λ̂kVik. (2)

3 Eigenfunction View of Spectral Embedding Methods

In spectral clustering methods, one often starts from the Gaussian kernel K̃ defined by
K̃(x, y) = e−||x−y||/σ2

, but a transformation is applied to the corresponding Gram matrix
M̃ obtained from K̃ before computing the principal eigenvectors. An example of such
transformation (the most successful found in (Weiss, 1999) and the one used in (Ng,
Jordan and Weiss, 2002)) is the divisive normalization

Mi,j =
M̃ij

√

SiSj

(3)

where Si =
∑

j M̃ij . Equivalently one can define a normalized kernel K which directly
gives rise to M (up to a scaling factor n):

K(x, y) =
K̃(x, y)

√

Ex[K̃(x, y)]Ey[K̃(x, y)]

where E[] represents expectation over p̂, i.e. an average 1 . In the Laplacian Eigenmaps
manifold learning methods (Belkin and Niyogi, 2003), the embedding is obtained from the
vectors v that solve a generalized eigenproblem (S−M)v = λSv, where S is the diagonal
matrix formed by the Si. This is equivalent to finding the principal eigenvectors of M with
the above divisive normalization. This has been shown in (Weiss, 1999) (Normalization
Lemma 1) when referring to an earlier spectral clustering method (Shi and Malik, 1997)
that also considers the same generalized eigenproblem.
In both spectral clustering and Laplacian eigenmaps, one then obtains an embedding
ek(xi) for the training points xi from the principal eigenvectors vk = (V1k, V2k, . . .)′

of M :
ek(xi) = Vik.

Proposition 1 Using the above notation, if K is positive semi-definite then the embedding
ek(xi) obtained with spectral clustering and Laplacian eigenmaps is given by the formula
ek(xi) = 1√

n
fk(xi), where fk is the k-th principal eigenfunction of Kp̂.

The proof of this proposition can be found in the technical report (Bengio, Vincent and
Paiement, 2003), but this proposition is generalized by Theorem 1 proved below.

1Better embeddings are usually obtained if we define Si =
∑

j 6=i M̃ij : this alternative normalization can
also be obtained with a slightly different kernel.
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4 Eigenfunction View of Kernel PCA

Kernel PCA generalizes the Principal Components Analysis approach to non-linear trans-
formations using the kernel trick (Schölkopf, Smola and Müller, 1998), working in the
“feature space” φ(x) of a positive semi-definite kernel written implicitly as a dot product
in that space. The principal components are the eigenvectors uk of the covariance matrix
C of the data in feature space: C = Ex[φ(x)φ(x)′], where φ(x) must be chosen such that
it has zero mean (Ex[φ(x)] = 0, where expectation is over the empirical distribution, in
practice). This can be achieved by choosing a normalization of the kernel that centers it in
feature space. Starting from an unnormalized kernel K̃ with unnormalized feature space
φ̃, we obtain φ(x) = φ̃(x) − Ex[φ̃(x)] with the following additive normalization:

K(x, y) = (φ̃(x) − Ex[φ̃(x)]) · (φ̃(y) − Ey[φ̃(y)])

= K̃(x, y) − Ex[K̃(x, y)] − Ey[K̃(x, y)] + Ex[Ey[K̃(x, y)]].

Once the Gram matrix M is formed from this kernel K and data D, the principal eigen-
vectors/eigenvalues (vk, λ̂k) of M are computed. As shown in (Schölkopf, Smola and
Müller, 1998), the principal eigenvectors uk of C (k ≤ n) are linked to the eigenvectors
vk of M through uk = 1√

λ̂k

∑n
i=1 Vikφ(xi).

The projection πk(x) of a test point x on the k-th principal component can then be ob-
tained as follows:

πk(x) = uk · φ(x) =
1

√

λ̂k

n
∑

i=1

VikK(xi, x). (4)

Proposition 2 Let πk(x) be the test point projection (eq. 4) on the k-th principal compo-
nent obtained by kernel PCA with a normalized positive semi-definite discrete spectrum
kernel K(x, y). Then

πk(x) =
√

λkfk(x) (5)

where λk is the k-th eigenvalue of Kp̂ and fk is the corresponding eigenfunction.

The proof of this proposition can be found in the technical report (Bengio, Vincent and
Paiement, 2003), but this proposition is generalized by Theorem 1 proved below. The
similarity between equation 4 (Schölkopf, Smola and Müller, 1998) and the Nyström
approximation (Baker, 1977) of the eigenfunctions of Kp (as in eq. 6) has already been
pointed out in (Williams and Seeger, 2000).

5 Extension to Kernels with Negative Eigenvalues

Users of spectral clustering and Laplacian eigenmaps may want to use a kernel that is not
guaranteed to be positive semi-definite. There are also several other spectral embedding
methods which do not guarantee the positive definitness of the Gram matrix M (i.e. of
the corresponding kernel K), such as multi-dimensional scaling (MDS) (Cox and Cox,
1994) and ISOMAP (Tenenbaum, de Silva and Langford, 2000). We would like to apply
a formula such as eq. 5 to such kernels. The next theorem gives a justification for using
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such formulae even in the case when the kernel may have negative eigenvalues. If those
negative eigenvalues are small (w.r.t. the largest positive eigenvalues), one would just
discard them. If they are large, it may actually prove useful to use the corresponding
eigenvectors (or eigenfunctions in the following) in order to discover interesting features,
as shown in (Laub and Müller, 2003).

Theorem 1 The eigenfunctions fk of Kp̂ (not necessarily positive semi-definite) associ-
ated to non-zero eigenvalues are of the form

fk(x) =

√
n

λ̂k

n
∑

i=1

VikK(x, xi) (6)

where the matrix V has the orthonormal eigenvectors vk of the Gram matrix M in its
columns, with eigenvalues λ̂k. The eigenvalue λk of fk is λk = λ̂k/n.
For xi ∈ D these functions coincide with the corresponding eigenvectors, in the sense
that fk(xi) =

√
nVik.

Proof
First, these fk coincide with the eigenvectors of M at xi ∈ D. For fk defined by eq. 6:

fk(xi) =

√
n

λ̂k

n
∑

j=1

VjkK(xi, xj) =

√
n

λ̂k

λ̂kVik =
√

nVik (7)

so that they form an orthonormal family in Hp̂:

〈fj , fk〉p̂ =
1

n

n
∑

i=1

fj(xi)fk(xi) =

n
∑

i=1

VijVik = δj,k. (8)

Then for any x ∈ D:

(Kp̂fk)(x) =
1

n

n
∑

i=1

K(x, xi)fk(xi) =
1√
n

n
∑

i=1

K(x, xi)Vik =
λ̂k

n
fk(x) (9)

which shows that fk is an eigenfunction of Kp̂ with eigenvalue λk = λ̂k/n. �

It is important to note that from eq. 6, eq. 9 holds for any x, even if x /∈ D. This allows
the choice of eq. 6 to be justified by the following proposition:

Proposition 3 Let K a symmetric kernel with discrete spectrum. Then the operator Gn

in Hp defined by

Gnf =
1

n

n
∑

i=1

K(·, xi)f(xi)

has for eigenfunctions associated to non-zero eigenvalues the functions of the form:

f =
fk

||fk||Hp

with eigenvalues λk, where fk and λk are those of Theorem 1, and || · ||Hp
is the norm in

Hp.
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Proof
Let f be an eigenfunction of Gn with eigenvalue λ 6= 0, and

f ′ =
f√

n||f ||Hp̂

. (10)

Then for any xj ∈ D:

(Gnf ′)(xj) =
1

n

n
∑

i=1

K(xj , xi)f
′(xi) = λf ′(xj)

which means the vector v whose j-th element is f ′(xj) is an eigenvector vk of the Gram
matrix M with eigenvalue λ̂k = nλ (||v|| = 1 follows from the normalization in eq. 10).
We can thus write for any x (not necessarily in D):

(Gnf ′)(x) =
1

n

n
∑

i=1

K(x, xi)Vik =
λ̂k

n
f ′(x)

which proves, using eq. 6, that f ′(x) = fk(x)√
n

. It follows immediately (using ||f ||Hp
= 1)

that

f(x) = ||f ||Hp̂
fk(x) =

fk(x)

||fk||Hp

. �

An interesting consequence of the above results is that spectral embedding methods which
only provided an embedding for the training examples can be extended in order to pro-
vide an embedding for out-of-sample examples, using formulae 6 and 7 from the above
theorem, at least for the dimensions that correspond to positive eigenvalues. It introduces
a notion of generalization for embedding procedures: in that context the optimal out-of-
sample embedding is the one that would be obtained at a new point x if we had access to
an infinite amount of data to estimate the eigenfunctions of Kp in Hp (the Hilbert space
generated with the true generating distribution p of the data as weighting function in the
scalar product).
The theoretical justification for this out-of-sample extension stems from several strong
results on the convergence and the stability of the eigendecomposition of the Gram matrix
M . First of all, (Baker, 1977; Williams and Seeger, 2000) show that the eigenvalues
and eigenvectors (when the eigenvalues are distinct) of M converge as n → ∞ and they
converge to the eigenvalues and eigenfunctions of the linear operator defined by Kp in
Hp. Second, several researchers have studied the stability of this eigendecomposition
with respect to the data sample. (Ng, Jordan and Weiss, 2002) have studied the stability
of the principal eigenvectors (and thus of spectral clustering) with respect to perturbations
of the Gram matrix and the effect of nearby eigenvalues on that stability. (Shawe-Taylor,
Cristianini and Kandola, 2002) introduced the use of concentration inequalities to bound
the sampling variability of eigenvalue estimation, and (Shawe-Taylor and Williams, 2003)
push these results further to give bounds on the kernel PCA reconstruction error, using
the linear operator eigensystem used here, i.e. with q = p̂. These results also bound
the error on the estimation of the subspaces associated with the first k eigenvalues. The
formula for extending the embedding to a new data point is the same as the Nyström
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formula (Baker, 1977), which has been used successfully for reducing the computational
cost of kernel methods by restricting the difficult computations to a subset of the examples
(the equivalent of the training set, here).
When we perform the PCA or kernel PCA projection on an out-of-sample point we are
taking advantage of the above convergence and stability properties in order to trust that
a principal eigenvector of the empirical covariance matrix estimates well a correspond-
ing eigenvector of the true covariance matrix. The same reasoning allows us to apply
eq. 6 on an out-of-sample point x. More precisely, we can use Proposition 3 to give an
interpretation of the use of eq. 6 to approximate the eigenfunctions of Kp in Hp: first
we approximate the operator Kp by Gn (justified by the law of large numbers), then the
eigenfunctions of Gn by the fk, which is again coherent thanks to the law of large num-
bers, which states ||fk||Hp

is close (with good probability) to ||fk||Hp̂
= 1 when n is

large.

6 Improving Out-of-Sample Generalization of Spectral
Embedding

Here, we consider a related question to explore the notion of generalization to new cases
with embedding algorithms: can one get better generalization when using for q a smoother
distribution than the empirical distribution? Indeed, this may yield smoother eigenfunc-
tions, which could be obtained using a rich enough class of functions (such as neural
networks) and optimizing them numerically. A training criterion for this purpose is pro-
vided by the following proposition, proven in (Bengio, Vincent and Paiement, 2003).

Proposition 4 If fi, with i from 1 to m − 1, are the principal m − 1 eigenfunctions of
the linear operator Kp in Hp, then the function g which minimizes the expected value of
(K(x, y) − g(x)g(y) − ∑m−1

i=1 λifi(x)fi(y))2 over the joint distribution p(x)p(y) gives
the m-th eigenfunction fm = g/

√
λm where λm = ||g||2Hp

is its eigenvalue.

Another simpler solution is to use the smoother density (e.g. obtained from a manifold
Parzen windows estimator (Vincent and Bengio, 2003)) to sample a larger data set which
will be used to estimate the underlying eigenfunctions.
Application and experimental validation of the previous ideas will be studied elsewhere.

7 Conclusion

In this paper we have established a clear equivalence between the spectral embedding
methods used in spectral clustering and Laplacian eigenmaps with the projection com-
puted by the kernel PCA method. Both types of methods are found to estimate eigen-
functions of a linear operator associated with the kernel and with the data. Because previ-
ous results have shown how the principal eigenfunctions converge as the amount of data
increases, it makes sense to use these eigenfunctions to extend the spectral embedding
methods to generalize to new data points. It also makes sense to seek better estimators
of these eigenfunctions, in order to obtain a better generalization of the embedding to
out-of-sample points.
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