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Universit́e de Montŕeal
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Abstract

We describe an interesting application of the principle of local learning to
density estimation. Locally weighted fitting of a Gaussian with a regularized
full covariance matrix yields a density estimator which displays improved
behavior in the case where much of the probability mass is concentrated
along a low dimensional manifold. While the proposed estimator is not
guaranteed to integrate to 1 with a finite sample size, we prove asymptotic
convergence to the true density. Experimental results illustrating the advan-
tages of this estimator over classic non-parametric estimators are presented.

1 Introduction

Most machine-learning problems, as they occur in nature, are posed in a very high dimensional
space. However, overcoming the curse of dimensionality has been an open problem since it
was first described in [2]. The popularity of the new generation of kernel methods, in particu-
lar the Support Vector Machines [3, 17], is due in part to relatively good performance on high
dimensional problems, while the traditional kernel methods (s.a. Parzen windows [13]) often
perform more poorly. Another, recently revived, and very promising research trend in dealing
with the curse, is that of manifold learning. It is based on the idea that the data lives on (or
close to) a non-linear manifold of much lower dimensionality, embedded in the high dimen-
sional space. This trend is exemplified by Locally Linear Embedding [14] and Isomap [15]
but also underlies the idea of mixtures of factor analyzers and similar algorithms [7, 8, 16, 6].

Our line of research attempts to integrate the notions of manifold modeling with the traditional
non-parametric kernel and distance based methods such as k-nearest-neighbors and Parzen
windows. We have already proposed improved algorithms for classification [18] and density
estimation [19] but the latter one suffers from serious practical difficulties1. In this paper,
we propose a different approach to density estimation which does not pose the same memory

1Its memory requirement scales inO(n.d2) whered is the input dimensionality, andn is the number
of training samples, making it impossible to use with large, high dimensional data sets.



requirement problems as [19], and is based on a general principle taking the point of view of
local learning.

Local learning [4, 1, 12]. can be understood as a general principle that allows to extend
learning techniques designed for simple models, to the case of complex data for which the
model’s assumptions would not necessarily hold globally, but can be thought as validlocally.
A simple example is the assumption of linear separability, which in general isnot satisfied
globally in classification problems with rich data. Yet any classification algorithm able to find
only a linear separation, can be used inside a local learning procedure, yielding an algorithm
able to model complex non-linear class boundaries.

Similarly, for density estimation, while it is in general unreasonable to assume that the data
follows a Gaussian distribution globally, the Gaussian approximation holds locally. Note that
if the data lies close to a low dimensional manifold, then the shape of that local Gaussian will
be a flattened pancake, and it’s crucial to use a non-spherical Gaussian, to capture the local
principal directions of the manifold.

Traditional parametric density estimation can be formulated as the question: “What is the
likelihood of a test pointx under a model fitted to the whole training data”. We formulate the
principle of locally weighted density estimation in a similar manner as “What is the likelihood
of a test pointx under asimple modelfitted only to thelocal training data in the neighborhood
of x.”

Notice that locally weighted density estimation yields an unnormalized density estimate: in
general it won’t integrate to1, as is also the case of several classical non-parametric density
estimators, similar in spirit, like the nearest neighbor density estimator [5, 11]. (see [10] for a
survey of non-parametric density estimation techniques).

Local learning typically comes in two flavors, depending on the notion of “neighborhood”.
The neighborhood is always based on some a-priori measure of locality (such as the Euclidean
distance in input space), but it can be either defined as a “hard” neighborhood (the set ofk
nearest neighbors ofx for instance), or as a “soft”, weighted neighborhood (the set of all
training points, but with an associated weight given by a prior, continuous weighting kernel
K, centered onx). The former can be seen as a special case of the latter, with a particular
discontinuous weighting kernel giving only weights of0 or 1). We would like to stress the
importance of using a “soft” neighborhood to avoid discontinuities in the estimate, a problem
that plagues the nearest neighbor density estimator. Indeed, whilesomestatistics of the set
of k neighbors (such as the distance to thekth neighbor) vary smoothly withx, the set ofk
neighbors doesn’t: a small variation inx may yield a totally differentkth neighbor, and thus
lead to a discontinuous estimate, if a “hard” neighborhood is used. Consequently the local
model fitting procedure should accommodate sample weights.

For previous work on local learning applied to non-parametric density estimation, see also [9].

2 The Locally Weighted Density Estimatior

Let D = {x1, . . . , xn} a data set withxi sampled i.i.d. from an unknown distribution with
continuous densityf(x).

LetK(xi;x) a weighting Kernel centered onx, used to give a weight to everyxi.

In addition, we suppose that it is easy to fit a simple parametric modelM to a data set endowed
with sample weights (e.g. the maximum of the log-likelihood can be found analytically or
cheaply).

The locally weighted density estimation principle computes an estimatef̂(x) of the density at
a given test pointx as follows:



• Associate a weightK(xi;x) to everyxi ∈ D

• Fit modelM to the weighted data.

• The estimate iŝf(x) = 1
ZM(§) with Z a normalization factor to try to makêf(x)

integrate to 1 over the domain ofx (at least asymptotically).

In our particular case we useK(xi;x) = N (xi;x, σ2
n(x)I), with σn(x) = αd(x, xvk

), where
xvk

denotes thekth neighbor ofx according to the Euclidean distanced. i.e. thewidth of our
weighting kernel is proportional to the distance from its center to itskth neighbor.

The modelM we fit to the weighted training samples is a Gaussian with a regularized full co-
variance matrix, i.e.:M(§) = N (§;µ\(§), C\(§)), whereµn(x) = 1∑

i K(xi;x)

∑
iK(xi;x)xi

is the weighted sample mean, andCn(x) = 1∑
i K(xi;x)

∑
iK(xi;x)(xi − µn(x))(xi −

µn(x))′ + γ2
nI is the weighted sample covariance with an additional regularization param-

eterγn.

N (x;µ,Σ) denotes the density ofx under a multivariate Normal density with centerµ and
covariance matrixΣ:

N (x;µ,Σ) =
e−

1
2 (x−µ)′Σ−1(x−µ)

(2π)d/2|Σ|1/2
(1)

We denote the resulting estimatorfWN ,

fWN (x) =
1
Z
N (x;µn(x), Cn(x)), (2)

and will prove its asymptotic convergence to the true densityf(x), when the normalization
factor is estimated withZ = nVd(1)

kn(2π)d/2αd , with Vd(r) being the volume of ad-ball of radiusr

in Rd, i.e. Vd(r) = rdVd(1) = rd πd/2

Γ(1+ d
2 )

.

A slight variant of the abovefWN will also be considered (in particular for the convergence
proof) in whichµn(x) is fixed onµn(x) = x rather than on the weighted sample average.

3 Other Classical Estimators Considered

In addition we’ll consider the following classical non-parametric estimators, using the above
definitions.

1. The fixed width Parzen density estimator [13]:

fFP (x) =
1
n

n∑
i=1

N (x;xi, r
2
nI). (3)

2. The fixed width nearest neighbor density estimator [13]:

fFN (x) =
|N(x, rn)|
nVd(rn)

(4)

whereN(x, rn) = {xi ∈ D : ||x− xi|| < rn} are the neighbors ofx closer thanrn

and |N(x,rn)|
n estimates unbiasedly the probability of falling in thed-ball of radiusrn

aroundx.

3. The k-nearest neighbor density estimator [5, 11]:

fKN (x) =
kn

nVd(σn(x))
(5)

wherekn

n estimates the probability of falling in thed-ball of radiusσn(x) aroundx,
and we selectα = 1 in σn(x).



4 Asymptotic Convergence Analysis

To prove convergence, a number of the quantities defined above will be subscripted withn.
We have to impose conditions on the rate of modification ofkn which must increase withn,
and the way it affectsσn i.e. limn→∞ kn = ∞ but slower thann, i.e. limn→∞

kn

n = 0. We
let kn increase at a slow enough rate such thatnσn(x)d → ∞. Besides,γn must go to zero
faster thanσn.

We already know from the classical litterature [13, 5, 11] that fFP , fFN andfKN are con-
sistent i.e. that their limit asn →∞ is f for everyx (with the hyperparameters converging at
a proper rate, as defined above).

Lemma 1 . Let rn be a probabilistic lower bound onσn, i.e. σn(x) > rn with high
probability 1 − δ. Let g(x, y) be a function that isO(ym) and is O(σn(x)−p). The
limit of a locally weighted average ofg(x, xi) with σn(x) converges to the same limit as
f(x)

∫
g(x, y)N (y;x, σ2

n(x)I)dy:

lim
n→∞

1
n

∑
i

g(x, xi)N (xi;x, σ2
n(x)I) = f(x) lim

n→∞

∫
g(x, y)N (y;x, σ2

n(x)I)dy (6)

To obtain convergence, thenrn must decrease at a slow enough rate such thatnr
d+2(p−m)
n →

∞.

Sketch of the Proof

Consider the left-hand-side of6 with σn(x) replaced byrn (even ing). Its expected value
is

∫
f(y)g(x, y)N (y;x, rn(x)2I)dy. Let us show that the average converges to its expected

value. For this we will show that the average error (i.e. the variance) goes to 0. Below we will
show that for a data-independent spreadrn in the local weighting kernelN , the variance of
the average is inversely proportional to a power ofrn. Therefore with probability1 − δ, the
variance of the average usingσn(x) is less than the variance of the average usingrn. Since
the latter will be shown to converge to zero we will obtain convergence to zero of the variance
of the desired average. Consider the variance of the average with data-independent spread
rn:

V ar[
1
n

∑
i

g(x, xi)N (xi;x, r2
nI)] =

V ar[g(x, xi)N (xi;x, r2
nI)]

n

<

∫
f(y)g(x, y)2N (y;x, r2

n)2dy

n

where the variance is overD, and we simply droppedE[g(x, xi)N (xi;x, r2
nI)]2. Let us now

make the change of variablez =
√

2(y − x)/rn (this is a vector inRd, i.e. dy1 . . . dyd =
2−d/2rd

ndz1 . . . dzd), yielding the bound on the variance

1
(2π)d/2n2d/2rd

n

∫
f(

rnz√
2

+ x)g(x,
rnz√

2
+ x)2N (z; 0, 1)dz

usingN (y;x, r2
n)2 = e−||y−x||2/r2

n

(2π)dr2d
n

= 1
(2π)d/2r2d

n

e−
||z||2

2

(2π)d/2 = 1
(2π)d/2r2d

n
N (z; 0, 1). If g varies

with n in 1
rp

n
and in the powerm of its second argument, then the integrand varies in1

r
2(p−m)
n

:

the condition onrn is indeednr
d+2(p−m)
n →∞.

Q.E.D.

Note that as a special case we obtain the convergence offFP , with g(x, xi) = 1.



Lemma 2 If nσd+1
n (x) → ∞ and σn(x) → 0 the locally weighted version ofµn(x) con-

verges tox and µn(x)−x
σn(x) converges to 0, in probability:

lim
n→∞

∑
i xiN (xi;x, σ2

n(x)I)∑
iN (xi;x, σ2

n(x)I)
= x

and

lim
n→∞

µn(x)− x

σn(x)
= 0,

in probability.

Proof

The denominator ofµn(x) times 1
n is fFP , which converges tof(x). For the numer-

ator, we apply Lemma1 with g(x, xi) = xi−x
σn(x) (i.e. p = m = 1) and obtain

f(x) limn→∞
∫

y−x
σn(x)N (y;x, σn(x)2I)dy. We apply the change of variablez = y−x

σn(x) and

obtainf(x) limn→∞
∫

σn(x)dzN (z; 0, I)dz = 0.

Q.E.D.

Lemma 3 The locally weighted covarianceCn(x) has the same limit asσ2
n(x)I.

Proof

We rewrite the numerator and denominator in the first term ofCn as averages. Using Lemma1
and Lemma2 the numerator has the same limit as

f(x)
∫

(x− y)(x− y)′N (y;x, σ2
n(x)I)dy.

Apply the change of variablez = y − x, yielding

f(x)
∫

zz′N (z; 0, σn(x)2I)dz → f(x)σn(x)2I.

As in previous proofs, the denominator converges tof(x).

Cn(x) → (σ2
n(x)f(x) + γ2

n)I

Since we have assumedγn

σn
→ 0, the second term can be ignored.

Q.E.D.

Theorem 1 The locally weighted full covariance matrix estimatorfWN is consistent (con-
verges tof ) for both versions ofµn(x).

Proof

Consider the numerator ofN (x;µn(x), Cn(x)) in eq.1. Whenµn(x) = x it is simply equal
to e0 = 1. For the other versions, Lemma2 shows that it converges to 1. Using Lemma3, and
|aB| = ad|B| for a d × d matrix B and a scalara, the denominator(2π)d/2

√
|Cn(x)| has

the same limit as
(2π)d/2

√
|σ2

n(x)I| = (2π)d/2σd
n(x).

Finally, we use the main result in [11], i.e.

lim
n→∞

kn

nVd(1)σd
n(x)

= f(x).



whenα = 1, i.e. equal tof(x)/αd when using a different value ofα. Putting these together
with the formula forfWN , we obtain

lim
n→∞

fWN (x) = lim
n→∞

knαd(2π)d/2

nVd(1)
N (x;µn(x), Cn(x))

= lim
n→∞

knαd(2π)d/2

nVd(1)(2π)d/2σd
n(x)

= f(x).

Q.E.D.

5 Experiments

To assess the performance of the proposed algorithm, we performed the following experiment
on a 2D spiral problem:

A training set of 300 points, a validation set of 300 points (reserved for tuning hyper-
parameters), and a test set of 10000 points were generated from the following distribution
of two dimensional(x, y) points:

x = 0.04 t sin(t) + εx, y = 0.04 t cos(t) + εy

wheret ∼ U(3, 15), εx ∼ N (0, 0.01), εy ∼ N (0, 0.01), U(a, b) is uniform in the interval
(a, b) andN (µ, σ) is a normal density.

As the density estimators under consideration are not guaranteed to integrate to 1 (except for
fF P ), we compute an approximation of their integral by sampling on a300 × 300 regularly
spaced grid (covering thex andy range of the training set plus10%), and divide the raw
estimators by the obtained integral approximation, yielding normalized estimators for our
comparison study. Evaluation of the estimators over that same grid is also used to produce the
graphs of Figure1. The performance of each normalized estimatorf̂ is then evaluated using
the average log likelihood (ALL) over the test setT (of sizem = 10000):

ALL(f̂ , T ) =
1
m

∑
x∈T

log f̂(x)

For each estimator type, we tried several values of the hyper-parameters, keeping the choice
that yielded the largest possible ALL over the validation set.

Table 1: Performance of various estimators on the spiral data, measured as average log-
likelihood over the test set (standard errors are in parenthesis).

Estimator Hyper-parameters used ALL on test set
fFP r = 0.0151 1.292 (0.012)
fKN k = 2 1.058 (0.011)
fFN r = 0.065 0.739 (0.018)

fWN fixedσ σ = 0.04, γ = 6e− 5 1.461 (0.006)
fWN α = 0.23, k = 25, γ2 = 3e− 5 1.561 (0.008)

fWN fixedσ, µ = x σ = .045, γ2 = 1e− 9 0.759 (0.003)
fWN , µ = x α = 1, k = 2, γ2 = 1e− 5 1.201 (0.010)

Results are reported in Table1. fWN (with local σ(x) and using the local average forµ(x))
appears to perform significantly better than the other classical estimators, indicating that it
was able to more accurately capture and model the underlying true distibution. The difference



betweenfFP andfWN can also be better appreciated qualitatively in Figure1. For fWN ,
the experiments suggest it is better to useα < 1, which yields a less variableσ(x), and it is
better to use an adaptiveσ(x) than a fixedσ. The validation hyper-parameter selection also
chooses a non-zeroγ, which suggests that it is also useful.

6 Conclusions

To summarize, we have introduced and analyzed a family of non-parametric locally weighted
density estimators that are appropriate to model the local manifold structure of data, and ex-
periments suggest that it performs well against classical estimators, in addition to being much
more memory-efficient than the related estimator proposed in [19].
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Fixed Parzen esimatorfFP Locally weighted GaussianfWN

Figure 1: Illustration of the density estimated by ordinary Parzen Windows (left) and lo-
cally weighted Gaussian (right). The top images show the 300 training points together with an
isoline corresponding to a normalized density estimate of 1. The bottom images show the esti-
mated densities as the elevation. ThefWN estimate appears much sharper along the manifold
(thinner walls) and significantly less bumpy. It appears better able to capture the structure of
the underlying distribution, and to successfully “extrapolate” in regions with few data points
but high true density.fFP on the contrary, appears to waste more probability mass away from
the manifold (due to its clearly visiblespherical bumpnature).
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