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Abstract

We describe an interesting application of the principle of local learning to
density estimation. Locally weighted fitting of a Gaussian with a regularized
full covariance matrix yields a density estimator which displays improved
behavior in the case where much of the probability mass is concentrated
along a low dimensional manifold. While the proposed estimator is not
guaranteed to integrate to 1 with a finite sample size, we prove asymptotic
convergence to the true density. Experimental results illustrating the advan-
tages of this estimator over classic non-parametric estimators are presented.

1 Introduction

Most machine-learning problems, as they occur in nature, are posed in a very high dimensional
space. However, overcoming the curse of dimensionality has been an open problem since it
was first described in2]. The popularity of the new generation of kernel methods, in particu-

lar the Support Vector Machine8,[17], is due in part to relatively good performance on high
dimensional problems, while the traditional kernel methods (s.a. Parzen wind@yoften
perform more poorly. Another, recently revived, and very promising research trend in dealing
with the curse, is that of manifold learning. It is based on the idea that the data lives on (or
close to) a non-linear manifold of much lower dimensionality, embedded in the high dimen-
sional space. This trend is exemplified by Locally Linear Embeddidyydnd Isomap 15]

but also underlies the idea of mixtures of factor analyzers and similar algorith®sl6, 6].

Our line of research attempts to integrate the notions of manifold modeling with the traditional
non-parametric kernel and distance based methods such as k-nearest-neighbors and Parzen
windows. We have already proposed improved algorithms for classificdt8mand density
estimation 19 but the latter one suffers from serious practical difficuftiesn this paper,

we propose a different approach to density estimation which does not pose the same memory

Ylts memory requirement scalesd(n.d?) whered is the input dimensionality, andis the number
of training samples, making it impossible to use with large, high dimensional data sets.



requirement problems a&9], and is based on a general principle taking the point of view of
local learning.

Local learning[4, 1, 12]. can be understood as a general principle that allows to extend
learning techniques designed for simple models, to the case of complex data for which the
model’s assumptions would not necessarily hold globally, but can be thought atocalig.

A simple example is the assumption of linear separability, which in generaitisatisfied
globally in classification problems with rich data. Yet any classification algorithm able to find
only a linear separation, can be used inside a local learning procedure, yielding an algorithm
able to model complex non-linear class boundaries.

Similarly, for density estimation, while it is in general unreasonable to assume that the data
follows a Gaussian distribution globally, the Gaussian approximation holds locally. Note that

if the data lies close to a low dimensional manifold, then the shape of that local Gaussian will
be a flattened pancake, and it's crucial to use a non-spherical Gaussian, to capture the local
principal directions of the manifold.

Traditional parametric density estimation can be formulated as the question: “What is the
likelihood of a test point: under a model fitted to the whole training data”. We formulate the
principle of locally weighted density estimation in a similar manner as “What is the likelihood
of a test pointr under asimple modelitted only to thdocal training data in the neighborhood

of .

Notice that locally weighted density estimation yields an unnormalized density estimate: in
general it won't integrate td, as is also the case of several classical non-parametric density
estimators, similar in spirit, like the nearest neighbor density estimatad]. (see [LO] for a
survey of non-parametric density estimation techniques).

Local learning typically comes in two flavors, depending on the notion of “neighborhood”.
The neighborhood is always based on some a-priori measure of locality (such as the Euclidean
distance in input space), but it can be either defined as a “hard” neighborhood (thetset of
nearest neighbors of for instance), or as a “soft”, weighted neighborhood (the set of all
training points, but with an associated weight given by a prior, continuous weighting kernel
IC, centered orx). The former can be seen as a special case of the latter, with a particular
discontinuous weighting kernel giving only weights®br 1). We would like to stress the
importance of using a “soft” neighborhood to avoid discontinuities in the estimate, a problem
that plagues the nearest neighbor density estimator. Indeed, samiestatistics of the set

of k neighbors (such as the distance to k& neighbor) vary smoothly witkr, the set ofk
neighbors doesn't: a small variation inmay yield a totally differentt” neighbor, and thus

lead to a discontinuous estimate, if a “hard” neighborhood is used. Consequently the local
model fitting procedure should accommodate sample weights.

For previous work on local learning applied to non-parametric density estimation, seg@]also [

2 The Locally Weighted Density Estimatior

Let D = {z4,...,x,} a data set with:; sampled i.i.d. from an unknown distribution with
continuous density ().

Let K(z;; «) a weighting Kernel centered an used to give a weight to eveny.

In addition, we suppose that it is easy to fit a simple parametric mbtigl a data set endowed
with sample weights (e.g. the maximum of the log-likelihood can be found analytically or
cheaply).

The locally weighted density estimation principle computes an estifi{ateof the density at
a given test point as follows:



e Associate a weight(xz;; z) to everyz, € D
¢ Fit model M to the weighted data.

e The estimate igf(x) = —M(8§) with Z a normalization factor to try to makg ()

integrate to 1 over the domain of(at least asymptotically).

In our particular case we U$&(x;; z) = N (x;;z,02(x)I), with 0, () = ad(z, x,, ), where
., denotes thé!" neighbor ofr according to the Euclidean distandei.e. thewidth of our
weighting kernel is proportional to the distance from its center tb*itseighbor.

The modelM we fit to the weighted training samples is a Gaussian with a regularized full co-
variance matrix, i.e.M(8) = N (8; i (§),C\ (§)), wherep, (z) = m > K x)x;

is the weighted sample mean, agg,(z) = mziqui;x)(xi — () (i —

pn ()" + ~21 is the weighted sample covariance with an additional regularization param-
etery,.

N (z; 1, 32) denotes the density af under a multivariate Normal density with centerand

covariance matrix: )
e~ 3(@—p)' L7 (@—p)

We denote the resulting estimatpt’
1
fWN(w) = EN(xvun(x)7Cn($))’ (2)
and will prove its asymptotic convergence to the true dengfty), when the normalization
factor is estimated witly = M%)S}lad with V() being the volume of d-ball of radiusr
. . /2
inR4, i.e. Vy(r) = riVy(1) = r? et

A slight variant of the abovg™ ™ will also be considered (in particular for the convergence
proof) in whichp,, () is fixed onpu,, () = « rather than on the weighted sample average.

3 Other Classical Estimators Considered

In addition we'll consider the following classical non-parametric estimators, using the above
definitions.

1. The fixed width Parzen density estimatafJ:

FP 1 - 2
=— s, ).
7 (x) - ;:1 N(z;zi,riI) 3)
2. The fixed width nearest neighbor density estimatd:[
FN _ N (=, 7))
f (1.) - an(rn) (4)

whereN (x,r,) = {z; € D : ||z — x;|| < r,} are the neighbors af closer tharr,,
andw estimates unbiasedly the probability of falling in théall of radiusr,

aroundz.
3. The k-nearest neighbor density estimatrl[1]:
k
KNy = —" 5

where";—j estimates the probability of falling in théball of radiuso,, (x) aroundz,
and we selectv = 1 in o, ().



4 Asymptotic Convergence Analysis

To prove convergence, a number of the quantities defined above will be subscripted with
We have to impose conditions on the rate of modificatiok,pfvhich must increase with,
and the way it affects, i.e. lim,, ., k, = oo but slower tham, i.e. lim,, ’j—j =0. We

let k,, increase at a slow enough rate such Ttkta,t(x)d — oo. Besides;y,, must go to zero
faster thany,,.

We already know from the classical litteratude8[ 5, 11] that f7'7, fFV and 5V are con-
sistent i.e. that their limit as — oo is f for everyz (with the hyperparameters converging at
a proper rate, as defined above).

Lemmal . Letr, be a probabilistic lower bound om,, i.e. o,(x) > r, with high
probability 1 — §. Let g(x,y) be a function that isO(y™) and is O(o,(z)"?). The
limit of a locally weighted average of(x, z;) with o,,(x) converges to the same limit as
f(@) [ 9(z,y)N(y; 2, 07 (x)])dy:

HILH;O%Zg(z,xi)N(xvz;Lai(z)I) = f(x) lim [ g(z,y)N(y;z,00(x))dy  (6)

n—oo

To obtain convergence, thep must decrease at a slow enough rate such thdt >?~™) —
0.

Sketch of the Proof

Consider the left-hand-side éfwith o,,(z) replaced byr,, (even ing). Its expected value

is [ f(y)g(x, y)N (y;z,m,(z)?I)dy. Let us show that the average converges to its expected
value. For this we will show that the average error (i.e. the variance) goes to 0. Below we will
show that for a data-independent spreagdin the local weighting kernel, the variance of

the average is inversely proportional to a powerrqf Therefore with probabilitl — J, the
variance of the average using, () is less than the variance of the average usipg Since

the latter will be shown to converge to zero we will obtain convergence to zero of the variance
of the desired average. Consider the variance of the average with data-independent spread
T

Var(g(z,z;)N (z;;2,r21))]

n

[ F@W)g(@,y)° N (y; x,r2)2dy

n

Var[% Zg(x, )N (zi;2,r21)] =

<

where the variance is ovep, and we simply droppef[g(x, z;)N (z;; x,721)]?. Let us now
make the change of variable= v/2(y — x)/r,, (this is a vector inR%, i.e. dy; ...dyys =
274/2pd 2, ... dzg), yielding the bound on the variance

1 N .
(@) 2n2%d /f(% +2)g(z, % +2)°N(2;0,1)dz

2

i —lly—al|?/r? EIE .
using N (y; «, T%)Q — € (2!7r)dr721d = (27r)d1/27“3,,‘l 6(277)3/2 = (Qﬂ)dl/zrid./\/(z; 0,1). If g varies
withn in Tip and in the powern of its second argument, then the integrand variesjg—:

7 s,
the condition o, is indeednra 2®~™) — oo,

Q.E.D.

Note that as a special case we obtain the convergent€afwith g(z, z;) = 1.



Lemma 2 If nod*!(z) — oo ando,(z) — 0 the locally weighted version ¢f,, (x) con-
verges tar and% converges to 0, in probability:

li Zz xl./\/'(]}“]},o'%(.ﬁ)l)
P YN (i@, 02(x)1)

and

im M@ =T

n—oo oy (x)
in probability.
Proof
The denominator ofu,(z) times  is f©”, which converges t¢f(z). For the numer-
ator, we apply Lemmal with g(z,z;) = j;zf) (ie. p = m = 1) and obtain
f(z)lim, oo [ %N(y;l),a’n(x)QI)dy. We apply the change of variable= Uy‘(f) and
obtain f(z) lim,, oo [ 0 (2)?2N (2,0, 1)dz = 0.
Q.E.D.

Lemma 3 The locally weighted covariandg, (x) has the same limit as2 (z)I.
Proof

We rewrite the numerator and denominator in the first terifi,pfis averages. Using Lemria
and Lemma the numerator has the same limit as

1) [ (@ = )@~ 9 Ny .02 () Dy
Apply the change of variable= y — x, yielding
f(x)/zz’./\/’(z;O,an(x)QI)dz — f(x)o, ()1

As in previous proofs, the denominator convergeg(to).

Cn(x) — (op(2) f(x) + 7)1
Since we have assumgg — 0, the second term can be ignored.
Q.E.D.

Theorem 1 The locally weighted full covariance matrix estimattf ~ is consistent (con-
verges tof) for both versions ofi,, ().

Proof
Consider the numerator of/ (z; i, (x), Cp,(2)) in €g.1. Whenu, (z) = « it is simply equal
to e® = 1. For the other versions, LemnZashows that it converges to 1. Using Lem&and

laB| = a?|B| for ad x d matrix B and a scalara, the denominatof2r)4/2,/|C,, (z)| has
the same limit as

@m0z (@)I] = (2m) "oy (x).
Finally, we use the main result i ]], i.e.
lim R f(x).

w0 nVa(D)od (x)



whena = 1, i.e. equal tof (x)/a? when using a different value of Putting these together
with the formula forf"'V, we obtain

CeWNY s al@m??
nlLH;of () = nlggo an(l) N (@5 pn(2), Cn ()
_ i (1(2 )d/2
e e
= [f@).

Q.E.D.

5 Experiments

To assess the performance of the proposed algorithm, we performed the following experiment
on a 2D spiral problem:

A training set of 300 points, a validation set of 300 points (reserved for tuning hyper-
parameters), and a test set of 10000 points were generated from the following distribution
of two dimensionalz, y) points:

x=0.04¢ sin(t) + ez, y = 0.04 ¢ cos(t) + ¢

wheret ~ U(3,15), e, ~ N(0,0.01), ¢, ~ N(0,0.01), U(a,b) is uniform in the interval
(a,b) andN (i, o) is a normal density.

As the density estimators under consideration are not guaranteed to integrate to 1 (except for
fF P), we compute an approximation of their integral by sampling 8atax 300 regularly
spaced grid (covering the andy range of the training set plud%), and divide the raw
estimators by the obtained integral approximation, yielding normalized estimators for our
comparison study. Evaluation of the estimators over that same grid is also used to produce the
graphs of Figure.. The performance of each normalized estimgtds then evaluated using

the average log likelihood (ALL) over the test §e{of sizem = 10000):

ALL(f,T) Zlogf

LET

For each estimator type, we tried several values of the hyper-parameters, keeping the choice
that yielded the largest possible ALL over the validation set.

Table 1: Performance of various estimators on the spiral data, measured as average log-
likelihood over the test set (standard errors are in parenthesis).

Estimator Hyper-parameters used ALL on test set

fre r = 0.0151 1.292 (0.012)

fEN k=2 1.058 (0.011)

ey r = 0.065 0.739 (0.018)

YN fixed o oc=0.04,7y=6e—5 1.461 (0.006)
N a=0.23k=25+%=3e—5 | 1.561 (0.008)

fYVN fixedo, p =2 | 0 =.045,7> =1le —9 0.759 (0.003)
YN =2 a=1k=212=1le-5 1.201 (0.010)

Results are reported in Table f'V (with local o(z) and using the local average fotz))
appears to perform significantly better than the other classical estimators, indicating that it
was able to more accurately capture and model the underlying true distibution. The difference



betweenf'F and fVV can also be better appreciated qualitatively in Figlrdor f"V ¥,

the experiments suggest it is better to use: 1, which yields a less variable(x), and it is
better to use an adaptivgx) than a fixedo. The validation hyper-parameter selection also
chooses a non-zerg which suggests that it is also useful.

6 Conclusions

To summarize, we have introduced and analyzed a family of non-parametric locally weighted
density estimators that are appropriate to model the local manifold structure of data, and ex-
periments suggest that it performs well against classical estimators, in addition to being much
more memory-efficient than the related estimator proposetidn [
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Fixed Parzen esimatorf " Locally weighted Gaussianf"V ¥

Figure 1: lllustration of the density estimated by ordinary Parzen Windows (left) and lo-
cally weighted Gaussian (right). The top images show the 300 training points together with an
isoline corresponding to a normalized density estimate of 1. The bottom images show the esti-
mated densities as the elevation. THEYN estimate appears much sharper along the manifold
(thinner walls) and significantly less bumpy. It appears better able to capture the structure of
the underlying distribution, and to successfully “extrapolate” in regions with few data points
but high true densityf'* on the contrary, appears to waste more probability mass away from
the manifold (due to its clearly visiblepherical bumpmature).
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