
Efficient Non-Parametric Function Induction in
Semi-Supervised Learning

Yoshua Bengio, Olivier Delalleau and Nicolas Le Roux
Département d’Informatique et Recherche Opérationnelle

Université de Montréal
Montréal, Québec, Canada, H3C 3J7

{bengioy,delallea,lerouxni}@iro.umontreal.ca

Technical Report 1247,
Département d’Informatique et Recherche Opérationnelle

May 6, 2004

Abstract

There has been an increase of interest for semi-supervised learning recently,
because of the many datasets with large amounts of unlabeled examples and only
a few labeled ones. This paper follows up on proposed non-parametric algorithms
which provide an estimated continuous label for the given unlabeled examples. It
extends them to function induction algorithms that correspond to the minimization
of a regularization criterion applied to an out-of-sample example, and happens to
have the form of a Parzen windows regressor. The advantage of the extension is
that it allows predicting the label for a new example without having to solve again
a linear system of dimension n (the number of unlabeled and labeled training ex-
amples), which can cost O(n3). Experiments show that the extension works well,
in the sense of predicting a label close to the one that would have been obtained
if the test example had been included in the unlabeled set. This relatively efficient
function induction procedure can also be used when n is large to approximate the
solution by writing it only in terms of a kernel expansion with m � n terms, and
reducing the linear system to m equations in m unknowns.

1 Introduction

In many applications of machine learning, the labeled examples only represent a small
fraction of all the available data. This situation has created a spur of research activ-
ity in the area of semi-supervised learning algorithms, that can take advantage of both
types of examples. We refer to (Seeger, 2001) for a good overview of the issues in-
volved. Most approaches to semi-supervised learning make some implicit or explicit
assumption about the joint distribution of the input and output variables. An exception

1

is the set of regularization methods (e.g. as in (Schuurmans and Southey, 2002)) that
use the unlabeled data to discover overfitting. Among the other approaches one would
traditionally characterize the methods as parametric or non-parametric, and as using an
explicit generative model (e.g. considering the labels as hidden variables in a graphical
model, see (McCallum and Nigam, 1998)) or not. Interestingly, with explicit paramet-
ric assumptions of the class-conditional input distribution (Cozman, Cohen and Cirelo,
2003), one can show that these assumptions (if not perfectly valid) yield both a de-
crease in variance and an increase in bias, and the more so when the relative amount
of unlabeled data increases. To us this strongly suggests that good results could be
obtained with non-parametric methods when the amount of unlabeled data is large and
little prior information on the input distribution is available.

Fortunately, in the very recent past, several non-parametric approaches to semi-
supervised learning have been introduced, e.g. in (Szummer and Jaakkola, 2002;
Chapelle, Weston and Scholkopf, 2003; Belkin and Niyogi, 2003; Zhu, Ghahramani
and Lafferty, 2003; Zhu, Lafferty and Ghahramani, 2003; Zhou et al., 2004). They rely
on weak implicit assumptions on the generating data ditribution, e.g. smoothness of
the target function with respect to a given notion of similarity between examples (rep-
resented by a kernel function)1. For classification tasks this amounts to assuming that
the target function is constant within the region of input space (or “cluster” (Chapelle,
Weston and Scholkopf, 2003)) associated with a particular class. All of these previ-
ous non-parametric approaches exploit the idea of building and smoothing a graph in
which each example is associated with a node, and arcs betweeen two nodes are as-
sociated with a similarity function applied on the input part of the corresponding two
examples. For some of these methods one first builds a representation (e.g. (Belkin
and Niyogi, 2003)) or a kernel (Chapelle, Weston and Scholkopf, 2003) using the
input part of the data (of both labeled and unlabeled cases), and then trains a super-
vised learning algorithm with the labeled examples but relying on the representation
or kernel induced using the unlabeled examples. In the other methods (Szummer and
Jaakkola, 2002; Zhu, Ghahramani and Lafferty, 2003; Zhu, Lafferty and Ghahramani,
2003; Zhou et al., 2004) one solves an optimization problem in which both the labeled
and unlabeled cases intervene: the idea is to propagate the label information from the
labeled cases in the graph, with stronger propagation between similar examples.

It is not always clear with these graph-based kernel methods for semi-supervised
learning how to generalize to previously unseen test examples. In (Zhu, Lafferty and
Ghahramani, 2003) it is proposed to assign to the test case the label (or inferred label)
of the nearest neighbor from the training set (labeled or unlabeled). In this paper we
derive from the training criterion an inductive formula that is in fact a cousin of the
nearest neighbor solution. In general the above graph-based approaches have been
designed for the transductive setting, in which the input part of the test examples must
be provided before doing the expensive part of training. This typically requires solving
a linear system with n equations and n parameters, where n is the number of labeled
and unlabeled examples. In a truly inductive setting where new examples are given
one after the other and a prediction must be given after each example, it can be very
computationally costly to solve such a system anew for each of these test examples.

1See also (Kemp et al., 2004) for a hierarchically structured notion of a priori similarity.

2

This paper starts from this problem and proposes a natural generalization of the graph-
based semi-supervised learning algorithms that allows one to cheaply perform function
induction, i.e. for a computational cost that is O(n). The main idea is to apply the same
smoothness criterion that is behind the original semi-supervised algorithm, adding the
terms corresponding to the new example, but keeping the predictions fixed for the
training examples (both the labeled and unlabeled ones).

In addition to providing a cheap alternative for doing function induction, the pro-
posed approach opens the door to efficient approximations even in the transductive
setting. Since we know the analytic functional form of the prediction at a point x in
terms of the predictions at a set of training points (it turns out to be a Parzen win-
dows predictor) we can use it to express all the predictions in terms of a small subset
of m � n examples (i.e. a low-rank approximation) and solve a linear system with
O(m) variables and equations.

In the next section we formalize a family of smoothness criteria giving rise to al-
ready proposed non-parametric semi-supervised learning algorithms. In section 3 we
justify and derive the function induction formula. In section 4.2.1 we show in experi-
ments that the out-of-sample induction is very close to the transductive prediction. In
section 4.2.2 we compare variants of the proposed semi-supervised algorithm with two
very closely related previously proposed ones (Zhu, Ghahramani and Lafferty, 2003;
Zhou et al., 2004). Finally, in section 5 we present an approximation method to re-
duce the computational time and the memory requirements by solving a smaller linear
system.

2 Non-Parametric Smoothness Criteria

Among the previously proposed approaches, several can be cast as the minimization of
a criterion (often a quadratic form) in terms of the function values f(xi) at the labeled
and unlabeled examples xi, as follows:

CK,D,D′,λ(f) =
1

2

∑

i,j∈U∪L

K(xi, xj)D(f(xi), f(xj))

+ λ
∑

i∈L

D′(f(xi), yi) + R(f) (1)

where U is the unlabeled set, L the labeled set, xi the input part of the i-th example, yi

the target label, K(·, ·) is a positive similarity function (e.g. a Gaussian kernel) applied
on a pair of inputs, and D(·, ·) and D′(·, ·) are lower-bounded dissimilarity functions
applied on a pair of output values. R(f) is an optional additional regularization term
of the values of f at xi. In particular, in (Zhou et al., 2004), the proposed criterion
amounts to R(f) = λ

∑
i∈U f(xi)

2. To obtain a quadratic form in f(xi) one typically
chooses D and D′ to be quadratic, e.g.

D(y, y′) = D′(y, y′) = (y − y′)2
def
= D∗(y, y′).

When D, D′ and R are quadratic, this criterion can be minimized exactly for the n
function values f(xi). In general this could cost O(n3) operations, possibly less if the

3

input similarity function K(·, ·) is sparse.
A quadratic dissimilarity function makes a lot of sense in regression problems

but has also been used successfully in classification problems (where f(·) is not con-
strained to be discrete). In this paper, we only consider binary classification, but note
that all the algorithms proposed extend naturally to multiclass problems. The first term
of equation 1 says that we want to penalize the dissimilarity between f(xi) and f(xj)
when xi and xj are similar. The second term says we want to penalize f(xi) for be-
ing far from the observed target value yi (for i ∈ L). The hyperparameter λ controls
the trade-off between the smoothness of f and achieving the observed values on the
labeled cases. It should depend on the amount of noise in the observed values yi, i.e.
on the particular data distribution (although for example (Zhu, Ghahramani and Laf-
ferty, 2003) consider forcing f(xi) = yi). The optional extra regularization term R(f)
controls how much we penalize the high values of f on the unlabeled data. Adding it
may give better results when very few labels are available.

Two methods using a criterion of the form given by eq. 1 have already been pro-
posed. In (Zhu, Ghahramani and Lafferty, 2003), λ = ∞, R(f) = 0 and D = D′ =
D∗. In (Zhou et al., 2004), the cost function can be represented as in eq. 1 with λ > 0,
D′ = D∗ but

D(f(xi), f(xj)) =

(
f(xi)√

ai

− f(xj)√
aj

)2

(2)

where
ai

def
=

∑

j∈U∪L,j 6=i

K(xi, xj). (3)

In this paper we mostly study the case in which D = D′ = D∗ and R(f) = 0. The
minimization of the criterion with respect to all the f(xi) for i ∈ L ∪ U gives rise to
the following linear system:

A~f = b (4)

where ~fi = f(xi), whose first l elements are in L and the remaining n− l in U . Using
the matrix notation Wij = K(xi, xj), the system matrix A can be written as follows:

A = λ∆L + Diag(W1n) − W (5)

where ∆L (n × n) has entries ∆L,ij = δijδi∈L, Diag(v) is the matrix containing the
vector v in its diagonal, and 1n is the vector of n ones. The right hand side vector b is
as follows:

bi = δi∈Lλyi. (6)

In the non-parametric setting, which is the one studied by the above authors, the cri-
terion is directly optimized with respect to the function values. This has the disadvan-
tage of providing no obvious prediction for new examples, and the method is therefore
used in the transductive setting (the test examples are included in the unlabeled set).
To obtain function induction from the transductive learner, one can of course add the
test point x to the unlabeled set and solve again the system, but it is a costly procedure
(e.g. O(n3) for solving a linear system when D and D′ are quadratic). One alternative
– which should be further explored – is to parameterize f(x) with a flexible form such

4

as a neural network or a linear combination of non-linear bases (see also (Belkin and
Niyogi, 2003)). Another is the induction formula proposed below. As we will see in
section 5 the two alternatives can be combined to yield an efficient approximation to
the non-parametric semi-supervised learning problem.

3 Function Induction Formula

In order to transform the above transductive algorithms (for different choices of K, D
and D′ in eq. 1) into function induction algorithms we will do two things:

• apply the same type of smoothness constraint as in eq. 1 to the new example x,

• as in ordinary function induction (by opposition to transduction), require that the
f(xi) remain fixed even though the knowledge of x has been added.

Therefore we will minimize the criterion of eq. 1 when we add terms for the new
unlabeled example x, but only with respect to f(x). Since the terms of the criterion
depending on f(x) are

∑

j∈U∪L

K(x, xj)D(f(x), f(xj))

by minimizing them (taking D = D′ = D∗) we readily obtain the solution

f̃(x) =

∑n
j=1

K(x, xj)f(xj)∑n
j=1

K(x, xj)
. (7)

Interestingly this is exactly the formula for Parzen windows or Nadaraya-Watson non-
parametric regression (Nadaraya, 1964; Watson, 1964) when K is the Gaussian kernel.

An interesting question to consider is whether f̃(xi) as defined above approaches
f(xi) (the solution of eq. 4) for i ∈ L ∪ U . Plugging x = xi in the above formula and
applying the linear equations of eq. 4 yields

f̃(xi) = f(xi) − δi∈L

λ(yi − f(xi))∑
j∈L∪U K(xi, xj)

.

Hence f̃(xi) = f(xi) for i ∈ U , but on labeled examples the induction formula
chooses a value f̃(xi) that is “smoother” than f(xi), i.e. not as close to yi.

4 Experiments
In our experiments, we have used both the Gaussian kernel

Gσ(x, y) = e−
||x−y||2

σ2

and the spectral clustering adaptive kernel (Ng, Jordan and Weiss, 2002), obtained
from Gσ by the normalization

Hσ(xi, xj) =
Gσ(xi, xj)√

aiaj

(8)

5

with the ai defined as in eq. 3 with K = Gσ . As we will see, this kernel tends to yield
better results than the fixed Gaussian kernel.

We denote by SS(λ,K) the algorithm that consists in minimizing the criterion
CK,D∗,D∗,λ of eq. 1. The algorithm proposed in (Zhu, Ghahramani and Lafferty, 2003)
can thus be written SS(+∞, Gσ). Similarly, we note SS′(α, σ) the algorithm that
minimizes the regularized version of the criterion of eq. 1, with the kernel Gσ , λ =
1

2
(1 − α)α−1 (0 < α < 1), R(f) = λ

∑
i∈U f(xi)

2, D′ = D∗, and the distance D
defined in eq. 2: this is the algorithm from (Zhou et al., 2004).

4.1 Toy data

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 1: Toy example of the classification obtained from 5 labeled examples (in
circles), and 495 unlabeled. In squares are a few test points, whose class (symbol or
color) is obtained by the induction formula of eq. 7.

We first validate our generalization formula on a toy dataset, the classical two-moon
problem. Figure 1 shows an example where 500 unlabeled examples are classified
from only 5 labeled ones. Equation 7 is then used to predict the class of 10000 new
test examples sampled from the same density, yielding an error rate of 1, 76%. Note
that, obviously, any supervised algorithm taking into account only the labeled examples
would have achieved a much worse performance.

This error rate is similar to the one obtained when we add each test point x to the
training set, then minimize the cost of eq. 1 to get the class of x, repeating this operation
for each x in the test set: by doing so, we obtain a 1, 7% classification error. In both
cases, we use the same learning algorithm SS(λ = 5,K = G0.1).

4.2 Handwritten character recognition
We evaluate our method on real data, using the Letters dataset of the UCI Machine
Learning repository. There are 26 handwritten characters classes, to be discriminated
using 16 geometric features. However, in our experiments, we reduced to a binary
problem by considering only the class formed by the characters ’I’ and ’O’ and the
one formed by ’J’ and ’Q’ (to make the problem harder than a simple two-character
classification). This yields a dataset of 3038 samples, that we divide into a train set D
and a test set T , with respectively 2038 and 1000 samples.

6

4.2.1 Generalization performance

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Figure 2: The horizontal axis is the fraction of substituted data in the training set, which
induces a variance in the transductive predictions. The vertical axis gives the difference
(δ in eq. 9) between the average difference between the transductive and inductive
predictions and the variance in transductive predictions. The graph shows that around
3% perturbation in the training set induces as much variance in the predictions as the
difference between transductive and inductive predictions.

To assess the validity of our generalization formula, we compare f̃(x) given by
eq. 7 with its value f∗(x) that would have been found if x had been included in the
training set. We also study the intrinsic stability of f ∗(x) when samples from the
training set are substituted: this gives us an idea of the uncertainty around f ∗(x).

More precisely, the following experiment is made. We take V = the first m samples
from our training set D, and split the remaining n−m samples randomly into two sets
of equal size, V1 and V2. We train our model on V ∪ V1, and use eq. 7 to compute
f̃(x) for all x ∈ T . We also compute f∗

1 (x) by minimizing the criterion (eq. 1) over
V ∪V1∪{x}, and f∗

2 (x) by doing it over V ∪V2∪{x}. We then compare the difference
between f and f∗

1 to the difference between f∗
1 and f∗

2 :

δ =
1

|T |
∑

x∈T

(
(f̃(x) − f∗

1 (x))2 − (f∗
1 (x) − f∗

2 (x))2
)

. (9)

We average δ over 10 random splits of D\V for V1 and V2, which yields the value
plotted on figure 2 for different sizes of V . It appears the average error we make by not
including x in the training set is of the same order of magnitude as the perturbation in-
duced by a small substitution of about 3% of the training samples. Here, the algorithm
SS(λ = 1,K = G1) is used, and the first 10% examples of our dataset D are labeled.

4.2.2 Comparison with existing algorithms

Here, we compare the classification performance of various algorithms on the unla-
beled part U of the dataset D, when we vary the fraction pl of labeled data L in D. The
algorithms tested are SS(λ = +∞,K = Gσ), from (Zhu, Ghahramani and Lafferty,

7

2003), SS′(α, σ), from (Zhou et al., 2004), an alternative SS(λ = +∞,K = Hσ)
derived from our general framework, and, as a baseline, a Parzen windows classi-
fier trained only the labeled examples, using a Gaussian kernel Gσ (algorithm written
PW (σ) in the figures).

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.1

0.15

0.2

0.25

0.3
SS(λ = ∞,K = G

1
)

SS(λ = ∞,K = H
1
)

SS’(α = 0.99, σ = 1)
SS’(α = 0.5, σ = 1)
PW(σ = 1)

Figure 3: Classification error on the unlabeled training data for 0.01 ≤ pl ≤ 0.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

SS(λ = ∞,K = G
1
)

SS(λ = ∞,K = H
1
)

SS’(α = 0.99, σ = 1)
SS’(α = 0.5, σ = 1)
PW(σ = 1)

Figure 4: Classification error on the unlabeled training data for 0.1 ≤ pl ≤ 0.9.

Throughout the experiments, we keep σ = 1, which seems to be an adequate value
for this dataset. We compute the classification error of each of the algorithms on 100
random shuffles of the whole dataset D∪T (thus using each time a different D and T ,
while keeping their size fixed). The average error is plotted on figure 3 for the fraction
of labeled samples pl ≤ 0.1, and on figure 4 for pl ≥ 0.1. We do not show results of the
algorithm SS for λ < +∞ because they are, on average, worse than those obtained
with an infinite λ (for this dataset). Note however that, when using K = Gσ , for a
given D and T , a lower λ may sometimes give better results when pl is low (5% or
less). This is probably because when less labels are available, the smoothness of the
solution becomes more important.

The best overall results are obtained by SS(λ = +∞,K = Hσ) and SS′(α =
0.5, σ). The reason why they outperform SS(λ = +∞,K = Gσ) probably resides in

8

the normalization of eq. 8 (though SS ′ does not use exactly the same normalization,
but a very close one given by eq. 2). This normalization tends to give higher weights to
isolated points, which enforces the smoothness of the function in the regions where the
data is sparser, compared to the unnormalized kernel Gσ . As illustrated on the plots,
this property has a very positive effect on the overall performance of the algorithm.

Note that, for pl ≤ 3%, SS′(α = 0.99) yields the best performance, but this value
of α also penalizes the algorithm for higher values of pl. The same phenomenon was
pointed out in (Zhou et al., 2004), where it was noted that SS ′(α = 0.99) was less
efficient than SS(λ = +∞,K = Gσ) when pl grew. If we remember that a value
of α close to 1 means a low λ in eq. 1, this is explained by the fact the given label
values are not necessarily preserved when λ is low. As for the good results obtained
by SS′(α = 0.99) for a very low pl, they can be explained again by the importance
of the smoothness of the solution when very few labels are given. Indeed, in SS ′,
the regularization term λ

∑
i∈U f(xi)

2 encourages this smoothness, and thus yields a
better classification than SS, where there is no such regularization.

5 Efficient Approximation

5.1 Algorithm
A simple way to reduce the cubic computational requirement and quadratic memory
requirement for ’training’ the above non-parametric semi-supervised algorithms is to
force the solutions to be expressed in terms of a subset of the examples. This idea has
already been exploited successfully in a different form for other kernel algorithms, in
particular for Gaussian processes (Williams and Seeger, 2001).

Here we will take advantage of the induction formula (eq. 7) to simplify the linear
system to m < n equations and variables, where m is the size of a subset of examples
that will form a basis for expressing all the other function values. Let S ⊂ L ∪ U with
L ⊂ S be such a subset, with |S| = m. Define R = U\S. The idea is thus to force
f(xi) for i ∈ R to be expressed as a linear combination of the f(xj) with j ∈ S:

∀i ∈ R, f(xi) =

∑
j∈S K(xi, xj)f(xj)∑

j∈S K(xi, xj)
.

Plugging this formula in eq. 1 (using the simple squared difference for D and D′), the
total cost can be separated in four terms, CLL + CSS + CRR + CRS :

• the labeled data error:

CLL = λ
∑

i∈L

(f(xi) − yi)
2

• the smoothness within the selected subset S:

CSS =
1

2

∑

i,j∈S

K(xi, xj) (f(xi) − f(xj))
2

9

• the smoothness within the rest of the unlabeled examples R:

CRR =
1

2

∑

i,j∈R

K(xi, xj) (f(xi) − f(xj))
2

• the two cross-terms between elements of S and elements of R:

CRS = 2
1

2

∑

i∈R,j∈S

K(xi, xj) (f(xi) − f(xj))
2
.

Let ~f denote now the vector with entries f(xi), only for i ∈ S (they are the values
to identify). To simplify the notation, also define W the matrix with entries K(xi, xj),
and sub-matrices WSS when i, j ∈ S, WRS when i ∈ R and j ∈ S, WRR when
i, j ∈ R. Define W the matrix with entries Wij∑

k∈S Wik
, and the corresponding submatrix

WRS with entries (i, j) such that i ∈ R and j ∈ S.
Using this notation, the gradients with respect to the above cost components can be

written as follows:
∂CLL

∂ ~f
= 2λ∆L(~f − y)

where ∆L is the same as in eq. 5, except it is of size (m × m), and y is a vector with
elements yi for i ∈ L and arbitrary elsewhere (these values are multiplied by zeros in
∆L). The other gradients are as follows:

∂CRR

∂ ~f
=

[
2
(
W

′

RS (Diag(WRR1r) − WRR) WRS

)]
~f

∂CRS

∂ ~f
=

[
2
(
Diag(WSR1r) − W

′

RSWRS

)]
~f

∂CSS

∂ ~f
= [2 (Diag(WSS1m) − WSS)] ~f

The linear system to be solved can thus be written:

A~f = b

with

A = λ∆L + W
′

RS (Diag(WRR1r) − WRR) WRS

+ Diag(WSR1r) − W
′

RSWRS

+ Diag(WSS1m) − WSS

and b defined as before in eq. 6 (but with size m). We denote the above algorithm
ŜSRR because it is an approximation based on a subset vs subset linear system (the
RR comes from the use of CRR, which will be discussed below).

10

5.2 Variants
Further improvement can be obtained by observing that the main computational cost
comes from ∂CRR

∂ ~f
. If we choose to ignore CRR in the total cost, then the matrix

A can be computed in O(m2(n − m)) time, using only O(m2) memory (instead of
respectively O(m(n − m)2) time and O(m(n − m)) memory when using CRR.). Of
course, by doing so we lessen the smoothness constraint on f , since we do not take into
account the part of the cost enforcing the smoothness on the rest R of the unlabeled
set. However, this may have a beneficial effect when the dataset is large. Indeed, the
costs CRS and CRR can be seen as regularizers encouraging the smoothness of ~f . In
particular, when R is very large, the regularization induced by CRR (containing (n −
m)2 terms) can constrain ~f too much, thus penalizing the classification performance.
In this case, discarding CRR, in addition to speeding up the computation significantly,
also yields better results. We denote the variant of ŜSRR that does not take CRR into
account ŜS.

Training with only a subset S of size m � n, however, usually won’t perform as
well as training with the full unlabeled set (even when including CRR and CRS). In
order to get closer to this “optimal” performance, one may use the following ensemble
method:

• Choose k disjoint subsets (S′
j)1≤j≤k of size m − |L| in U

• For each j ≤ k, get fk(xi) for i ∈ U by running the above algorithm with the
subset Sj = L∪S′

j and the rest Rj = U\Sj (with or without taking into account
CRR)

• ∀i ∈ U , take f(xi) = 1

k

∑k
j=1

fk(xi).

As seen in the experiments, this procedure can help reducing the classification error,
on the unlabeled training examples as well as on new test data (using the induction
formula). Note that even though the computational time requirements are multiplied
by a factor k, they may be taken back to their original value if one can perform parallel
computation, in order to train simultaneously on the different subsets. We denote by
SSk,RR and SSk the above algorithm, with and without the CRR cost.

In table 1, we summarize the time and memory requirements of the various algo-
rithms presented in this paper. The approximation methods described in this section
improve the computation time and memory consumption by a factor approximately
n/m for ŜSRR and (n/m)2 for ŜS, and with parallelization, the same improvements
can be maintained while averaging the results of k experiments on k different subsets.

5.3 Experiments

Here, we apply the SSk,RR and SSk algorithms described above to the handwritten
character recognition problem of section 4.2. We take k = 10, and for each fraction pl

of labeled examples, we take 10 subsets S ′
j so that U =

⋃
1≤j≤10

S′
j . For comparison

purpose, we denote by SSk the algorithm that consists in running SS on each L ∪ S ′
j ,

then averaging the outputs of the resulting regressors when computing the output for a

11

Table 1: Comparative computational requirements of the original algorithm SS (or
SS′), the approximation ŜSRR using CRR, its variant ŜS discarding CRR, and the
ensemble variant over k subsets, with or without CRR in the cost, denoted respectively
by SSk,RR and SSk. The brackets around the factor k mean it can be taken out if the
computation is parallelized.

TIME MEMORY

SS OR SS′ O(n3) O(n2)

ŜSRR O(m(n − m)2) O(m(n − m))

ŜS O(m2(n − m)) O(m2)
SSk,RR O((m(n − m)2)[k]) O(m(n − m))
SSk O((m2(n − m))[k]) O(m2)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PSfrag replacements

SSk

SS

SSk,RR

SSk

Figure 5: Test set classification error, for 0.01 ≤ pl ≤ 0.1.

new point x. We compare the performance of SSk,RR and SSk with (i) the algorithm
SS using the whole unlabeled set U , and (ii) the algorithm SSk. This last algorithm
is shown to demonstrate the gain induced by incorporating CRS (and possibly CRR)
in the cost optimized. Figures 5 (for low pl) and 6 (for high pl) show the average
classification error on the test set (the average is done over 10 fixed (train,test) pairs
(Di, Ti)1≤i≤10 of respectively 2038 and 1000 characters, taken randomly from the
original dataset). We take K = G1, and λ = +∞. Note that plotting the error on the
unlabeled part of the training set would have given similar results. Also, the average
errors of ŜSRR and ŜS (the approximation algorithms without averaging), not shown
on the figures, are slightly higher than the ones of respectively SSk,RR and SSk, but
still (far) below the one of SSk.

Interestingly, SSk,RR and SSk can outperform SS trained on the whole set U
when pl is low. This is coherent with our previous observations, which showed that
encouraging the smoothness of the solution for such pl could improve the robustness
of the classifier.

Note that here, the dataset is still rather small, and including CRR in the cost sys-
tematically helps. However, other experiments performed on the same handwritten

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.04

0.06

0.08

0.1

0.12

0.14

0.16

PSfrag replacements

SSk

SS

SSk,RR

SSk

Figure 6: Test set classification error, for 0.1 ≤ pl ≤ 0.7.

character database, but using a larger dataset (10000 training and test examples) have
given better results with ŜS than with ŜSRR (both still doing better than simply train-
ing over the subset S, discarding completely the rest R).

6 Conclusion
The main contribution of this paper is an extension of previously proposed non-parametric
(graph-based) semi-supervised learning algorithms, that allows one to efficiently per-
form function induction (i.e. cheaply compute a prediction for a new example, in time
O(n) instead of O(n3)). The extension is justified by the minimization of the same
smoothness criterion that was used to obtain the original algorithms in the first place.
We showed that the function induction formula is robust and yields predictions that are
close to the transductive (expensive) predictions (in the sense that the difference is of
the same order as the average change in transductive prediction when a small fraction
of the training examples are substituted by others from the same distribution).

The paper compares empirically on real data a variety of semi-supervised learn-
ing algorithms that fit under this framework, helping to understand the effect of the
different components of the training criterion.

Finally, the induction formula is used to define several approximation variants (ei-
ther for transduction or for function induction) that yield important reductions in com-
putational and memory complexity at a small cost in classification performance.

References
Belkin, M. and Niyogi, P. (2003). Using manifold structure for partially labeled classification.

In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information
Processing Systems 15, Cambridge, MA. MIT Press. 2, 5

Chapelle, O., Weston, J., and Scholkopf, B. (2003). Cluster kernels for semi-supervised learning.
In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information
Processing Systems 15, Cambridge, MA. MIT Press. 2

Cozman, F., Cohen, I., and Cirelo, M. (2003). Semi-supervised learning of mixture models. In
ICML’2003. 2

13

Kemp, C., Griffiths, T., Stromsten, S., and Tenembaum, J. (2004). Semi-supervised learning with
trees. In Advances in Neural Information Processing Systems 16, volume 16, Cambridge,
MA. MIT Press. 2

McCallum, A. and Nigam, K. (1998). Employing EM and pool-based active learning for text
classification. In ICML’1998. 2

Nadaraya, E. (1964). On estimating regression. Theory of Probability and its Applications,
9:141–142. 5

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: analysis and an algo-
rithm. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural
Information Processing Systems 14, Cambridge, MA. MIT Press. 5

Schuurmans, D. and Southey, F. (2002). Metric-based methods for adaptive model selection and
regularization. Machine Learning, 48(1):51–84. 2

Seeger, M. (2001). Learning with labeled and unlabeled data. Technical report, Edinburgh
University. 1

Szummer, M. and Jaakkola, T. (2002). Partially labeled classification with markov random
walks. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural
Information Processing Systems 14, Cambridge, MA. MIT Press. 2

Watson, G. (1964). Smooth regression analysis. Sankhya - The Indian Journal of Statistics,
26:359–372. 5

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up kernel ma-
chines. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information
Processing Systems 13, pages 682–688, Cambridge, MA. MIT Press. 9

Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., and Schölkopf, B. (2004). Learning with
local and global consistency. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances
in Neural Information Processing Systems 16, Cambridge, MA. MIT Press. 2, 3, 4, 6, 8, 9

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learning using gaussian fields
and harmonic functions. In ICML’2003. 2, 3, 4, 6, 8

Zhu, X., Lafferty, J., and Ghahramani, Z. (2003). Semi-supervised learning: From gaussian
fields to gaussian processes. Technical Report CMU-CS-03-175, CMU. 2

14

