Neural Computation Manuscript # 2045

Gradient-Based Optimization of

Hyper-Parameters

Yoshua Bengio
Département d’informatique et recherche opérationnelle

Université de Montréal
C.P. 6128 Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7

bengioy@iro.umontreal.ca

September 30, 1999

Abstract

Many machine learning algorithms can be formulated as the minimiza-
tion of a training criterion which involves a hyper-parameter. This hyper-
parameter is usually chosen by trial and error with a model selection cri-
terion. In this paper we present a methodology to optimize several hyper-
parameters, based on the computation of the gradient of a model selection
criterion with respect to the hyper-parameters. In the case of a quadratic
training criterion, the gradient of the selection criterion with respect to
the hyper-parameters is efficiently computed by back-propagating through
a Cholesky decomposition. In the more general case, we show that the
implicit function theorem can be used to derive a formula for the hyper-

parameter gradient involving second derivatives of the training criterion.

1 Introduction

Machine learning algorithms pick a function from a set of functions F in order
to minimize something that cannot be measured, only estimated, that is the ex-
pected generalization performance of the chosen function. Many machine learning
algorithms can be formulated as the minimization of a training criterion which
involves a hyper-parameter, kept fixed during this minimization. For example,
in the regularization framework (Tikhonov and Arsenin, 1977; Poggio, Torre and
Koch, 1985), one hyper-parameter controls the strength of the penalty term: a
larger penalty term reduces the “complexity” of the resulting function (it forces
the solution to lie in a “smaller” subset of F). A common example is weight de-
cay (Hinton, 1987), used with neural networks and linear regression (also known
as ridge regression (Hoerl and Kennard, 1970), in that case), to penalize the L2-
norm of the parameters. Increasing the penalty term (increasing the weight decay
hyper-parameter) corresponds to reducing the effective capacity (Guyon et al.,
1992) by forcing the solution to be in a zero-centered hyper-sphere of smaller
radius, which may improve generalization. A regularization term can also be in-
terpreted as an a-priori probability distribution on F: in that case the weight
decay is a scale parameter (e.g., inverse variance) of that distribution.

A model selection criterion can be used to select hyper-parameters, more
generally to compare and choose among models which may have a different ca-
pacity. Many model selection criteria have been proposed in the past (Vapnik,
1982; Akaike, 1974; Craven and Wahba, 1979). When there is only a single hyper-
parameter one can easily explore how its value affects the model selection criterion:
typically one tries a finite number of values of the hyper-parameter and picks the
one which gives the lowest value of the model selection criterion.

In this paper we present a methodology to simultaneously select many hyper-
parameters using the gradient of the model selection criterion with respect to the
hyper-parameters. This methodology can be applied when some differentiability
and continuity conditions of the training criterion are satisfied. The use of multiple

hyper-parameters has already been proposed in the Bayesian literature: one hyper-

parameter per input feature was used to control the prior on the parameters
associated to that input feature (MacKay and Neal, 1994; Neal, 1998). In this
case, the hyper-parameters can be interpreted as scale parameters for the prior
distribution on the parameters, for different directions in parameter space. In
Sections 2, 3 and 4, we explain how the gradient with respect to the hyper-
parameters can be computed. In the conclusion, we briefly describe the results
of preliminary experiments performed with the proposed methodology (described
in more details in (Latendresse and Bengio, 1999; Bengio and Dugas, 1999)), and
we raise some important open questions concerning the kind of “over-fitting” that

can occur with the proposed methodology.

2 Objective Functions for Hyper-Parameters

We are given a set of independent data points, D = {z1,..., zr}, all generated by
the same unknown distribution P(Z). We are given a set of functions F indexed
by a parameter 6 €) (i.e., each value of the parameter 6 corresponds to a function
in F). In our applications we will have Q@ C R*. We would like to choose a value of
6 that minimizes the expectation Ez(Q(6, Z)) of a given loss functional Q(f, Z).
In supervised learning problems, we have input/output pairs Z = (X,Y’), with
X e X, Y € Y, and 6 is associated to a function fp from X to). For example,
we will consider the case of the quadratic loss, with real-valued vectors) C R™
and Q(0, (X,Y)) = +(fo(X) = Y)'(fo(X) — V). Note that we use the letter g to
represent parameters and the letter A to represent hyper-parameters.

In the next section, we will provide a formulation for the cases in which @ is
quadratic in # (e.g., quadratic loss with constant or affine function sets). In
section 4, we will consider more general classes of functions and loss, which may

be applied to the case of multi-layer neural networks, for example.

2.1 Training Criteria

In its most general form, a training criterion C' is any real-valued function of

the set of empirical losses Q(, z;) and of some hyper-parameters A:

C(@,\,D) =c(\,Q(0,21),Q(0,22),...,Q(0, zr))

Here A is assumed to be a real-valued vector A = (Ay,...,\;). The proposed
method relies on the assumption that C' is continuous and differentiable almost
everywhere with respect to # and A. When the hyper-parameters are fixed, the

learning algorithm attempts to perform the following minimization:
6(\, D) = argmin,C (6, A, D) (1)
An example of training criterion with hyper-parameters is the following:

C= > wilN(folz:) —y:)* +0AN0 (2)
(zi,y:)€D
where the hyper-parameters provide different quadratic penalties to different pa-
rameters (with the matrix A(\)), and different weights to different training pat-
terns (with w;(\)), (as in (Bengio and Dugas, 1999; Latendresse and Bengio,
1999)).

2.2 Model Selection Criteria

The model selection criterion F is a criterion that is used to select hyper-
parameters or more generally to choose one model among several models. Ide-
ally, it should be the expected generalization error (for a fixed A), but P(Z) is
unknown, so many alternatives have been proposed, which are either approxima-
tions, bounds, or empirical estimates. Most model selection criteria have been
proposed for selecting a single hyper-parameter that controls the “complexity”
of the class of functions in which the learning algorithms finds a solution, e.g.
the minimum description length principle (Rissanen, 1990), structural risk mini-
mization (Vapnik, 1982), the Akaike Information Criterion (Akaike, 1974), or the

4

generalized cross-validation criterion (Craven and Wahba, 1979). Another type of
criteria are those based on held-out data, such as the cross-validation estimates
of generalization error. These are almost unbiased estimates of generalization
error (Vapnik, 1982) obtained by testing fp on data not used to choose . For
example, the K-fold cross-validation estimate uses K partitions of D, S| U S3,
S2uUS?, ... and SKE U SK:

Eu(\, D) = Z

> QO(N,), 2).

ZtGSl

|52

When @ is fixed, the empirical risk % > Q(6, z;) is an unbiased estimate of the gen-
eralization error of f, (but it becomes an optimistic estimate when # is chosen to
minimize the empirical risk). Similarly, when A is fixed, the cross-validation crite-
rion is an almost unbiased estimate (when K approaches |D|) of the generalization
error of §(A, D). When A is chosen to minimize the cross-validation criterion, this
minimum value also becomes an optimistic estimate. Likewise, when there is a
greater diversity of values Q(fy(,p), 2) that can be obtained for different values
of A, there is more risk of over-fitting the hyper-parameters. In this sense,
the use of hyper-parameters proposed in this paper can be very different from
the common use in which a hyper-parameter helps to control over-fitting. In-
stead, a blind use of the extra freedom brought by many hyper-parameters could

deteriorate generalization.

3 Optimizing Hyper-Parameters for a Quadratic
Training Criterion

In this section we analyze the simpler case in which the training criterion C'
is a quadratic polynomial of the parameters f. The dependence on the hyper-
parameters A can be of higher order, as long as it is continuous and differentiable

almost everywhere (see for example (Bottou, 1998) for more detailed technical

conditions sufficient for stochastic gradient descent):
1
C =a(X)+b(N)'0+ 50’}[()\)9 (3)

where 0,0 € R*, a € R, and H € R***. For a minimum of (3) to exist requires
that H be positive definite. It can be obtained by solving the linear system

oC
= HO = 4
0 =b+HO=0 (4)
which yields the solution
O(N) = —H 1(A)b(N). (5)

Assuming that E only depends on A through #, the gradient of the model selection
criterion E with respect to \ is

o8 _ o o0

o 00 ON
If there were a direct dependency (not through 6), an extra partial derivative
would have to be added.

For example, in the case of the cross-validation criteria,

:_Z|52 Z

ZtGSl

aEcv 3Q 9 Zt

In the quadratic case, the influence of A on @ is spelled out by (5), yielding

OH;} L 0b

e D R B
S - S (6)

Although the second sum can be readily computed, %L in the first sum is more
challenging: we consider several methods below. One solution is based on the com-
putation of gradients through the inverse of a matrix. This general but inefficient

solution is the following:

OH,} OH,;; 0Hy,
oA 4 aH,c,l B

where
oH,

OHy, = —H; Hiy + LipgenH;j minor (H, j, 1), (7)
where minor(H, j,i) denotes the “minor matrix”, obtained by removing the j-th
row and the i-th column from H, and the indices (I, k") in the above equation
refer to the position within a minor matrix that corresponds to the position (I, k)
in H (note [# i and k # j). Unfortunately, the computation of this gradient
requires O(s°) multiply-add operations for an s X s matrix H, which is much more
than is required by the inversion of H (O(s®) operations). A better solution is
based on the following equality: HH ! = I, where I is the s x s identity matrix.

. OH -1 OH1 o .
This implies, by differentiating with respect to A\: 55 H ™" + H%5— = 0. Isolating

ag—;l, we get
OH=! oH
— _H—I_H—l
oA\ oA\ (8)

which requires only about 2s® multiply-add operations.

PLACE FIGURE 1 AROUND HERE

Figure 1: Tllustration of forward paths (full lines) and gradient paths (dashed) for
computation the model selection criterion £ and its derivative with respect to the
hyper-parameters (\), when using the method based on the Cholesky decomposi-

tion and back-substitution to solve for the parameters (6).

An even better solution (which was suggested by Léon Bottou) is to return to
equation (4), which can be solved using about s3/3 multiply-add operations (when
6 € R®). The idea is to back-propagate gradients through each of the operations

performed to solve the linear system. The objective is to compute the gradient of

E with respect to H and b through the effect of H and b on 6, in order to finally
0

compute 3—§, as illustrated in figure 1. The back-propagation costs the same as
the linear system solution, i.e., about s*/3 multiply/add operations, so this is
the approach that we have kept for our implementation. Since H is the Hessian
matrix, it is positive definite and symmetric, and (4) can be solved through the
Cholesky decomposition of H (assuming H is full rank, which is likely if the hyper-
parameters provide some sort of weight decay). The Cholesky decomposition of a
symmetric positive definite matrix H gives H = LL' where L is a lower diagonal
matrix (with zeros above the diagonal). It is computed in time O(s®) as follows:
fori:=1,...,s
Lis = /Hi; — Y2 L2,
forj=4i+1,...,s
Lj; = (Hij; — X3y LiwLix)/ Lig

Once the Cholesky decomposition is achieved, the linear system LL'6 = —b can

be easily solved, in two back-substitution steps: first solve Lu = —b for u, then
solve L'6 = u for 0. First step, iterating once forward through the rows of L:
fori=1,...,s,
u; = (=by — X342y Ligur)/Li.
Second step, iterating once backward through the rows of L:
fori=s,...,1,
O0; = (ui — Xp—is1 LiiOk)/Liy.
The computation of the gradient of # with respect to the elements of H and b
proceed in exactly the reverse order. We start by back-propagating through the
back-substitution steps, and then through the Cholesky decomposition. Together,
the three boxed algorithms that follow allow to compute %—f and g—fl, starting from
g—gEi , (not taking into account the depen-

dencies of 6; on #; for j > 7). As intermediate results, the algorithm computes

the “partial” parameter gradient

15-05Us

the partial derivatives with respect to u and L, as well as the “full gradients”
oE

> 00; |p

brought by the recursive computation of the 6;’s.

with respect to 6 , taking into account all the dependencies between the 6;’s

i

First back-propagate through the solution of L'6 = u:

initialize dEdtheta < %=)

1a~~~a95

initialize dEdL < 0
fori=1,...,s
dEdu; < dEdtheta;/L;;
dEdL;; < dEdL;; — dEdtheta; 0;/L;
fork=:1+1...5
dEdtheta < dEdtheta;, — dEdtheta; Ly ;/L;,
dEdLy; < dEdLy; — dEdtheta, f;/L;;

Then back-propagate through the solution of Lu = —b:

fori=s,...,1
g—;f —dEdu;/L;;
dEdL;; < dEdL;; — dEdu; u;/L;
fork=1,...,i—1
dEduy, < dEduy, — dEdw; Ly /Li;
dEdL; ; < dEdL;; — dEdu, uy/ Ly

The above algorithm gives us the gradient of the model selection criterion £ with
respect to coefficient b(\) of the training criterion, as well as with respect to the
lower diagonal matrix L, dEdL; ; = 3‘?;.

Finally, we back-propagate through the Cholesky decomposition, to convert the

gradients with respect to L into gradients with respect to the Hessian H(\):

fori=s,...,1
forj=s,...,1+1
dEdL;; ¢ dEdL;; — dEdL;;L;,;/L;;
a%ﬁj « dEdL;,/L;,
fork=1,...,i—1
dEAL; ;, < dEdL;j — dEAL;;L;/Li;
dEdL;; < dEAL;, — dEAL; L, x/L;,
o < 3dEdL;;/Li;
fork=1,...,1—1
dEdL; j, <— dEdL;; — dEdLi,iLi,k/Li,i

Note that we have only computed gradients with respect to the diagonal and
upper diagonal of H because H is symmetric. Once we have the gradients of
with respect to b and H, we use the functional form of b(\) and H(\) to compute
the gradient of E with respect to A:

O _ <~0B 9 s~ OF oM
DN~ & Ob; DX OH,; O\

i7j

(again we assumed that there is no direct dependency from A to E, otherwise an
extra term must be added).

Using this approach rather than the one described in the previous subsection, the
overall computation of gradients is therefore in about s/3 multiply-add operations
rather than O(s®). The most expensive step is the back-propagation through the
Cholesky decomposition itself (three nested s-iterations loops). Note that this
step may be shared if there are several linear systems to solve with the same
Hessian matrix. For example this will occur in linear regression with multiple
outputs because H is block-diagonal, with one block for each set of parameters
associated to one output, and all blocks being the same (equal to the input “design
matrix” Y, z;z;, denoting z; the input training vectors). Only a single Cholesky

computation needs to be done, shared across all blocks.

10

3.1 Weight Decays for Linear Regression

In this subsection, we illustrate the method in the particular case of multiple
weight decays for linear regression, with K-fold cross-validation as the model se-
lection criterion. The hyper-parameter A; will be a weight decay associated to the
j-th input variable. The training criterion for the k-th partition is

1

k= 157

1 1
> 5(@% — i) (Omy — yy) + 2 Z Aj Z 07 (9)
(zt,yt)ESE J ¢

The objective is to penalize separately each of the input variables (as in (MacKay
and Neal, 1994; Neal, 1998)), a kind of “soft variable selection” (see (Latendresse
and Bengio, 1999) for more discussion and experiments with this setup).

The training criterion is quadratic, as in (3), with coefficients
1
a=52 Uy ey == 2 utey, Hapwg = 0w D@y 40l g,
t t t

where 0; ; = 1 when ¢ = j and 0 otherwise, and (4j) is an index corresponding to
indices (7, 7) in the weight matrix ©, e.g., (ij) = (i — 1) X s + j. From the above
definition of the coefficients of C, we obtain their partial derivatives with respect
to A: % -
oy =0 W = 0,000 -

Plugging the above definitions of the coefficients and their derivatives in the equa-
tions and algorithms of the previous subsection, we have therefore obtained an
algorithm for computing the gradient of the model selection criterion with respect
to the input weight decays of a linear regression.

Note that here H is block-diagonal, with m identical blocks of size (n + 1), so
the Cholesky decomposition (and similarly back-propagating through it) can be
performed in about (s/m)?/3 multiply-add operations rather than s3/3 operations,

where m is the number of outputs (the dimension of the output variable).

11

4 Non-Quadratic Criterion: Hyper-Parameters

Gradient

If the training criterion C' is not quadratic in terms of the parameters 6, it will
in general be necessary to apply an iterative numerical optimization algorithm to

minimize the training criterion. In this section we consider what happens after

this minimization is performed, i.e., at a value of 6 where %—g is approximately
zero and 45 is positive definite (otherwise we would not be at a minimum of C).

The minimization of C(0, A, D) defines a function #(\, D) (equation 1). With our
assumption of smoothness of C, the implicit function theorem tells us that this

function exists locally and is differentiable. To obtain this function we write

oC
F0,\) = 50 = 0,
evaluated at § = (A, D) (at a minimum of C'). Differentiating the above equation
with respect to A\, we obtain
OF 00 OF

0ox Tax 0

so we obtain a general formula for the gradient of the fitted parameters

with respect to the hyper-parameters:

WD) _ _ FC\ L PC ., OC
on oer) 9xap OA00
(10)

Let us see how this result relates to the special case of a quadratic training crite-
rion, C' = a + b0 + %G’HG:

o _
ox

ob OH Ob oH
- e Y d it - _ -1~ 177" -1
H (8)\+8)\9) H a/\+H aAH b

where we have substituted § = —H 'b. Using the equality (8), we obtain the

same formula as in eq. (6).

12

Let us consider more closely the case of a neural network with one layer of hidden
units with hyperbolic tangent activations, a linear output layer, squared loss, and

hidden layer weights W, ;. For example, if we want to use hyper-parameters for

’j :
penalizing the use of inputs, we have a criterion similar to (9),

% Z %(fe(a:t)—yt),(fe(l"t)—yt)JF%zj:)‘sz_:Wi%j'

| 1| (fL‘t,yt)GS{c

Cr =

with C' = Y, C%, and the cross-derivatives are easy to compute:

0?C
m = 0y ;Wij.
The Hessian and its inverse require more work, but can be done respectively in
at most O(s?) and O(s®) operations. See for example (Bishop, 1992) for the
exact computation of the Hessian for multi-layer neural networks. See (Becker
and LeCun, 1989; LeCun, Denker and Solla, 1990) for a diagonal approximation

which can be computed and inverted in O(s) operations.

5 Summary of Experiments and Conclusions

In this paper, we have presented a new methodology for simultaneously optimizing
several hyper-parameters, based on the computation of the gradient of a model
selection criterion with respect to the hyper-parameters, taking into account the
influence of the hyper-parameters on the parameters. We have considered both the
simpler case of a training criterion that is quadratic with respect to the parameters
(0 € R*) and the more general non-quadratic case. We have shown a particularly
efficient procedure in the quadratic case that is based on back-propagating gra-
dients through the Cholesky decomposition and back-substitutions. This was an
improvement: we have arrived at this s3/3-operations procedure after studying
first an O(s®) procedure and then a 2s*-operations procedure. In the particular
case of input weight decays for linear regression, the computation can even be
reduced to about (s/m)3/3 operations when there are m outputs.

We have performed preliminary experiments with the proposed methodology in

several simple cases, using conjugate gradients to optimize the hyper-parameters.

13

The application to linear regression with weight decays for each input is described
in (Latendresse and Bengio, 1999). The hyper-parameter optimization algorithm
is used to perform a soft selection of the input variables. A large weight decay on
one of the inputs effectively forces the corresponding weights to very small values.
Comparisons on simulated data sets are made in (Latendresse and Bengio, 1999)
with ordinary regression as well as with stepwise regression methods and the
adaptive ridge (Grandvalet, 1998) or LASSO (Tibshirani, 1995).

Another type of application of the proposed method has been explored, in the
context of a “real-world” problem of non-stationary time-series prediction (Ben-
gio and Dugas, 1999). In this case, an extension of the cross-validation criterion
to sequential data which may be non-stationary is used. Because of this non-
stationarity, recent data may sometimes be more relevant to current predictions
than older data. The training criterion is a sum of weighted errors for the past
examples, and these weights are given by a parametrized function of time (as
the w;(A) in eq. 2). The parameters of that function are two hyper-parameters
that control when a transition in the unknown generating process would have
occurred and how strong that change was or should be trusted. In these exper-
iments, the weight given to past data points is a sigmoid function of the time:
the threshold and the slope of the sigmoid are the hyper-parameters, representing
respectively the time of a strong transition and the strength of that transition.
Optimizing these hyper-parameters, we obtained statistically significant improve-
ments in predicting one-month ahead future volatility of Canadian stocks. The
comparisons were made against several linear, constant, and ARMA models of
the volatility. The experiments were performed on monthly return data from 473
Canadian stocks from 1976 to 1996. The measure of performance is the aver-
age out-of-sample squared error in predicting the squared returns. Single-sided
significance tests were performed taking into account the auto-covariance in the
temporal series of errors and the covariance of the errors between the compared
models. When comparing the prediction of the first moment (expected return), no

model significantly improved on the historical average of stock returns (constant

14

model). When comparing the prediction of the second moment (expected squared
returns), the method based on hyper-parameters optimization beat all the other
methods, with a p-value of 1% or less.

What remains to be done? first, more experiments, in particular with the non-
quadratic case (e.g., MLPs), and with model selection criteria other than cross-
validation (which has large variance (Breiman, 1996)). Second, there are im-
portant theoretical questions that remain unanswered concerning the amount of
over-fitting that can be brought when too many hyper-parameters are optimized.
As we have outlined in the introduction, the situation with hyper-parameters may
be compared with the situation of parameters. However, whereas the form of the
training criterion as a sum of independent errors allows to define the capacity for
a class of functions and relate it to the difference between generalization error and
training error, it does not appear clearly to us how a similar analysis could be
performed for hyper-parameters.

Acknowledgements

The author would like to thank Léon Bottou, Pascal Vincent, Francois Blanchette,

and Francois Gingras, as well as the NSERC Canadian funding agency.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, AC-19(6):716-728.

Becker, S. and LeCun, Y. (1989). Improving the convergence of back-propagation
learning with second order methods. In Touretzky, D., Hinton, G., and Se-
jnowski, T., editors, Proceedings of the 1988 Connectionist Models Summer

School, pages 29-37, Pittsburg 1988. Morgan Kaufmann, San Mateo.

Bengio, Y. and Dugas, C. (1999). Learning simple non-stationarities with hyper-

parameters. submitted to Machine Learning.

Bishop, C. (1992). Exact calculation of the Hessian matrix for the multi-layer
perceptron. Neural Computation, 4(4):494-501.

15

Bottou, L. (1998). Online algorithms and stochastic approximations. In Saad, D.,
editor, Online Learning in Neural Networks. Cambridge University Press, to

appear, Cambridge, UK.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection.

Annals of Statistics, 24 (6):2350-2383.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions.
Numerical Mathematics, 31:377-403.

Grandvalet, Y. (1998). Least absolute shrinkage is equivalent to quadratic penal-
ization. In Niklasson, L., Boden, M., and Ziemske, T., editors, I[CANN’98,
volume 1 of Perspectives in Neural Computing, pages 201-206. Springer.

Guyon, I., Vapnik, V., Boser, B., Bottou, L., and la, S. S. (1992). Structural
risk minimization for character recognition. In Moody, J., Hanson, S., and
Lipmann, R., editors, Advances in Neural Information Processing Systems 4,

pages 471-479, San Mateo CA. Morgan Kaufmann.

Hinton, G. (1987). Learning translation invariant in massively parallel networks.
In de Bakker, J., Nijman, A., and Treleaven, P., editors, Proceedings of
PARLE Conference on Parallel Architectures and Languages Europe, pages
1-13, Berlin. Springer-Verlag.

Hoerl, A. and Kennard, R. (1970). Ridge regression: biased estimation for non-
orthogonal problems. Technometrics, 12:55-67.

Latendresse, S. and Bengio, Y. (1999). Linear regression and the optimization of

hyper-parameters. submitted to NIPS’99.

LeCun, Y., Denker, J., and Solla, S. (1990). Optimal brain damage. In Touretzky,
D., editor, Advances in Neural Information Processing Systems 2, pages 598—

605, Denver, CO. Morgan Kaufmann, San Mateo.

16

MacKay, D. and Neal, R. (1994). Automatic relevance determination. Unpub-
lished report. See also MacKay D., 1995, Probable Neworks and Plausible
Predictions — A Review of Practical Bayesian Methods for Supervised Neural

Networks, in Neutwork: Computation in Neural Systems, v. 6, pp. 469-505.

Neal, R. (1998). Assessing relevance determination methods using delve. In
Bishop, C., editor, Neural Networks and Machine Learning, pages 97-129.
Springer-Verlag.

Poggio, T., Torre, V., and Koch, C. (1985). Computational vision and regulariza-
tion theory. Nature, 317(26):314-319.

Rissanen, J. (1990). Stochastic Complezity in Statistical Inquiry. World Scientific,

Singapore.

Tibshirani, R. (1995). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society B, 58:267-288.

Tikhonov, A. and Arsenin, V. (1977). Solutions of Ill-posed Problems. W.H.
Winston, Washington D.C.

Vapnik, V. (1982). FEstimation of Dependences Based on Empirical Data.
Springer-Verlag, Berlin.

17

training
data

92C k= — -] Cholesky
92 | > decomposition
H

test
data
back- |< - — —| Mmeasure
subst. test error
0

FIGURE 1 FROM BENGIO’S PAPER # 2045

18

