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Abstract

There has been an increase of interest for
semi-supervised learning recently, because of
the many datasets with large amounts of
unlabeled examples and only a few labeled
ones. This paper follows up on proposed non-
parametric algorithms which provide an esti-
mated continuous label for the given unla-
beled examples. First, it extends them to
function induction algorithms that minimize
a regularization criterion applied to an out-
of-sample example, and happen to have the
form of Parzen windows regressors. This al-
lows to predict test labels without solving
again a linear system of dimension n (the
number of unlabeled and labeled training ex-
amples), which can cost O(n3). Second, this
function induction procedure gives rise to an
efficient approximation of the training pro-
cess, reducing the linear system to be solved
to m � n unknowns, using only a subset of
m examples. An improvement of O(n2/m2)
in time can thus be obtained. Comparative
experiments are presented, showing the good
performance of the induction formula and ap-
proximation algorithm.

1 INTRODUCTION

Several non-parametric approaches to semi-supervised
learning (see (Seeger, 2001) for a review of semi-
supervised learning) have been recently introduced,
e.g. in (Szummer & Jaakkola, 2002; Chapelle et al.,
2003; Belkin & Niyogi, 2003; Zhu et al., 2003a; Zhu
et al., 2003b; Zhou et al., 2004). They rely on weak im-
plicit assumptions on the generating data distribution,
e.g. smoothness of the target function with respect to
a given notion of similarity between examples1. For

1See also (Kemp et al., 2004) for a hierarchically struc-
tured notion of a priori similarity.

classification tasks this amounts to assuming that the
target function is constant within the region of input
space (or “cluster” (Chapelle et al., 2003)) associated
with a particular class. These previous non-parametric
approaches exploit the idea of building and smoothing
a graph in which each example is associated with a
node, and arcs between two nodes are associated with
the value of a similarity function applied on the corre-
sponding two examples.

It is not always clear with these graph-based kernel
methods for semi-supervised learning how to gener-
alize to previously unseen test examples. In general
they have been designed for the transductive setting,
in which the test examples must be provided before
doing the expensive part of training. This typically
requires solving a linear system with n equations and
n parameters, where n is the number of labeled and
unlabeled data. In a truly inductive setting where new
examples are given one after the other and a predic-
tion must be given after each example, it can be very
computationally costly to solve such a system anew
for each of these test examples. In (Zhu et al., 2003b)
it is proposed to assign to the test case the label (or
inferred label) of the nearest neighbor (NN) from the
training set (labeled or unlabeled). In this paper we
derive from the training criterion an inductive formula
that turns out to have the form of a Parzen windows
predictor, for a computational cost that is O(n). Be-
sides being smoother than the NN-algorithm, this in-
duction formula is consistent with the predicted labels
on the unlabeled training data.

In addition to providing a relatively cheap way of do-
ing function induction, the proposed approach opens
the door to efficient approximations even in the trans-
ductive setting. Since we know the analytic functional
form of the prediction at a point x in terms of the
predictions at a set of training points, we can use it to
express all the predictions in terms of a small subset of
m� n examples (i.e. a low-rank approximation) and
solve a linear system with m variables and equations.



2 NON-PARAMETRIC

SMOOTHNESS CRITERION

In the mathematical formulations, we only consider
here the case of binary classification. Each labeled
example xk (1 ≤ k ≤ l) is associated with a label
yk ∈ {−1, 1}, and we turn the classification task into
a regression one by looking for the values of a func-
tion f on both labeled and unlabeled examples xi

(1 ≤ i ≤ n), such that f(xi) ∈ [−1, 1]. The pre-
dicted class of xi is thus sign(f(xi)). Note however
that all algorithms proposed extend naturally to mul-
ticlass problems, using the usual one vs. rest trick.

Among the previously proposed approaches, several
can be cast as the minimization of a criterion (often a
quadratic form) in terms of the function values f(xi)
at the labeled and unlabeled training examples xi:

CW,D,D′,λ(f) =
1

2

∑

i,j∈U∪L

W (xi, xj)D(f(xi), f(xj))

+ λ
∑

i∈L

D′(f(xi), yi) (1)

where U is the unlabeled set, L the labeled set, xi

the i-th example, yi the target label for i ∈ L, W (·, ·)
is a positive similarity function (e.g. a Gaussian ker-
nel) applied on a pair of inputs, and D(·, ·) and D′(·, ·)
are lower-bounded dissimilarity functions applied on a
pair of output values. Three methods using a crite-
rion of this form have already been proposed: (Zhu
et al., 2003a), (Zhou et al., 2004) (where an addi-
tional regularization term is added to the cost, equal
to λ

∑

i∈U f(xi)
2), and (Belkin et al., 2004) (where for

the purpose of theoretical analysis, they add the con-
straint

∑

i f(xi) = 0). To obtain a quadratic form in
f(xi) one typically chooses D and D′ to be quadratic,
e.g. the Euclidean distance. This criterion can then
be minimized exactly for the n function values f(xi).
In general this could cost O(n3) operations, possibly
less if the input similarity function W (·, ·) is sparse.

A quadratic dissimilarity function makes a lot of sense
in regression problems but has also been used success-
fully in classification problems, by looking for a con-

tinuous labeling function f . The first term of eq. 1
indeed enforces the smoothness of f . The second term
makes f consistent with the given labels. The hyper-
parameter λ controls the trade-off between those two
costs. It should depend on the amount of noise in the
observed values yi, i.e. on the particular data distribu-
tion (although for example (Zhu et al., 2003a) consider
forcing f(xi) = yi, which corresponds to λ = +∞).

In the following we study the case where D and D′ are
the Euclidean distance. We also assume samples are
sorted so that L = {1, . . . , l} and U = {l + 1, . . . , n}.
The minimization of the criterion w.r.t. all the f(xi)

for i ∈ L ∪ U then gives rise to the linear system

A~f = λ~y (2)

with
~y = (y1, . . . , yl, 0, . . . , 0)

T (3)

~f = (f(x1), . . . , f(xn))T

and, using the matrix notation Wij = W (xi, xj), the
matrix A written as follows:

A = λ∆L + Diag(W1n)−W (4)

where Diag(v) is the matrix whose diagonal is the vec-
tor v, 1n is the vector of n ones, and ∆L (n × n) is

(∆L)ij = δijδi∈L. (5)

This solution has the disadvantage of providing no ob-
vious prediction for new examples, but the method is
generally used transductively (the test examples are
included in the unlabeled set). To obtain function in-
duction without having to solve the linear system for
each new test point, one alternative would be to pa-
rameterize f with a flexible form such as a neural net-
work or a linear combination of non-linear bases (see
also (Belkin & Niyogi, 2003)). Another is the induc-
tion formula proposed below.

3 FUNCTION INDUCTION

FORMULA

In order to transform the above transductive algo-
rithms into function induction algorithms we will do
two things: (i) consider the same type of smoothness
criterion as in eq. 1, but including a test example x,
and (ii) as in ordinary function induction (by opposi-
tion to transduction), require that the value of f(xi)
on training examples xi remain fixed even after x has
been added2.

The second point is motivated by the prohibitive cost
of solving again the linear system, and the reasonable
assumption that the value of the function over the un-
labeled examples will not change much with the addi-
tion of a new point. This is clearly true asymptotically
(when n→∞). In the non-asymptotic case we should
expect transduction to perform better than induction
(again, assuming test samples are drawn from the same
distribution as the training data), but as shown in our
experiments, the loss is typically very small, and com-
parable to the variability due to the selection of train-
ing examples.

Adding terms for a new unlabeled point x in eq. 1 and
keeping the value of f fixed on the training points xj

2Here we assume x to be drawn from the same distri-
bution as the training samples: if it is not the case, this
provides another justification for keeping the f(xi) fixed.



leads to the minimization of the modified criterion

C∗
W,D(f(x)) =

∑

j∈U∪L

W (x, xj)D(f(x), f(xj)). (6)

Taking for D the usual Euclidean distance, C∗
W,D is

convex in f(x) and is minimized when

f(x) =

∑

j∈U∪L W (x, xj)f(xj)
∑

j∈U∪L W (x, xj)
= f̃(x). (7)

Interestingly, this is exactly the formula for Parzen
windows or Nadaraya-Watson non-parametric regres-
sion (Nadaraya, 1964; Watson, 1964) when W is the
Gaussian kernel and the estimated f(xi) on the train-
ing set are considered as desired values.

One may want to see what happens when we apply f̃
on a point xi of the training set. For i ∈ U , we obtain
that f̃(xi) = f(xi). But for i ∈ L,

f̃(xi) = f(xi) +
λ(f(xi)− yi)

∑

j∈U∪L W (xi, xj)
.

Thus the induction formula (eq. 7) gives the same re-
sult as the transduction formula (implicitely defined
by eq. 2) over unlabeled points, but on labeled exam-
ples it chooses a value that is “smoother” than f(xi)
(not as close to yi). This may lead to classification
errors on the labeled set, but generalization error may
improve by allowing non-zero training error on labeled
samples. This remark is also valid in the special case
where λ = +∞, where we fix f(xi) = yi for i ∈ L,
because the value of f̃(xi) given by eq. 7 may be dif-
ferent from yi (though experiments showed such label
changes were very unlikely in practice).

The proposed algorithm for semi-supervised learning
is summarized in algorithm 1, where we use eq. 2 for
training and eq. 7 for testing.

Algorithm 1 Semi-supervised induction

(1) Training phase
Compute A = λ∆L + Diag(W1n)−W (eq. 4)

Solve the linear system A~f = λ~y (eq. 2) to obtain

f(xi) = ~fi

(2) Testing phase
For a new point x, compute its label f̃(x) by eq. 7

4 SPEEDING UP THE TRAINING

PHASE

A simple way to reduce the cubic computational
requirement and quadratic memory requirement for
’training’ the non-parametric semi-supervised algo-
rithms of section 2 is to force the solutions to be ex-
pressed in terms of a subset of the examples. This
idea has already been exploited successfully in a differ-
ent form for other kernel algorithms, e.g. for Gaussian
processes (Williams & Seeger, 2001).

Here we will take advantage of the induction formula
(eq. 7) to simplify the linear system to m � n equa-
tions and variables, where m is the size of a subset of
examples that will form a basis for expressing all the
other function values. Let S ⊂ L ∪ U with L ⊂ S be
such a subset, with |S| = m. Define R = U\S. The
idea is to force f(xi) for i ∈ R to be expressed as a
linear combination of the f(xj) with j ∈ S:

∀i ∈ R, f(xi) =

∑

j∈S W (xi, xj)f(xj)
∑

j∈S W (xi, xj)
. (8)

Plugging this in eq. 1, we separate the cost in four
terms (CRR, CRS , CSS , CL):

1

2

∑

i,j∈R

W (xi, xj) (f(xi)− f(xj))
2

︸ ︷︷ ︸

CRR

+ 2×
1

2

∑

i∈R,j∈S

W (xi, xj) (f(xi)− f(xj))
2

︸ ︷︷ ︸

CRS

+
1

2

∑

i,j∈S

W (xi, xj) (f(xi)− f(xj))
2

︸ ︷︷ ︸

CSS

+ λ
∑

i∈L

(f(xi)− yi)
2

︸ ︷︷ ︸

CL

Let ~f denote now the vector with entries f(xi), only for
i ∈ S (they are the values to identify). To simplify the
notations, decompose W in the following sub-matrices:

W =

(
WSS W ′

RS

WRS WRR

)

.

with WSS of size (m×m), WRS of size ((n−m)×m)
and WRR of size ((n−m)×(n−m)). Also define W RS

the matrix of size ((n−m)×m) with entries
Wij∑

k∈S
Wik

,

for i ∈ R and j ∈ S.

Using these notations, the gradient of the above cost
with respect to ~f can be written as follows:

[

2
(

W
T

RS (Diag(WRR1r)−WRR) WRS

)]

~f
︸ ︷︷ ︸

∂CRR

∂ ~f

+
[

2
(

Diag(WSR1r)−W
T

RSWRS

)]

~f
︸ ︷︷ ︸

∂CRS

∂ ~f

+ [2 (Diag(WSS1m)−WSS)] ~f
︸ ︷︷ ︸

∂CSS

∂ ~f

+2λ∆L(~f − ~y)
︸ ︷︷ ︸

∂CL

∂ ~f

where ∆L is the same as in eq. 5, but is of size (m×m),
and ~y is the vector of targets (eq. 3), of size m. The



linear system A~f = λ~y of eq. 2 is thus redefined with
the following system matrix:

A = λ∆L

+ W
T

RS (Diag(WRR1r)−WRR) WRS

+ Diag(WSR1r)−W
T

RSWRS

+ Diag(WSS1m)−WSS .

The main computational cost now comes from the
computation of ∂CRR

∂ ~f
. To avoid it, we simply choose

to ignore CRR in the total cost, so that the matrix A
can be computed in O(m2(n − m)) time, using only
O(m2) memory, instead of respectively O(m(n−m)2)
time and O(m(n − m)) memory when keeping CRR.
By doing so we lessen the smoothness constraint on
f , since we do not take into account the part of the
cost enforcing smoothness between the examples in R.
However, this may have a beneficial effect. Indeed, the
costs CRS and CRR can be seen as regularizers encour-
aging the smoothness of f on R. In particular, using
CRR may induce strong constraints on f that could be
inappropriate when the approximation of eq. 8 is inex-
act (which especially happens when a point in R is far
from all examples in S). This could constrain f too
much, thus penalizing the classification performance.
In this case, discarding CRR, besides yielding a signif-
icant speed-up, also gives better results. Algorithm 2
summarizes this algorithm (not using CRR).

Algorithm 2 Fast semi-supervised induction

Choose a subset S ⊇ L (e.g. with algorithm 3)
R← U \ S
(1) Training phase

A← λ∆L + Diag(WSR1r)

− W
T

RSWRS + Diag(WSS1m)−WSS

Solve the linear system A~f = λ~y to obtain f(xi) =
~fi for i ∈ S
Use eq. 8 to obtain f(xi) for i ∈ R
(2) Testing phase
For a new point x, compute its label f̃(x) by eq. 7

In general, training using only a subset of m� n sam-
ples will not perform as well as using the whole dataset.
Thus, it can be important to choose the examples in
the subset carefully to get better results than a ran-
dom selection. Our criterion to choose those examples
is based on eq. 8, that shows f(xi) for i /∈ S should be
well approximated by the value of f at the neighbors
of xi in S (the notion of neighborhood being defined
by W ). Thus, in particular, xi for i /∈ S should not
be too far from the examples in S. This is also im-
portant because when discarding the part CRR of the
cost, we must be careful to cover the whole manifold
with S, or we may leave “gaps” where the smoothness

of f would not be enforced. This suggests to start with
S = ∅ and R = U , then add samples xi iteratively by
choosing the point farthest from the current subset, i.e.
the one that minimizes

∑

j∈L∪S W (xi, xj). Note that
adding a sample that is far from all other examples
in the dataset will not help, thus we discard an added
point if this is the case (xj being “far” is defined by a
threshold on

∑

i∈R\{j} W (xi, xj)). In the worst case,

this could make the algorithm in O(n2), but assuming
only few examples are far from all others, it scales as
O(mn). Once this first subset is selected, we refine it
by training the algorithm presented in section 2 on the
subset S, in order to get an approximation of the f(xi)
for i ∈ S, and by using the induction formula of sec-
tion 3 (eq. 7) to get an approximation of the f̃(xj) for
j ∈ R. We then discard samples in S for which the con-
fidence in their labels is high3, and replace them with
samples in R for which the confidence is low (sam-
ples near the decision surface). One should be care-
ful when removing samples, though: we make sure we
do not leave “empty” regions (i.e.

∑

i∈L∪S W (xi, xj)
must stay above some threshold for all j ∈ R). Finally,
labeled samples are added to S. Overall, the cost of
this selection phase is on the order of O(mn + m3).
Experiments showing its effectiveness are presented in
section 5.3. The subset selection algorithm4 is sum-
marized in algorithm 3.

5 EXPERIMENTS

5.1 FUNCTION INDUCTION

Here, we want to validate our induction formula
(eq. 7): the goal is to show that it gives results close
to what would have been obtained if the test points
had been included in the training set (transduction).
Indeed, we expect that the more unlabeled points the
better, but how much better? Experiments have been
performed on the “Letter Image Recognition” dataset
of the UCI Machine Learning repository (UCI MLR).
There are 26 handwritten characters classes, to be dis-
criminated using 16 geometric features. However, to
keep things simple, we reduce to a binary problem by
considering only the class formed by the characters
’I’ and ’O’ and the class formed by ’J’ and ’Q’ (the
choice of these letters makes the problem harder than
a basic two-character classification task). This yields a
dataset of 3038 samples. We use for W (x, y) the Gaus-

sian kernel with bandwidth 1: W (x, y) = e−||x−y||2 .

First, we analyze how the labels can vary between in-

3 In a binary classification task, the confidence is given
by |f(xi)|. In the multi-class case, it is the difference be-
tween the weights of the two classes with highest weights.

4Note that it would be interesting to investigate the use
of such an algorithm in cases where one can obtain labels,
but at a cost, and needs to select which samples to label.



Algorithm 3 Subset selection

δ is a small threshold, e.g. δ = 10−10

(1) Greedy selection
S ← ∅ {The subset we are going to build}
R← U {The rest of the unlabeled data}
while |S|+ |L| < m do

Find j ∈ R s.t.
∑

i∈R\{j} W (xi, xj) ≥ δ and
∑

i∈L∪S W (xi, xj) is minimum
S ← S ∪ {j}
R← R \ {j}

(2) Improving the decision surface
Compute an approximate of f(xi), i ∈ S and f̃(xj),
j ∈ R, by applying algorithm 1 with the labeled set
L and the unlabeled set S and using eq. 7 on R
SH ← the points in S with highest confidence (see
footnote 3)
RL ← the points in R with lowest confidence
for all j ∈ SH do

if mini∈R

∑

k∈L∪S\{j} W (xi, xk) ≥ δ then

k∗ ← argmink∈RL

∑

i∈L∪S W (xk, xi)
S ← (S \ {j}) ∪ {k∗} {Replace j by k∗ in S}
R← (R \ {k∗}) ∪ {j} {Replace k∗ by j in R}

S ← S ∪ L {Add the labeled data to the subset}

duction and transduction when the test set is large
(section 5.1.1), then we study how this variation com-
pares to the intrinsic variability due to the choice of
training data (section 5.1.2).

5.1.1 Induction vs. Transduction

When we add new points to the training set, two ques-
tions arise. First, do the f(xi) change significantly?
Second, how important is the difference between in-
duction and transduction over a large amount of new
points, in terms of classification performance?

The experiments shown in fig. 1 have been made con-
sidering three training sets, T1000, T2000 and T3038,
containing respectively 1000, 2000 and 3038 samples
(the results plotted are averaged on 10 runs with ran-
domly selected T1000 and T2000). The first two
curves show the percentage of unlabeled data in T1000
and T2000 whose label has changed compared to the
labels obtained when training over T3038 (the whole
dataset). This validates our hypothesis that the f(xi)
do not change much when adding new training points.

The next three curves show the classification error for
the unlabeled data respectively on T3038 \ T2000,
T3038 \ T1000 and T3038 \ T1000, for the algorithm
trained respectively on T2000, T1000 and T3038. This
allows us to see that the induction’s performance is
close to that of transduction (the average relative in-
crease in classification error compared to transduction
is about 20% for T1000 and 10% for T2000). In addi-
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Figure 1: Percentage of unlabeled training data whose
label has changed when test points were added to the
training set, and classification error in induction and
transduction. Horizontal axis: number of labeled data.

tion, the difference is very small for large amounts of
labeled data as well as for very small amounts. This
can be explained in the first case by the fact that
enough information is available in the labeled data to
get close to optimal classification, and in the second
case, that there are too few labeled data to ensure an
efficient prediction, either transductive or inductive.

5.1.2 Varying The Test Set Size

The previous experiments have shown that when the
test set is large in comparison with the training set,
the induction formula will not be as efficient as trans-
duction. It is thus interesting to see how evolves the
difference between induction and transduction as the
test set size varies in proportion with the training set
size. In particular, for which size of the test set is
that difference comparable to the sensitivity of the al-
gorithm with respect to the choice of training set?

To answer this question, we need a large enough
dataset to be able to choose random training sets. The
whole Letters dataset is thus used here, and the binary
classification problem is to discriminate the letters ’A’
to ’M’ from the letters ’N’ to ’Z’. We take a fixed test
set of size 1000. We repeat 10 times the experiments
that consists in: (i) choosing a random base training
set of 2000 samples (with 10% labeled), and (ii) com-
puting the average error on test points in transduction

by adding a fraction of them to this base training set
and solving the linear system (eq. 2), repeating this so
as to compute the error on all test points.

The results are shown in fig. 2, when we vary the num-
ber of test points added to the training set. Adding 0
test points is slightly different, since it corresponds to



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.19

0.2

0.21

0.22

0.23

0.24

0.25

Test error

Figure 2: Horizontal axis: number of test points added
in proportion with the size of the training set. Vertical
axis: test error (in transduction for a proportion > 0,
and in induction for the proportion 0).

the induction setting, that we plot here for comparison
purpose. We see that adding a fraction of test exam-
ples corresponding to less than 5% of the training set
does not yield a significant decrease in the test error
compared to induction, given the intrinsic variability
due to the choice of training set. It could be interest-
ing to compare induction with the limit case where we
add only 1 test point at step (ii). We did not do it
because of the computational costs, but one would ex-
pect the difference with induction to be smaller than
for the 5% fraction.

5.2 COMPARISON WITH EXISTING
ALGORITHM

We compare our proposed algorithm (alg. 1) to the
semi-supervised Laplacian algorithm from (Belkin &
Niyogi, 2003), for which classification accuracy on the
MNIST database of handwritten digits is available.
Benchmarking our induction algorithm against the
Laplacian algorithm is interesting because the latter
does not fall into the general framework of section 2.

In order to obtain the best performance, a few refine-
ments are necessary. First, it is better to use a sparse
weighting function, which allows to get rid of the noise
introduced by far-away examples, and also makes com-
putations faster. The simplest way to do this is to
combine the original weighting function (the Gaussian
kernel) with k-nearest-neighbors. We define a new
weighting function Wk by Wk(xi, xj) = W (xi, xj) if
xi is a k-nearest-neighbor of xj or vice-versa, and 0
otherwise. Second, Wk is normalized as in Spectral
Clustering (Ng et al., 2002), i.e.

W k(xi, xj) =
Wk(xi, xj)

√
1

n

∑

r 6=i Wk(xi, xr)
∑

r 6=j Wk(xr, xk)
.

Table 1: Comparative Classification Error of the
Laplacian Algorithm (Belkin & Niyogi, 2003),
WholeSet in Transduction and WholeSet in Induc-
tion on the MNIST Database. On the horizontal axis
is the number of labeled examples and we use two dif-
ferent sizes of training sets (1000 and 10000 examples).

Labeled 50 100 500 1000 5000
Total: 1000

Laplacian 29.3 19.6 11.5
WholeSettrans 25.4 17.3 9.5

WholeSetind 26.3 18.8 11.3
Total: 10000

Laplacian 25.5 10.7 6.2 5.7 4.2
WholeSettrans 25.1 11.3 5.3 5.2 3.5

WholeSetind 25.1 11.3 5.7 5.1 4.2

Finally, the dataset is systematically preprocessed by
a Principal Component Analysis on the training part
(labeled and unlabeled), to further reduce noise in the
data (we keep the first 45 principal components).

Results are presented in table 1. Hyperparameters
(number of nearest neighbors and kernel bandwidth)
were optimized on a validation set of 20000 samples,
while the experiments were done on the rest (40000
samples). The classification error is averaged over 100
runs, where the train (1000 or 10000 samples) and
test sets (5000 samples) are randomly selected among
those 40000 samples. Standard errors (not shown) are
all under 2% of the error. The Laplacian algorithm
was used in a transductive setting, while we separate
the results for our algorithm into WholeSettrans (error
on the training data) and WholeSetind (error on the
test data, obtained thanks to the induction formula)5.
On average, both WholeSettrans and WholeSetind

slightly outperform the Laplacian algorithm.

5.3 APPROXIMATION ALGORITHMS

The aim of this section is to compare the classification
performance of various algorithms:

• WholeSet, the original algorithm presented in
sections 2 and 3, where we make use of all unla-
beled training data (same as WholeSetind in the
previous section),

• RSubsubOnly, the algorithm that consists in
speeding-up training by using only a random sub-
set of the unlabeled training samples (the rest is
completely discarded),

• RSubRR and RSubnoRR, the approximation algo-
rithms described in section 4, when the subset is
selected randomly (the second algorithm discards
the part CRR of the cost for faster training),

5See section 5.3 for the origin of the name WholeSet.



Table 2: Comparative Computational Requirements
(n = number of training data, m = subset size)

Time Memory
WholeSet O(n3) O(n2)
RSubsubOnly O(m3) O(m2)
RSubRR

SSubRR
O(m(n−m)2) O(m(n−m))

RSubnoRR

SSubnoRR
O(m2(n−m)) O(m2)

• SSubRR and SSubnoRR, which are similar to
those above, except that the subset is now selected
as in algorithm 3.

Table 2 summarizes time and memory requirements
for these algorithms: in particular, the approximation
method described in section 4, when we discard the
part CRR of the cost (RSubnoRR and SSubnoRR), im-
proves the computation time and memory usage by a
factor approximately (n/m)2.
The classification performance of these algorithms was
compared on three multi-class problems: LETTERS
is the “Letter Image Recognition” dataset from the
UCI MLR. (26 classes, dimension 16), MNIST con-
tains the first 20000 samples of the MNIST database
of handwritten digits (10 classes, dimension 784), and
COVTYPE contains the first 20000 samples of the
normalized6 “Forest CoverType” dataset from the UCI
MLR. (7 classes, dimension 54).

We repeat 50 times the experiment that consists in
choosing randomly 10000 samples as training data and
the rest as the test set, and computing the test error
(using the induction formula) for the different algo-
rithms. The average classification error on the test
set (with standard error) is presented in table 3 for
WholeSet, RSubsubOnly, RSubnoRR and SSubnoRR.
For each dataset, results for a labeled fraction of 1%,
5% and 10% of the training data are presented. In al-
gorithms using only a subset of the unlabeled data (i.e.
all but WholeSet), the subset contains only 10% of the
unlabeled set. Hyperparameters have been roughly es-
timated and remain fixed on each dataset. In particu-
lar, λ (in eq. 1) is set to 100 for all datasets, and the
bandwidth of the Gaussian kernel used is set to 1 for
LETTERS, 1.4 for MNIST and 1.5 for COVTYPE.

The approximation algorithms using the part CRR of
the cost (RSubRR and SSubRR) are not shown in the
results, because it turns out that using CRR does not
necessarily improve the classification accuracy, as ar-
gued in section 4. Additionally, discarding CRR makes
training significantly faster. Compared to WholeSet,
typical training times with these specific settings show
that RSubsubOnly is about 150 times faster, RSubnoRR

6Scaled so that each feature has standard deviation 1.

Table 3: Comparative Classification Error (Induction)
of WholeSet, RSubsubOnly, RSubnoRR and SSubnoRR,
for Various Fractions of Labeled Data.

% labeled LETTERS MNIST COVTYPE

1%
WholeSet 56.0± 0.4 35.8± 1.0 47.3± 1.1

RSubsubOnly 59.8± 0.3 29.6± 0.4 44.8± 0.4
RSubnoRR 57.4± 0.4 27.7± 0.6 75.7± 2.5
SSubnoRR 55.8± 0.3 24.4± 0.3 45.0± 0.4

5%
WholeSet 27.1± 0.4 12.8± 0.2 37.1± 0.2

RSubsubOnly 32.1± 0.2 14.9± 0.1 35.4± 0.2
RSubnoRR 29.1± 0.2 12.6± 0.1 70.6± 3.2
SSubnoRR 28.5± 0.2 12.3± 0.1 35.8± 0.2

10%
WholeSet 18.8± 0.3 9.5± 0.1 34.7± 0.1

RSubsubOnly 22.5± 0.1 11.4± 0.1 32.4± 0.1
RSubnoRR 20.3± 0.1 9.7± 0.1 64.7± 3.6
SSubnoRR 19.8± 0.1 9.5± 0.1 33.4± 0.1

about 15 times, and SSubnoRR about 10 times. Note
however that these factors increase very fast with the
size of the dataset (10000 samples is still “small”).

The first observation that can be made from table 3
is that SSubnoRR consistently outperforms (or does
about the same as) RSubnoRR, which validates our
subset selection step (alg. 3). However, rather sur-
prisingly, RSubsubOnly can yield better performance
than WholeSet (on MNIST for 1% of labeled data,
and systematically on COVTYPE): adding more un-
labeled data actually harms the classification accuracy.
There may be various reasons to this, the first one be-
ing that hyperparameters should be optimized sepa-
ratly for each algorithm to get their best performance.
In addition, for high-dimensional data without obvious
clusters or low-dimensional representation, it is known
that the inter-points distances tend to be all the same
and meaningless (see e.g. (Beyer et al., 1999)). Thus,
using a Gaussian kernel will force us to consider rather
large neighborhoods, which prevents a sensible propa-
gation of labels through the data during training. Nev-
ertheless, a constatation that arises from those results
is that SSubnoRR never “breaks down”, being always
either the best or close to the best. It is able to take ad-
vantage of all the unlabeled data, while focussing the
computations on a well chosen subset. The importance
of the subset selection is made clear with COVTYPE,
where choosing a random subset can be catastrophic:
this is probably because the approximation made in
eq. 8 is very poor for some of the points which are not
in the subset, due to the low structure in the data.

Note that the goal here is not to obtain the best perfor-
mance, but to compare the effectiveness of those algo-



rithms under the same experimental settings. Indeed,
further refinements of the weighting function (see sec-
tion 5.2) can greatly improve classification accuracy.

Additional experiments were performed to asses the
superiority of our subset selection algorithm over ran-
dom selection. In the following, unless specified oth-
erwise, datasets come from the UCI MLR, and were
preprocessed with standard normalization. The ker-
nel bandwidth was approximately chosen to optimize
the performance of RSubnoRR, and λ was arbitrar-
ily set to 100. The experiments consist in taking as
training set 67% of the available data, 10% of which
are labeled, and using the subset approximation meth-
ods RSubnoRR and SSubnoRR with a subset of size
10% of the available unlabeled training data. The
classification error is then computed on the rest of
the data (test set), and averaged over 50 runs. On
average, on the 8 datasets tested, SSubnoRR always
gives better performance. The improvement was not

found to be statistically significative for the follow-
ing datasets: Mushroom (8124 examples × 21 vari-
ables), Statlog Landsat Satellite (6435×36) and Nurs-
ery (12960× 8). SSubnoRR performs significantly bet-
ter than RSubnoRR (with a relative decrease in classi-
fication error from 4.5 to 12%) on: Image (2310× 19),
Isolet (7797×617), PenDigits (10992×16), SpamBase
(4601×57) and the USPS dataset (9298×256, not from
UCI). Overall, our experiments show that random se-
lection can sometimes be efficient enough (especially
with large low-dimensional datasets), but smart sub-
set selection is to be preferred, since it (almost always)
gives better and more stable results.

6 CONCLUSION

The first contribution of this paper is an extension
of previously proposed non-parametric (graph-based)
semi-supervised learning algorithms, that allows one
to efficiently perform function induction (i.e. cheaply
compute a prediction for a new example, in time O(n)
instead of O(n3)). The extension is justified by the
minimization of the same smoothness criterion used
to obtain the original algorithms in the first place.

The second contribution is the use of this induction
formula to define new optimization algorithms speed-
ing up the training phase. Those new algorithms are
based on using of a small subset of the unlabeled data,
while still keeping information from the rest of the
available samples. This subset can be heuristically
chosen to improve classification performance over ran-
dom selection. Such algorithms yield important reduc-
tions in computational and memory complexity and,
combined with the induction formula, they give predic-
tions close to the (expensive) transductive predictions.
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