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Abstract

Currently there are multiple incompatible array/matrix/n-dimensional base object
implementations for GPUs. This hinders the sharing of GPU code and causes
duplicate development work. This paper proposes and presents a first version of
a common GPU n-dimensional array (tensor) named GpuNdArray [1] that works
with both CUDA and OpenCL. It will be usable from Python, C, and possibly
other programming languages.

1 Introduction

Efficient numerical vector, matrix, and tensor computations form the core of much of scientific
computing. The Python library Numpy [6], the de facto standard for efficient numerical computa-
tions with CPUs in Python, provides a convenient arbitrary-dimensional array (i.e., tensor) object
with support for strides 1 and broadcasting 2. By contrast there are at least 4 different GPU array
implementations in Python: CudaNdarray (Theano) [2], GPUArray (PyCUDA) [4], GPUArray (Py-
OpenCL) [4] and CUDAMatrix (cudamat) [5]. There are also other implementations like Thrust [3]
in C++. One problem is that they are incompatible with each other. Each of them implements a dif-
ferent subset of the features that Numpy provides on the CPU. Some implementations support only
vectors or matrices, some support only float32 3, or only contiguous memory layouts (no strides),
etc. . . None of them targets simultaneously CUDA and OpenCL back-ends.

Our objective was to design a more flexible common GPU n-dimensional array object, without the
limitations of current implementations, and with the hope that it may become largely adopted. Our
specific goals for this design were to:

• Make a n-dimensional array base object on the GPU that supports strides and broadcasting,
1 Strides are a way to specify for each dimension in an n-dimensional array a sub-range and the number of

elements to skip when going to the next element. This allows to operate on a view of the data that represents,
e.g. a sub-matrix, or even only odd rows of a matrix, without copying any data. The part to view in each
dimension is specified as a range of elements, with a step between each element. This is represented by a slice
with an inclusive start index, an exclusive end index and a step.

2 Broadcasting is a generalization of element-wise operations on tensors that extends certain dimensions
to fit the required shape. For example, this allows adding a vector to all columns of a matrix. Few current
GPU array implementations support this very useful construct. It is however easy to add when we have strides
support.

3 float32 corresponds to single precision floating point numbers.
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• Have a Python interface similar to numpy.ndarray (to make it more seamless and appealing
to the Python community),

• Make the development of efficient specialized operations with this n-dimensional array no
harder than with more restricted array objects,

• Have the base object in C to allow collaboration with other non-Python projects (so that
people from C, C++, Ruby, R, etc... may use the same low-level base GPU ndarray),

• Be compatible with CUDA and OpenCL.

We believe that an arbitrary-dimensional array is a basic GPU object and that a common implemen-
tation is required. Lacking such a basic object, programmers face added complexity when dealing
with algorithms that need more dimensions than what is provided. Having the base object support
n-dimensions eliminates this complexity. We believe that there are several reasons why there has
not yet been a common GPU implementation fulfilling our objectives.

One reason may be that such a general tensor implementation on GPU is difficult and time consum-
ing to get right and efficient. In addition, developing an efficient operation for the general memory
layout can be cumbersome or sometimes even impossible. This can be alleviated by providing func-
tions to convert any tensor to a desired, possibly more restricted, memory layout (such as contiguous
memory). These can then be used to convert the inputs for kernels that support only a certain re-
stricted layout.

Another reason may be that support for additional dimensions requires extra computations for index
computation in the kernel which can sometimes outweigh the useful computation performed on the
GPU. In order to offset this cost, automatic optimizations like the collapsing of dimensions can be
done before launching the kernel. This is currently implemented for element-wise operations as
discussed in section 3.

We believe that if we provide such optimized functions for element-wise and reduction operations,
we will cover enough cases where the conversion from one memory layout to another can be com-
bined with computations. 4

2 Existing GPU array implementations

2.1 Theano

Theano is the system that provides the closest approximation of a GPU tensor. According to its web
site Theano [2] is: “a Python library that allows you to define, optimize, and evaluate mathematical
expressions involving multi-dimensional arrays efficiently”.

It implements a GPU tensor with strides and broadcasting, but supports only float32 and the CUDA
back-end. Also, the strides information are stored differently than in numpy. Theano stores the
number of elements to skip to access the next element while numpy stores the number of bytes to
skip.

2.2 PyCUDA/PyOpenCL

PyCUDA [4] and PyOpenCL [4] are Python wrappers around CUDA and OpenCL respectively. In
addition to wrapping their respective library, they do automatic memory management, provide a
GPUArray object and some abstraction for compilation. They also automatically translate errors to
Python exceptions.

Their GPU array objects are limited to contiguous memory regions. They add shape properties to
allow using this contiguous memory region as n-dimensional array. They don’t support strides nor
broadcasting, but they support many data types other than float32.

4This can still impact the performance due to coalescing constraints (the hardware has different speeds for
different memory access patterns), but we don’t expect that to be significant, most of the time.
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2.3 CUDAMat

On the CUDAMat [5] website we find the following mission statement: “The aim of the cud-
amat[sic] project is to make it easy to perform basic matrix calculations on CUDA-enabled GPUs
from Python. cudamat provides a Python matrix class that performs calculations on a GPU.”

So it supports only CUDA and matrices. If we look deeper we see that it doesn’t support strides and
supports only float32. Broadcasting is supported via a function, but not via the usual numpy syntax.

2.4 Gnumpy

Gnumpy [7] is built on top of CUDAMat. It works only with contiguous n-dimensional arrays and
does not support strides. It also adds support for the boolean type by using 1.0 and 0.0 in floating
point to represent true and false, respectively. It also supports broadcasting via the numpy syntax.

2.5 Thrust

Thrust [3] is a C++ template library. It provides a vector object for CUDA. It supports all data types,
but only one dimensional vectors. This means no broadcasting and no strides.

2.6 Summary regarding existing implementations

We see clearly that none of these implementations offer all of what we would like for a flexible
numpy-like common GPU tensor. As the Theano implementation supports strides and that it is
easier to add other types than to add stride support, we used its code as a starting point for our
implementation. Theano also implements some optimizations of indexing computations to lower
the performance cost of having more dimensions.

3 Current state of our common GPU array implementation

We currently have all the code implemented and working for CUDA. The OpenCL implementation
is only missing the copy of non-contiguous memory regions.

3.1 Functionality

The current base code can allocate arrays, transfer data to and from the CPU, create views of that
data (such as sub-arrays with strides) and run element-wise kernels with dimensions collapsing. In
order to support multiple back-ends (CUDA, OpenCL, ...) we have created a list of utility functions
that are to be implemented for each while the rest of the code is shared.

The back-end independent parts take care of indexing, making views, and provide an interface that
is very similar to numpy. This is the part that supports any (valid) combination of dimensions and
strides. Most importantly, the dimension collapsing optimizations are device-independent and can
be reused between back-ends.

We started the implementation of sum reductions in CUDA. We have done reductions over all axis
or over 1 axis when the input have 1, 2 or 3 dimensions after dimension collapsing.

We are still missing some fonctionalities before we reach full numpy compatibility, most importantly
setting a part of the array via assignation and reshaping.

3.2 Element-wise dimensions collapsing

To lower the indexing computation cost incurred with the increasing number of dimensions, we can
try to collapse consecutive dimensions for the purpose of doing element-wise computations. For
example, if we add tensors that are both C-contiguous (row-major) or f-contiguous (column-major),
we can use the same kernel for all dimensions (effectively collapsing any number of dimensions to
one) since the result will be the same. This way, we avoid most of the index computations.

3



In general, any non-strided dimension can be collapsed leaving only the index for the strided dimen-
sions to be computed in the kernel. So if we have only the last dimension of a tensor that has strides,
then we can collapse all the other dimensions (assuming that the other inputs don’t have strides) and
only do the indexing computations for one collapsed dimension and the original strided one.

4 Benchmarks

In order to measure the overhead of indexing computations relative to existing implementations, we
compared two element-wise kernels generated with PyCUDA to some generated using our algorithm
(including dimension collapsing and data with strides). The timings shown below do not include
transfer time nor allocation of output. They were measured on a GeForce GTX 580.

We can conclude from these benchmarks that we have a bigger base computational cost than Py-
CUDA, but that this base cost is not significant when the number of elements is large. We can see the
speedup that is brought by the dimension collapsing by comparing the "GPU ndarray 4d contiguous"
and "GPU ndarray 4d contiguous not collapsed" lines.

Normally on the GPU, one would expect strided access to be slower. However "GPU ndarray 4d
strided outer" (collapsed to 2 dimensions, with strides) is significantly faster then "GPU ndarray
4d contiguous not collapsed" (4 dimensions without strides). In this case we see that strides com-
putation has a lower overhead than uncollapsed plain indexing. There are other optimizations that
we could use to lower the index computation cost, for example we could use the implicit loops in
CUDA/OpenCL.

5 Future Plans

We plan to continue lowering the overhead paid for the added flexibility of having strides and arbi-
trary dimensions as much as possible and to complete the OpenCL implementation. We also plan to
implement reduction operations and to contact people from the C/C++ community to have a good
interface available in that language. We will also make element-wise code use the implicit looping
available in CUDA and OpenCL.

Since some Theano authors are working on this project, it will see some usage in a future version.
PyCUDA and PyOpenCL, on their side, have already started a branch to use this new object.
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6 Conclusion

We have motivated the need for a more general and flexible common GPU n-dimensional array, with
a similar level of functionality than Numpy’s ndarray. Our implementation shows that it is possible
to work around the additional complexity with the help of functions that convert memory layouts and
automatic optimization techniques like collapsing dimensions. We hope that people can appreciate
the potential benefits that such a common GPU array object would provide and will consider this
project for their future numerical computation needs.
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