
'

&

$

%

References

Gpundarray: A common n-dimensional array on the gpu. https://github.
com/inducer/compyte/wiki.

Travis E. Oliphant. Python for scientific computing. In Computing in Science and
Engineering, 9:10-20, 2007.

James Bergstra, Olivier Breleux, Frédéric Bastien, Pascal Lamblin, Rasvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley and Yoshua Bengio.
Theano: a CPU and GPU math expression compiler. In Proceedings of the Python
for Scientific Computing Conference (SciPy), 2010. Oral Presentation.

More references in the paper.

'

&

$

%

Future Plans
•Use in Theano/PyOpenCL/PyCUDA

•Design and implement a good C/C++ interface

• Find ways to lower the overhead

•Use the implicit looping provided by CUDA and OpenCL

•World domination!

'

&

$

%

Benchmarks

104 105 106 107

number of elements

0

500

1000

1500

2000

2500

3000

ti
m

e
 (

u
s)

a+1

pycuda
GPU ndarray 1d contiguous
GPU ndarray 4d contiguous
GPU ndarray 4d contiguous not collapsed
GPU ndarray 4d strided outer(2d after collapse)

104 105 106 107

number of elements

0

500

1000

1500

2000

2500

3000

3500

ti
m

e
 (

u
s)

a**2 + b**2 + 2*a*b

pycuda
GPU ndarray 1d contiguous
GPU ndarray 4d contiguous
GPU ndarray 4d contiguous not collapsed
GPU ndarray 4d strided outer(2d after collapse)

Speed for contiguous cases is similar to other implementations.

'

&

$

%

Element-wise dimension collapsing
• Indexing computations are expensive

•The cost is paid per dimension (irrespective of their size)

• Suppose we have some elementwise work to do on a 3d tensor B that is a view of
A, but strided in the innnermost dimension.

– We can merge the two outer dimensions to obtain an equivalent array that accesses
the same memory but with easier indexing.

→

'

&

$

%

Functionality
What we have
• data types

• dimensions

• strides, views

• broadcasting

• elementwise kernels

• partial reductions

• support for CUDA and OpenCL

Interfaces
• Python

•C++ interface similar to Numpy C-API
(depends on python)

Missing
• assignation

• reshaping

• a clean C interface

'

&

$

%

Why has this not been done before?
•Hard and time consuming to get right and efficient

•Certain algorithms cannot work on a general memory layout

• Indexing computations take up a significant portion of time on the GPU

'

&

$

%

Comparison of existing implementations
Package strides broadcast dimensions types backends
Theano yesa yes any float32 CUDA
PyCUDA no no any all CUDA
PyOpenCL no no any all OpenCL
CUDAMat no yesb 2 float32 CUDA
Gnumpy no yes any float32c CUDA
Thrust no no 1 all CUDA
Desired yes yes any all both

aas number of elements
bvia a function
cand a hackish form of boolean

'

&

$

%

Broadcasting
•We have matrix A (size [8,8]) and we want to add a bias vector b (size [8,1]) to it.

– This doesn’t fit the rules for elementwise operations since both objects do not have
the same number of elements.

• So we make virtual copies of b along the last dimension until it has the same size as
A.

– Then we can proceed as usual for elementwise.

'

&

$

%

Strides
• Strides is a way to specify how much memory to skip between each element of a

dimension.

– This corresponds to the size of one element times the number of elements

•We can use strides to take submatrix B from A without copying any memory.

– The strides stay the same but the number of elements in each dimension is reduced

'

&

$

%

Features desired
• Support for varying datatypes

• Support for an arbitrary number of dimensions

• Support for strides

• Support for broadcasting

•Compatibility with CUDA and OpenCL

Easy to develop
•Not always a good idea to make a gpu code work for all memory layout.

– Harder to code
– Harder to get efficient

• Just call as {contiguous,fortran} memory() on inputs!

'

&

$

%

Why do we need this?
•Efficient linear algebra is at the core of many scientific applications

•On the CPU, numpy ndarray provides a standard object (for python at least)

Why a new implementation?
There are already a number of existing GPU computing codebases:
Theano, PyCUDA/PyOpenCL, CUDAmat, Gnumpy, Thrust, ...
But:

1. All are incompatible

2. They do not support the full range of numpy ndarray features

3. None support both CUDA and OpenCL

Frédéric Bastien
Arnaud Bergeron
Andreas Klöckner
Pascal Vincent
Yoshua Bengio

A Common GPU n-Dimensional
Array for Python and C

https://github.com/inducer/compyte/wiki
https://github.com/inducer/compyte/wiki

