Universiteé

de Montréal

4 N
Why do we need this?
e Efficient linear algebra 1s at the core of many scientific applications
e On the CPU, numpy ndarray provides a standard object (for python at least)
Why a new implementation?

T'here are already a number of existing GPU computing codebases:

Theano, PyCUDA/PyOpenCL, CUDAmat, Gnumpy, Thrust, ...

But:

1. All are incompatible

2. They do not support the full range of numpy ndarray features

3. None support both CUDA and OpenCL
- /
4 N

Features desired

e Support for varying datatypes

e Support for an arbitrary number of dimensions

e Support for strides

e Support for broadcasting

e Compatibility with CUDA and OpenCL

Easy to develop
e Not always a good 1dea to make a gpu code work for all memory layout.
— Harder to code
— Harder to get efficient

e Just call as_{contiguous,fortran} memory() on inputs!

_ J
4 N
Strides
e Strides 1s a way to specify how much memory to skip between each element of a

dimension.
—This corresponds to the size of one element times the number of elements
e We can use strides to take submatrix /7 from /! without copying any memory.
— The strides stay the same but the number of elements 1in each dimension 1s reduced
_ j
4 N
Broadcasting
e We have matrix ~ (size [8,8]) and we want to add a bias vector 0 (size [8,1]) to it.
— This doesn’t fit the rules for elementwise operations since both objects do not have
the same number of elements. B
+
e S0 we make virtual copies of /) along the last dimension until i1t has the same size as
— Then we can proceed as usual for elementwise.
+
o /
4)
Comparison of existing implementations
Package strides broadcast dimensions types |backends
Theano yes® yes any float32 CUDA
PyCUDA no no any all CUDA
PyOpenCL no no any all OpenCL
CUDAMat no yes? 2 float32 CUDA
Gnumpy no yes any float32¢ CUDA
Thrust no no 1 all CUDA
Desired yes yes any all both
«as number of elements
’via a function
. cand a hackish form of boolean)

A Common GPU n-Dimensional
Array for Python and C

Frédéric Bastien
Arnaud Bergeron
Andreas Klockner

Pascal Vincent
Yoshua Bengio

Why has this not been done betore?

e Hard and time consuming to get right and efficient
e Certain algorithms cannot work on a general memory layout

¢ Indexing computations take up a significant portion of time on the GPU

~

-

Functionality
What we have Interfaces

e data types e Python

e C++ 1nterface similar to Numpy C-API
(depends on python)

e dimensions
e strides, views

e broadcasting

Missing
e clementwise kernels e assignation

e partial reductions
e support for CUDA and OpenCL

e reshaping

e a clean C interface

-

~

-~

Element-wise dimension collapsing

e Indexing computations are expensive
e The cost 1s paid per dimension (irrespective of their size)

e Suppose we have some elementwise work to do on a 3d tensor /- that 1s a view of

, but strided 1n the innnermost dimension.

— We can merge the two outer dimensions to obtain an equivalent array that accesses
the same memory but with easier indexing.

N

-

Benchmarks

a+1l a**2 + b**2 + 2*a*b
T T L L | T T o T T T T T T

3000 3500

+— pycuda
*—+ GPU ndarray 1d contiguous
— GPU ndarray 4d contiguous

+— pycuda
*—x GPU ndarray 1d contiguous
— GPU ndarray 4d contiguous

2500 3000

- GPU ndarray 4d contiguous not collapsed
~—— GPU ndarray 4d strided outer(2d after collapse)

2500
2000

us)

— 2000}
35

(
(

o 1500F

tim

£
S 1500}

1000

e GPU ndarray 4d contiguous not collapsed
1000f
N / >

~—— GPU ndarray 4d strided outer(2d after collapse)

10* 10° 10° 10’ 10* 10° 10° 10’
number of elements number of elements

Speed for contiguous cases 1s similar to other implementations.

/

_

-

-

Future Plans
e Use 1n Theano/PyOpenCL/PyCUDA

e Design and implement a good C/C++ interface
¢ Find ways to lower the overhead
e Use the implicit looping provided by CUDA and OpenCL

e World domination!

/

~

References

Gpundarray: A common n-dimensional array on the gpu. https://github.
com/inducer/compyte/wiki.

Travis E. Oliphant. Python for scientific computing. In Computing in Science and
Engineering, 9:10-20, 2007.

James Bergstra, Olivier Breleux, Frédéric Bastien, Pascal Lamblin, Rasvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley and Yoshua Bengio.
Theano: a CPU and GPU math expression compiler. In Proceedings of the Python
for Scientific Computing Conference (SciPy), 2010. Oral Presentation.

More references in the paper.

https://github.com/inducer/compyte/wiki
https://github.com/inducer/compyte/wiki

