
Large-Scale Learning of Embeddings with Reconstruction Sampling

Yann N. Dauphin(1) dauphiya@iro.montreal.ca
Xavier Glorot(1) glorotxa@iro.montreal.ca
Yoshua Bengio(1) bengioy@iro.montreal.ca
(1) Dept. IRO, Université de Montréal. Montréal (QC), H3C 3J7, Canada

Abstract

In this paper, we present a novel method
to speed up the learning of embeddings
for large-scale learning tasks involving very
sparse data, as is typically the case for Natu-
ral Language Processing tasks. Our speed-up
method has been developed in the context of
Denoising Auto-encoders, which are trained
in a purely unsupervised way to capture the
input distribution, and learn embeddings for
words and text similar to earlier neural lan-
guage models. The main contribution is a
new method to approximate reconstruction
error by a sampling procedure. We show how
this approximation can be made to obtain
an unbiased estimator of the training crite-
rion, and we show how it can be leveraged
to make learning much more computationally
efficient. We demonstrate the effectiveness of
this method on the Amazon and RCV1 NLP
datasets. Instead of reducing vocabulary size
to make learning practical, our method allows
us to train using very large vocabularies. In
particular, reconstruction sampling requires
22x less training time on the full Amazon
dataset.

1. Introduction

In recent years, there has been a surge of interest for
unsupervised representation learning algorithms, often
for the purpose of building deep hierarchies of fea-
tures 1. See (Bengio, 2009) for a recent review of Deep

1see NIPS’2010 Workshop on Deep Learn-
ing and Unsupervised Feature Learning,
http://deeplearningworkshopnips2010.wordpress.com/

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

Learning algorithms, which are based on unsupervised
learning of representations, one layer at a time, in or-
der to build more abstract higher-level representations
by the composition of lower-level ones. These repre-
sentations are often used as input for classifiers, and
measuring classification error is a good way, also cho-
sen here, for evaluating the usefulness of these rep-
resentations. One problem with these unsupervised
feature learning approaches is that they often require
computing a mapping from the learned representa-
tion back into the input space, e.g., either to recon-
struct the input, denoise it, or stochastically generate
it. Consider learning tasks where the input space is
huge and sparse, as in many Natural Language Pro-
cessing (NLP) tasks. In that case, computing the rep-
resentation of the input vector is very cheap because
one only needs to visit the non-zero entries of the in-
put vector, i.e., multiply a very large dense matrix by a
very sparse vector. However, reconstructing a huge
sparse vector involves computing values for all the
elements of that vector, and this can be much more
expensive. For example with a bag-of-words represen-
tation of a 100-word paragraph and a vocabulary size
of 100,000 words, computing the reconstruction from
the representation is 1000 times more expensive than
computing the representation itself.

The main contribution of this work starts from a
very simple idea: train to reconstruct only the non-
zeros and a random subset of the zeros. This
introduces a bias in the reconstruction error (giving
more weight to non-zeros than to zeros), which can be
potentially beneficial or detrimental, but that can be
corrected by a reweighting of error terms. The idea
has also been refined in the context of the Denoising
Auto-encoder, used for unsupervised learning of the
embeddings in our experiments. Instead of focusing
only on the non-zeros of the uncorrupted input, we
include also the non-zeros of the corrupted input, in
order to sample the inputs on which the error is most
likely to be large (since this minimizes the variance of
our sampling-based estimator).



Large-Scale Learning of Embeddings with Reconstruction Sampling

2. Related Work

There has been much previous work on learning em-
beddings for NLP. See (Bengio, 2008) for a review in
the context of neural-network based models, which are
related to the approach described here. A core compu-
tational limitation of these models is that the neural
network prediction (e.g., of the next word given pre-
vious words) consists of a probability for each word in
the vocabulary, which makes computation scale with
vocabulary size. In early work, this was addressed by
limiting the vocabulary of the predicted words (and
possibly using a cheaper predictor such as n-grams for
the other ones).

In order to address this computational limitation and
scale to larger vocabularies and larger datasets, two
kinds of approaches were introduced in the past: using
a tree structure for the predictions, or using sampling
to visit only a few of the possible words. The approach
introduced here is of the second kind. Tree-structured
predictors are based on learning a class hierarchy and
require only visiting the path from the root to the leaf
corresponding to the observed word (Morin and Ben-
gio, 2005; Mnih and Hinton, 2009). Sampling-based
algorithms rely on stochastic approximations of the
gradient which only require to compute the prediction
on a small subset of the words (Bengio and Sénécal,
2003; 2008; Collobert and Weston, 2008). Whereas
the early attempts (Bengio and Sénécal, 2003; 2008)
are focused on correctly estimating conditional prob-
abilities (for the next word), Collobert and Weston
(2008) only try to rank the words, with a criterion
that can be written as a sum over words (comparing
the score of the observed word with the score of any
other word). This sum can be estimated by a Monte-
Carlo sample. This works even with a single sample
in the context of stochastic gradient descent, where
we do a very large number of stochastic updates but
each of them is small, hence averaging out much of
the sampling noise. Whereas all these focused on pre-
dicting the next word, we focus here on reconstructing
an input bag-of-words, or more generally a very sparse
high-dimensional vector, since this kind of reconstruc-
tion is a basic requirement for many Deep Learning
algorithms. We are not trying to predict word proba-
bilities, only to learn good embeddings (which are used
as part of a classifier) so we do not really need the re-
construction outputs to be calibrated probabilities.

3. Denoising Auto-Encoders
3.1. Introduction

In this paper we have applied the proposed idea of
sampling reconstructions in the context of the Denois-
ing Auto-Encoder (DAE) as the building block for

training deep architectures, because our preliminary
experiments found that a particular form of DAE sur-
passed the state-of-the-art in a text categorization task
of sentiment analysis (Glorot et al., 2011). The DAE
is a learning algorithm for unsupervised feature ex-
traction (Vincent et al., 2008): it is provided with a
stochastically corrupted input and trained to recon-
struct the original clean input. Its training criterion
can be shown to relate to several training criteria for
density models of the input, either via bounds (Vincent
et al., 2008) or through Score Matching (Hyvärinen,
2005; Vincent, 2010). Intuitively, the difference vec-
tor between the reconstruction and the input is the
model’s guess as to the direction of greatest increase
in the likelihood, whereas the difference vector between
the noisy corrupted input and the clean original is na-
ture’s hint of a direction of greatest increase in like-
lihood (since a noisy version of a training example is
very likely to have a much lower probability under the
data generating distribution than the original). It can
also be shown that the DAE is extracting a represen-
tation that tries to preserve as much as possible of the
information in the input (Vincent et al., 2008).

noise

g

x̃ x

h

h

Figure 1. Schematic of the Denoising Auto-Encoder

The Denoising Auto-Encoder reconstruction f(x) =
h(g(x)) is composed of an encoder function g(·) and a
decoder function h(·) (see Figure 1). During training,
the input vector x ∈ [0, 1]dx is partially and randomly
corrupted into the vector x̃. The encoder takes x̃ and
maps it into a hidden representation h ∈ [0, 1]dh . The
decoder takes the representation h and maps it back
to a vector z in the input space ([0, 1]dx in our case).
The DAE is trained to map a corrupted input x̃ into
the original input x such that g(h(x̃)) ≈ x. This forces
the code h to capture important and robust features
of x. Many corruption processes are possible, but they
should have the property of generally producing less
plausible examples. Typically, inputs are corrupted by
randomly setting elements of x to 0 or 1, or adding
Gaussian noise. The encoder function used in Vincent
et al. (2008) is

a1 = W(1)x̃ + b(1)

h = s1(a1) (1)

where sa is a non-linear function like the sigmoid
sa(u) = 1/(1 + exp(−u)), W(1) is a dh × dx weight



Large-Scale Learning of Embeddings with Reconstruction Sampling

matrix and b(1) is a dh × 1 vector. In Vincent et al.
(2008) the function computed by the decoder is

a2 = W(2)h + b(2)

z = s2(a2) (2)

Where W(2) is a dx × dh weight matrix and b(2) is a
dx × 1 vector.

3.2. Training

Given a dataset Dn = (x(1),x(2), . . . ,x(n)), the param-
eters (W(1), b(1), W(2), b(2)) are trained by stochas-
tic gradient descent, following Vincent et al. (2008), to
minimize the cross-entropy

R̂(f,Dn) =
1
n

n∑
i

L(x(i), f(x̃(i)))

L(x, z) =
d∑
k

H(xk, zk)

=
d∑
k

−[xklogzk + (1− xk)log(1− zk)]

where H is the cross-entropy, x and z are considered
as vectors of binomial probabilities.

3.3. Motivation

The Denoising Auto-Encoder can learn a representa-
tion from unlabeled data, but it can be later fine-tuned
using labeled data. The ability to exploit large quan-
tities of unlabeled data is very important because la-
beled data are usually scarce. Obtaining labeled data
usually requires paying for the manual labeling of unla-
beled samples. Furthermore, in the context of Natural
Language Processing, the World Wide Web is a gold
mine of unlabeled data. In contrast, using a purely
supervised training approach (i.e. SVMs, CRFs) can
only exploit the scarce labeled data.

The hypothesis that has been confirmed earlier for spe-
cific datasets (Vincent et al., 2008) is that the repre-
sentation h learned by the DAE makes the statisti-
cal structure of the input clearer, in the sense that it
can be advantageous for initializing a supervised classi-
fier. It has been shown that Auto-Encoders (especially
deep ones) go beyond Principal Component Analysis
(PCA) by capturing multi-modal interactions in the
input distribution (Japkowicz et al., 2000; Hinton and
Salakhutdinov, 2006). In other words, the encoder
learns to project x into a space h where the origi-
nal factors of variation of the data tend to be better
separated. Experimental results show that using h
instead of x as input to a classifier can significantly
help achieve better generalization (Erhan et al., 2010;
Larochelle et al., 2007).

4. Scaling the Denoising Auto-Encoder
4.1. Challenges

The dot products involved in the training of the DAE
are expensive. The computations involved in g, h, the
gradient ∇g through g, and the gradient ∇h through h
are all in O(dx×dh), where dx is the size of the sparse
input vector and dh is the size of the representation
code.

This is problematic in the context of Natural Language
Processing because the desired input size dx may be
in the millions.

4.2. Scaling the Encoder: Sparse Dot Product

We can take advantage of sparsity in any dot product
u·v because the null elements ui or vi do not influence
the result. This is also true for the matrix-vector prod-
uct. Therefore, we can reduce the cost of the dot prod-
uct by computing only the operations linked to non-
zero elements, i.e., g ∈ O(dNNZ × dh), where dNNZ is
the number of non-zero elements in x. The theoretical
speed-up would be dx/dNNZ

. This also applies to the
gradient with respect to W(1) (∂R̂/∂W(1) = ∂R̂/∂a1x

′).
In practice, the speed-up is smaller because working
with dense vector and matrix multiplications can be
done more efficiently on modern computers, i.e., there
is an overhead for handling sparse vectors. In our ex-
periments we have found the overhead to be on the
order of 50%. On the other hand, the biggest loss
in comparison to a dense implementation comes from
losing the use of BLAS’ optimized matrix-matrix prod-
uct (GEMM), when training the model by showing one
minibatch at a time (e.g. 10 in our experiments). The
speedup from the dense matrix-matrix multiplication
is on the order of 3 in our experiments, hence for the
sparse computation to be advantageous, the sparsity
level must be high enough to compensate for these two
disadvantages).

4.3. Scaling the Decoder: Reconstruction
Sampling

We introduce reconstruction sampling to make the de-
coder scalable. The idea is to calculate the reconstruc-
tion cost L based only on a sub-sample of the input
units:

L̂(x, z) =
d∑
k

p̂k

qk
H(xk, zk)

where we introduce p̂ ∈ {0, 1}dx with p̂ ∼ P (p̂|x),
and scalar weights 1/q. The sampling pattern p̂ con-
trols whether a given input unit will participate in the
learning objective for this presentation of the example
x. If training iterates through examples in the training
set, the next time x is seen again, a different pattern



Large-Scale Learning of Embeddings with Reconstruction Sampling

p̂ may be sampled. In this paper, we have found that
an effective sampling procedure is to choose P (p̂|x) to
reconstruct all non-zero inputs and a set of randomly
chosen zero inputs. The average number of sampled
units is defined as dSMP .

The scalar weights 1/qk allow us to compensate for
non-uniform choices of the sampling probabilities for
the corresponding binary random variables p̂k. If
qk = E[p̂k|k,x, x̃], then this is an importance sam-
pling scheme, i.e., the expected cost is guaranteed
to be unchanged by the sampling procedure since
E[ p̂k

qk
|k,x, x̃] = 1. This is related to but different

from (Bengio and Sénécal, 2003), in which x is a one-
hot vector indicating what is the next word, and there
is less information about which bits it matters most to
sample.

We propose L̂ instead of L as a (stochastic) train-
ing objective because it can be computed more ef-
ficiently, and we empirically find that it yields sim-
ilar solutions for the same number of training up-
dates. If pk = 0, then zk need not be computed
since it does not influence the cost L̂. Calculating
each zk = s2(W(2)

k h + b(2)
k ) is on the order of O(dh).

Therefore, computing only the units zk that are sam-
pled yields

h ∈ O(dSMP × dh)

with the expected speed-up of dx/dSMP
.

The gradients for L̂ can also be calculated more effi-
ciently. The gradient for the elements zk where pk = 0
is null, so ∂R̂

∂z contains only dSMP non-zero values. We
calculate the gradients using the sparse dot product
presented in section 4.2:

∂R̂

∂W(2)
=

∂R̂

∂a2
h′

∂R̂

∂h
= W(2)′ ∂R̂

∂a2

The speed-up for both operations is on the order of
dx/dSMP

.

Sampling probabilities The optimal sampling
probabilities P (p̂|x) are those that yield the minimum
variance of the estimator (under the assumption that
we choose the weights 1/q in order to get an unbi-
ased estimator), since the total error of the sampling-
based estimator is variance plus bias squared (and we
are setting the bias to 0). Like for importance sam-
pling, the minimum variance is achieved when P (p̂|x)
is proportional to the absolute value of the original
distribution (uniform here) times the integrand, which
here is just the reconstruction loss. Hence we should

ideally pick those bits k on which the model is most
likely to make a large error, but of course we do not
know that before we sample which ones to reconstruct.
The heuristic we propose is to always pick those bits
k on which either xk = 1 or x̃k = 1, and to pick the
same number of bits randomly from the remainder.
Let C(x, x̃) = {k : xk = 1 or x̃k = 1}. Then we choose
to reconstruct unit k with probability

P (p̂k = 1|xk) =
{

1 if k ∈ C(x, x̃)
|C(x, x̃)|/dx otherwise

(3)

The motivation for this heuristic is that because of
the input sparsity, the 1’s tend to come more as a sur-
prise than 0’s, and hence yield a larger reconstruction
error. Regarding the cases where the auto-encoder in-
put xk = 1 when xk 6= 1, these also tend to yield
large errors, because the auto-encoder has to uncover
the fact that those bits were flipped due to the cor-
ruption process, and cannot just copy them from the
input. A smaller-variance estimator could probably be
obtained by numerically estimating the average error
associated to different bits depending on whether or
not it is a 1 or a 0 in xk and x̃k, but we have found
that with this simple scheme we achieve the same accu-
racy curve (as a function of number of updates) as with
the dense (not sampled) training scheme, hence there
is not much room left for improvement. In fact, it is
questionable whether perfectly unbiasing the sampling
scheme (i.e. choosing corrections qk = P (p̂k = 1))
is what most helps produce the most useful embed-
dings, e.g., as measured by classification error from
the learned intermediate features, on a predictive task
of interest. For example, it could be argued that in
the case of sparse input vectors, the non-zero inputs
provide more important information and that error on
them should be penalized more, which would argue in
favor of choosing weights 1/qk constant (e.g. 1). We
therefore experiment with both the unbiased scheme
(eq. 3) and a biased scheme (qk = 1).

5. Implementation
5.1. Encoder
We implement the encoder as:

h = s1(SparseDotCSR(x̃,W(1)) + b(1))

SparseDotCSR(A,B) = AB. Note the operation is
transposed compared to equation 1. In this setting,
W(1) is a dx × dh, b(1) is 1 × dh. SparseDotCSR is
more efficient when the sparse operand appears first.
The input x and x̃ are stored in Compressed Sparse
Row (CSR) format.



Large-Scale Learning of Embeddings with Reconstruction Sampling

The gradient is given by:

∂R̂

∂W(1)
= SparseDotCSC(x′,

∂R̂

∂a1
)

Where xT is in Compressed Sparse Column (CSC) for-
mat.

For reference, the implementation of SparseDotCSR

is given in Algorithm 1. The implementation of
SparseDotCSC is similar. NON-ZERO-INDICES(u) re-
turns the set of non-zero indices in the row vector u.
AXPY(α,A,B) = αA+B is part of the BLAS program-
ming interface (Lawson et al., 1979).

In our experiments, AXPY is provided by the highly
optimized Goto BLAS (Goto and Geijn, 2008). Note
that this is an important optimization. Typical imple-
mentations of Auto-Encoders rely on BLAS for their
dot products, our operations must also leverage BLAS
to be competitive.

Algorithm 1 SparseDotCSR(A, B)
Input: A = [Aij ]M×K , B = [Bij ]K×N

Output: C = [Cij ]M×N

for m = 1 to M do
for all k ∈ NON-ZERO-INDICES(xm) do

Cm ← AXPY(Amk,Bk,Cm)
end for

end for

5.2. Decoder

The decoder is implemented as:

z = s2(SamplingDot(h,W(2), p̂) + b(2))

SamplingDot(A,B,C) outputs C ◦ (AB), where ◦ is
element-wise multiplication. In comparison with equa-
tion 2, the operations are transposed and W(2) is sup-
posed to be dh × dx while b(2) is 1× dx.

The key differences between SamplingDot and C ◦
(AB) are:

1. The values in AB set to 0 by the element-wise
product with C are not calculated.

2. The B matrix is expected to be dx×dh instead of
dh×dx. In other words, SamplingDot assumes B
is transposed. This allows cache-friendly traver-
sal of that matrix. This is especially important
because in our setting B is a huge matrix.

W(2) is stored as dx × dh instead of dh × dx.

The gradients are calculated as:

∂R̂

∂W(2)
= SparseDotDense(

∂R̂

∂a2

′

,h)

∂R̂

∂h
= SparseDotDense(

∂R̂

∂a2
,W(2))

SparseDotDense calculates the dot product between a
sparse matrix represented in dense format and a dense
matrix. As explained in section 4.3, ∂R̂

∂a2
contains very

few non-zero elements. It isn’t converted into a sparse
representation because the conversion is expensive and
would have to be performed for each training update.

The implementation for SamplingDot is given in Al-
gorithm 2. The implementation of SparseDotDense is
similar to Algorithm 1. DOT(u,v) = u · v is the vec-
tor dot product. It is part of the BLAS programming
interface and is implemented by Goto BLAS in our
experiments.

Algorithm 2 SamplingDot(A, B, C)
Input: A = [Aij ]M×K , B = [Bij ]N×K , C =

[Cij ]M×N

Output: D = [Dij ]M×N

for m = 1 to M do
for n = 1 to N do

if Cmn 6= 0 then
Dm ← DOT(Am,Bn)

end if
end for

end for

6. Experiments

We perform two sets of experiments on two popular
NLP datasets. First, we show the properties and ef-
fectiveness of our approach in a setting where we can
compare with the non-sampled version of the train-
ing algorithm for DAEs. Second, we train large-scale
models on the Amazon dataset.
Amazon Multi-Domain Sentiment Dataset.
Sentiment analysis aims to determine the judgment of
a writer given a textual comment. We investigate our
reconstruction sampling method on the Amazon sen-
timent analysis data set, introduced by Blitzer et al.
(2007). It proposes a collection of more than 340, 000
product reviews on 25 different domains. For tractabil-
ity, a smaller and more controlled dataset has been
released, containing four different domains, with 1000
positives and 1000 negatives examples for each domain
and a few thousands of unlabeled data. Our experi-
ments will be conducted on both versions, we will refer
to this last version as “small Amazon” and to the com-
plete set as “full Amazon.”



Large-Scale Learning of Embeddings with Reconstruction Sampling

0 20 40 60 80 100
Sampling Ratio (%)

0

5

10

15

20

25

T
e
st

 S
e
t 

E
rr

o
r 

(%
)

0 50 100 150 200 250 300
Epochs

13

14

15

16

17

18

19

20

T
e
st

 S
e
t 

E
rr

o
r 

(%
)

Non-Sampled
2% Sampled

0 50 100 150 200 250 300
Epochs

0

1000

2000

3000

4000

5000

6000

T
e
st

 S
e
t 

R
e
co

n
st

ru
ct

io
n
 E

rr
o
r

Non-Sampled
2% Biased Sampling
2% Unbiased Sampling

0 5 10 15 20 25 30 35 40
CPU Time (Hours)

13

14

15

16

17

18

19

20

T
e
st

 S
e
t 

E
rr

o
r 

(%
)

Non-Sampled
2% Sampled

Figure 2. Experimental Results on Amazon (small set). Increasing the sampling approximation does not hurt classification
error, but yields a 10.5x speedup. The biased estimator gets a worse reconstruction error, but not the unbiased one, and
both convergence curves (in terms of training epochs) are similar for all models.

Reuters Corpus Volume I (RCV1) is a popular
benchmark for document classification (Lewis et al.,
2004). It consists of over 800,000 real-world news wire
stories represented in bag-of-words vectors with 47,236
dimensions. The dataset is split into a training set
with 23,149 documents and a test set with 781,265 doc-
uments. The are three categories of labels to predict:
Topics, Industries and Regions. There are 103 non-
mutually exclusive topics. We focus our experiment
on predicting the topics of documents. As proposed
by (Lewis et al., 2004) the performance measure is the
F1.0 over the test set.

Training Methodology. In our experiments, we
perform unsupervised feature extraction using DAEs
and we use these features as input to classifier. On
the Amazon dataset, we train linear SVMs (Fan et al.,
2008). On the RCV1 dataset, a logistic regression is
used.

We train a set of baseline DAEs that perform no sam-
pling as well as a set of DAEs that have multiple levels
of sampling. On the small Amazon and RCV1 dataset,
we reduce the vocabulary to the 5000 most frequent in-
put tokens in order to make the training of the baseline
practical. On the full Amazon dataset, we kept 25,000
dimensions.

DAEs are trained with a minibatch size of 10. We re-
serve 10% of the training set of each dataset as a val-
idation set. All hyper-parameters, for the DAEs and
the classifiers, are chosen based on the performance
on the validation set. We monitor validation and test
error at different training epochs.

On the Amazon datasets we train linear SVMs for sen-
timent classification on different domains (4 on the
small Amazon and 7 on the large scale Amazon), The
reported value is the averaged test error and its stan-
dard deviation across domains.

The experiments are run on a cluster of comput-
ers with a double quad-core Intel(R) Xeon(R) CPU
E5345@2.33GHz with 8Gb of RAM.

Results. The kinds of embeddings learned on the
Amazon data is shown in Figure 5, where the learned
representations are non-linearly mapped to 2 dimen-
sions by t-SNE (van der Maaten and Hinton, 2008).

Sampling has no effect on the quality of the represen-
tation learned. In Figure 2 (top-left) and 3 (left), we
plot the test set accuracy for different levels of sam-
pling. We observe the DAEs trained by reconstructing
only 2% of the input units give results as good as the
DAEs trained without sampling. However, we have



Large-Scale Learning of Embeddings with Reconstruction Sampling

0 20 40 60 80 100
Sampling Ratio (%)

0.70

0.75

0.80

0.85

0.90

T
e
st

 S
e
t 

F1
 (

%
)

0 10 20 30 40 50 60 70
CPU Time (Hours)

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

T
e
st

 S
e
t 

F1
 (

%
)

Non-Sampled
2% Sampled

0 50 100 150 200 250 300
Epochs

0

500

1000

1500

2000

2500

T
e
st

 S
e
t 

R
e
co

n
st

ru
ct

io
n
 E

rr
o
r

Non-Sampled
2% Biased Sampling
2% Unbiased Sampling

Figure 3. Experimental Results on RCV1. Increasing the sampling approximation does not hurt test F1, but yields a 12x
speedup. The biased estimator gets a worse reconstruction error, but not the unbiased one.

found that the representation never reaches the same
quality when the sampling probability doesn’t depend
on x (i.e. P (p̂k = 1) = dSMP /dx).

One epoch is a training pass through the training set.
Figure 2 (top-right) shows that the DAEs trained us-
ing sampling converge as fast in terms of epochs (i.e. in
term of training updates) as the DAE trained without.
The sampling DAE is trained to reconstruct only 2%
of the input units. While initially the baseline DAE
converges faster, after a few epochs both DAEs ex-
hibit similar convergence. In order to assess the qual-
ity of the obtained results, we compared the averaged
test error over the 4 domains with published results
by Blitzer et al. (2007), we obtained an averaged test
error of 13.7%, whereas they reported 16.7%.

Figure 2 (bottom-right) and 3 (middle) show that the
training of DAEs using sampling is much faster. In
particular, we compare the learning curve of a DAE
that reconstructs only 2% of the input units and the
baseline DAE. The sampling DAE converges 10.5x
faster on the Amazon dataset and 12x faster on the
RCV1 dataset.

Figure 2 (bottom-left) and 3 (right) show the effect of
the term q on the convergence of the reconstruction
cost. In the biased DAE we set qk = 1 and in the
unbiased DAE we use qk = E[p̂k|k,x, x̃]. This exper-
iment shows that the DAE trained with the unbiased
objective converges to the same reconstruction cost as
the baseline while the unbiased version does not (since
it minimizes a different cost). However, the networks
using the biased and unbiased objectives converge sim-
ilarly in terms of the quality of the representation.

Figure 4 shows the speed-up and training curves ob-
tained on the full Amazon dataset, where the sampled
reconstruction model converges 22 times faster, and re-
constructing about 0.5% of the inputs. Keep in mind
that the baseline dense training has been optimized al-
ready for speed (e.g., choosing the minibatch size and

0 100 200 300 400 500 600 700 800 900
CPU Time (Hours)

8

9

10

11

12

13

14

15

16

17

T
e
st

 S
e
t 

E
rr

o
r 

(%
)

Non-Sampled
0.5% Sampled

Figure 4. Experimental Results on Full Amazon set: test
error vs CPU time. The speed-up is about 22x.

optimized code).

7. Conclusion

We have introduced a very simple optimization to
speed-up training of unsupervised learning algorithms
such as auto-encoders when the input vectors are very
large and very sparse. The basic idea is to reconstruct
only the non-zero’s and a random subsample of the
zero’s of the input vector. A weighting scheme similar
to importance sampling yields an unbiased estimator.
On a dataset with a large input size we have found
speed-up’s of up to 22x, even comparing to optimized
dense computation (using minibatches and BLAS’ op-
timized matrix-matrix multiplications). We expect
much larger speed-ups will be obtained in applications
involving very large sparse input vectors, where the
degree of sparsity is even larger than those tested here
(2% and .5%).

References

Bengio, Y. (2008). Neural net language models. Scholar-
pedia, 3(1), 3881.

Bengio, Y. (2009). Learning deep architectures for AI.



Large-Scale Learning of Embeddings with Reconstruction Sampling

Figure 5. Embeddings learned on the Amazon sentiment data for a randomly selected set of word stems. Colors indicate
the Amazon domain, showing that the embedding large scale (left) naturally discovers these categories. Right: zoom
showing semantically similar words grouped near each other, on the topic of electronics.

Foundations and Trends in Machine Learning , 2(1), 1–
127. Also published as a book. Now Publishers, 2009.

Bengio, Y. and Sénécal, J.-S. (2003). Quick training of
probabilistic neural nets by importance sampling. In
Proceedings of the conference on Artificial Intelligence
and Statistics (AISTATS).

Bengio, Y. and Sénécal, J.-S. (2008). Adaptive importance
sampling to accelerate training of a neural probabilis-
tic language model. IEEE Transactions on Neural Net-
works, 19(4), 713–722.

Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies,
bollywood, boom-boxes and blenders: Domain adapta-
tion for sentiment classification. In Proceedings of the
Association for Computational Linguistics (ACL’07),
pages 440–447.

Collobert, R. and Weston, J. (2008). A unified archi-
tecture for natural language processing: Deep neural
networks with multitask learning. In W. W. Cohen,
A. McCallum, and S. T. Roweis, editors, Proceedings of
the Twenty-fifth International Conference on Machine
Learning (ICML’08), pages 160–167. ACM.

Erhan, D., Courville, A., Bengio, Y., and Vincent, P.
(2010). Why does unsupervised pre-training help deep
learning? In JMLR W&CP: Proceedings of the Thir-
teenth International Conference on Artificial Intelligence
and Statistics (AISTATS 2010), volume 9, pages 201–
208.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research, 9,
1871–1874.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse
rectifier neural networks. In Proceedings of The Four-
teenth International Conference on Artificial Intelligence
and Statistics (AISTATS’11).

Goto, K. and Geijn, R. A. v. d. (2008). Anatomy of high-
performance matrix multiplication. ACM Transactions
Mathematical Software, 34, 12:1–12:25.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Sci-
ence, 313(5786), 504–507.

Hyvärinen, A. (2005). Estimation of non-normalized statis-
tical models using score matching. Journal of Machine
Learning Research, 6, 695–709.

Japkowicz, N., Hanson, S. J., and Gluck, M. A. (2000).
Nonlinear autoassociation is not equivalent to PCA.
Neural Computation, 12(3), 531–545.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and
Bengio, Y. (2007). An empirical evaluation of deep ar-
chitectures on problems with many factors of variation.
In Z. Ghahramani, editor, Proceedings of the 24th Inter-
national Conference on Machine Learning (ICML’07),
pages 473–480. ACM.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh,
F. T. (1979). Basic linear algebra subprograms for for-
tran usage. ACM Transactions Mathematical Software,
5, 308–323.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004).
Rcv1: A new benchmark collection for text categoriza-
tion research. Journal of Machine Learning Research, 5,
361–397.

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical
distributed language model. In D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21 (NIPS’08),
pages 1081–1088.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilis-
tic neural network language model. In R. G. Cowell and
Z. Ghahramani, editors, Proceedings of the Tenth Inter-
national Workshop on Artificial Intelligence and Statis-
tics (AISTATS’05), pages 246–252.

van der Maaten, L. and Hinton, G. E. (2008). Visualizing
data using t-sne. Journal of Machine Learning Research,
9, 2579–2605.

Vincent, P. (2010). A connection between score match-
ing and denoising autoencoders. Technical Report 1358,
Université de Montréal, DIRO.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol,
P.-A. (2008). Extracting and composing robust fea-
tures with denoising autoencoders. In W. W. Cohen,
A. McCallum, and S. T. Roweis, editors, Proceedings of
the Twenty-fifth International Conference on Machine
Learning (ICML’08), pages 1096–1103. ACM.


