
Locally Linear Embedding for dimensionality reduction in QSAR

P.-J. L’Heureuxa;�, J. Carreaua, Y. Bengioa, O. Delalleaua & S.Y. Yueb
aDIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Canada H3C 3J7; bAstraZeneca
R&D Montreal, Canada

Received 4 May 2004; accepted in revised form 18 October 2004

� Springer 2005

Key words: kernel methods, neural network, QSAR, spectral dimensionality reduction

Summary

Current practice in Quantitative Structure Activity Relationship (QSAR) methods usually involves gen-
erating a great number of chemical descriptors and then cutting them back with variable selection tech-
niques. Variable selection is an effective method to reduce the dimensionality but may discard some
valuable information. This paper introduces Locally Linear Embedding (LLE), a local non-linear dimen-
sionality reduction technique, that can statistically discover a low-dimensional representation of the
chemical data. LLE is shown to create more stable representations than other non-linear dimensionality
reduction algorithms, and to be capable of capturing non-linearity in chemical data.

Introduction

Quantitative Structure Activity Relationship
(QSAR) is a set of methods that try to find a sta-
tistical relationship between a set of descriptors of
compounds and their activity [1]. Unfortunately,
our physico-chemical understanding of the reac-
tions involved is often insufficient to make the
most appropriate choice of descriptors from purely
chemical considerations. Hopefully, if we acquire
enough data, statistics can help in the choice of
descriptors.

The generalization of classical QSAR models
has been very much limited by a low number of
systematically generated data. As combinatorial
chemistry can screen hundreds of molecules, it has
created an opportunity to use neural networks and
other powerful statistical algorithms to produce
the statistical model. Our hypothesis is that such
learning algorithms can be sufficiently supplied
with data to beat traditional regression analysis.

A serious problem for many statistical modeling
approaches is the high dimension in which the
chemical data lie. The current trend for reducing
the dimensionality involves variable selection. Two
areas of concern exist about variable selection.
First, all those methods are based on the assump-
tion that most descriptors are irrelevant, thus for-
going the information contained in the discarded
descriptors. Second, the interdependences of de-
scriptors are not used at their full potential. If there
exists interdependence between descriptors, then
structure will arise in the data. Dimensionality
reduction aims to capture this structure, which can
be viewed as a surface in high-dimension. The end
result of non-linear dimensionality reduction is a
transformation of the coordinate system to project
the data onto this low-dimensional surface.
Dimensionality reduction (especially non-linear)
thus has the potential to preserve the information
in the data while representing it more compactly.

We investigate the use of Locally Linear
Embedding (LLE) [2] as a dimensionality reduc-
tion procedure before applying Partial Least
Squares or neural networks. Reducing the dimen-
sion of the descriptor space might help the super-

�To whom correspondence should be addressed. Tel: +1-514-

343-6111, ext: 1794; E-mail: lheureup@iro.umontreal.ca

Journal of Computer-Aided Molecular Design 18: 475–482, 2004.
DOI 10.1007/s10822-004-5319-9

475

vised learning algorithms to learn a better model
from the data and to avoid overfitting. We also
present a method that allows to circumvent one of
the limitations of LLE, namely that it requires
both the training data and the test data in order to
infer a low-dimensional representation for the test
data. The new method allows to apply LLE – as
well as other similar spectral dimensionality
reduction methods – to new (out-of-sample)
examples after it has been trained on a training set.
This allows to introduce a novel form of analysis
for dimensionality reduction methods, based on
the stability of the induced embedding, and com-
pare three spectral dimensionality reduction
methods on that basis (LLE, Isomap, and kernel
PCA). With this analysis, we assess how the
complexity of the chemical data is handled by
LLE, as we feed it with more data.

Machine learning toolkit

We will describe here the basic machine learning
concepts used in our experiments. We first give a
description of what are the goals and techniques of
dimensionality reduction, and in particular spectral
methods such as LLE. We then describe the neural
network and Partial Least-Squares (PLS) model
which are used for regression. We finally explain
howwe used the double cross-validation procedure.

Dimensionality reduction

When the data lie in a high-dimensional space, it
might be useful to look for a more compact rep-
resentation. If it is possible to express the main
types of variations in the data with a small set of
numbers then fewer parameters need to be learned
in order to make predictions from these numbers.
Some dimensions might just be meaningless or
redundant, and some might be sufficient to carry
the most important variations found in the data.
To achieve this, one simply looks for a low-
dimensional surface (more generally, manifold)
near which most of the data lie. The simplest ap-
proach assumes that the manifold is a hyper-plane.
A standard algorithm for this purpose is PCA,
‘Principal Component Analysis’ [3]. PCA com-
putes the top eigenvectors of the data covariance
matrix. Those vectors correspond to the linear
projections of greatest variance.

Local non-linear dimensionality reduction
PCA assumes that the low-dimensional embedding
is obtained as a linear projection of the data. This
assumption might not be justified and several
algorithms were designed to perform non-linear
dimensionality reduction. Among them, recent
ones are Isomap [4] and LLE [2, 5]. In this project
we focus on LLE, but perform comparative
experiments with Isomap and kernel PCA [6],
which are related to LLE: all three are non-para-
metric methods based on ‘spectral embedding’, as
discussed in [7].

The main assumption involved in all three
methods is that the data are lying near a smooth
manifold of lower dimension and that this mani-
fold can be approximated locally by linear patches.
These patches are constructed around each train-
ing point. With LLE, one associates with each
training example (and corresponding linear patch)
a linear combination of its nearest neighbors
which best reconstructs the data point. The
assumption here is that the same linear combina-
tion of neighbors can reconstruct the point in a
lower dimension, i.e. on the manifold, and this
would be true if the neighbors are close enough
compared to the curvature of the manifold, i.e. one
can locally approximate the manifold by a linear
surface near which the example and its neighbors
lie. Therefore, we have two parameters that con-
trol the projection of the data points in a space of
lower dimension: the dimension of the manifold
near which the data are assumed to lie and the
number of neighbors used to reconstruct the linear
patches (which indirectly controls the size of the
patches). The memory requirement of our current
implementation grows as Oðk � nÞ, where n is the
size of the training set, and k is the number of
neighbors. The processing time will scale as
Oðn2 � dÞ, where d is the manifold dimension.

Out-of-sample extension for locally linear
embedding
In its original formulation [5], LLE only provides
an embedding for its training set. When a new
point x is given and its low-dimensional coordi-
nates are needed, retraining LLE with x in the
training set would be too costly if it had to be done
for each new example. Instead, it is proposed in [2]
to compute the reconstruction of x from its k
nearest neighbors xi1 ; . . . ; xik , and to find the low-
dimensional point P ðxÞ using the neighbors’ low-

476

dimensional coordinates P ðxi1Þ; . . . ; Pðxik Þ. More
formally, let ðWjÞ1� j� k be the neighbors’ weights
for the reconstruction of x, i.e., such that

P
Wj ¼ 1

and jjx�
P

Wjxij jj
2 is minimized. The low-dimen-

sional coordinates P ðxÞ are obtained from those of
the neighbors by PðxÞ ¼

P
WjP ðxijÞ.

This formula is justified intuitively by the local
linear assumption in LLE. In addition, it has been
shown in [7] that there is a more general justifica-
tion to this extension method, that applies for a
larger family of unsupervised learning algorithms
called spectral embedding algorithms. These
algorithms perform dimensionality reduction
using a kernel function (a symmetric function
Kðx; yÞ applied on pairs of input points). All of
these algorithms compute the ðn� nÞ Gram matrix
M defined by Mij ¼ Kðxi; xjÞ, with x1; . . . ; xn the
training set, and obtain the low-dimensional
coordinates of a point xi by P ðxiÞ ¼ ðv1i;
v2i; . . . ; vdiÞ0, where vr ¼ ðvr1; . . . ; vrnÞ0 is the r-th
principal eigenvector of M (an additional scaling
may apply, depending on the algorithm, e.g. in
LLE this embedding is multiplied by

ffiffiffi
n

p
). Let PrðxÞ

be the r-th low-dimensional coordinate on the
manifold of a point x. If x ¼ xi is in the training
set, we thus have PrðxiÞ ¼ vri (up to scaling). If x is
not in the training set, we can ‘extrapolate’ the
eigenvectors by the Nyström formula (which has
been used previously for estimating extensions of
eigenvectors in Gaussian process regression [8]).
This formula is:

PrðxÞ ¼
1

‘r

Xn

i¼1

PrðxiÞKðx; xiÞ

where ‘r is the eigenvalue associated to the
eigenvector vr. As shown in [7], there exists a
kernel K such that this formula is equivalent to the
extension of LLE [2] described previously. This
interpretation gives additional insight into the
stability properties of the embedding. Indeed, it
links LLE with another popular spectral embed-
ding algorithm, kernel PCA [6], that has been
shown to be a convergent and stable algorithm
[9–11]. Although there are some important differ-
ences between the two algorithms (in particular,
the kernel used in LLE depends much more on the
training data than the one in kernel PCA), these
convergence properties suggest the LLE out-of-
sample extension should also be stable provided
enough training points are available: this stability

has been verified empirically by experiments de-
scribed in [7].

In this paper we have performed perturbation
analysis with three different spectral dimensional-
ity reduction methods: LLE (discussed above),
Isomap [4], and kernel PCA [6]. Isomap [4] gen-
eralizes metric multi-dimensional scaling (MDS)
[12] to non-linear manifolds. It is based on
replacing the Euclidean distance by an empirical
approximation of the geodesic distance D on the
manifold (it is obtained as the shortest path in a
graph whose nodes are the examples and only near
neighbors are connected, with arc lengths equal to
Euclidean distance). The Isomap algorithm obtains
the normalized matrix M from which the embed-
ding is derived by transforming the raw pairwise
distances matrix as follows: (1) compute the matrix
~Mij ¼ D2ðxi; xjÞ of squared geodesic distances with
respect to the data D and (2) apply to this matrix
the distance-to-dot-product transformation

Mij¼�1

2
ð ~Mij�

1

n

X

j0

~Mij0 �
1

n

X

i0

~Mi0jþ
1

n2
X

i0;j0

~Mi0j0 Þ

as for MDS.
Kernel PCA generalizes the Principal Compo-

nent Analysis approach to non-linear transfor-
mations using the kernel trick [6, 13, 14]. The
matrix M is obtained by computing the above
matrix M as follows:

Mij ¼Kðxi; xjÞ �
1

n

X

j0
Kðxi; xj0 Þ

� 1

n

X

i0
Kðxi0;jÞ þ

1

n2
X

i0;j0
Kðxi0 ; xj0 Þ:

Like for LLE and Isomap, the eigenvectors of M
give the embedding of the training examples, and
as shown in [7] they can be extended to provide the
embedding of a test point.

Neural networks

There are many variants of multilayer neural net-
works and we describe here the most common [15],
which was used in the experiments. We also limit
our discussion to regression problems, in which the
goal is to estimate a conditional expectation E½Ajx�
where A is a random variable that represents
activity (e.g. log-concentration) and x ¼ ½x1; . . . ; xd �
is the input vector, a fixed-size sequence of d

477

descriptor values. A one-hidden-layer neural net-
work learns a function f ðxÞ of the form

f ðxÞ ¼ bþ
Xh

i¼1

wi tanhðci þ
Xd

j¼1

vi;jxjÞ

with free parameters h ¼ ðb;w1; . . . ;wh; c1; . . . ; ch;
v1;1; . . . ; vh;dÞ, where h is the number of neurons in
the hidden layer. Those parameters are optimized (by
conjugate gradient descent) so as tominimize themean
squared error (MSE) on the training set, to which is
added a regularization term called weight decay
(proportional to the squared norm of the parameters).

Partial least-squares

PLS [16] was used as a benchmark against which
we measured the performance of the neural net-
work models. PLS is a linear statistical model
which is frequently used in chemometrics.

The central assumption is that groups of ob-
served variables are linearly related to groups of
latent variables. Usually, we assume that the
number of latent variables is smaller than the
number of observed variables. This can be viewed
as a form of dimensionality reduction. The partic-
ularity of this algorithm with respect to ordinary
least-squares (OLS) is that it tries to simultaneously
predict the target (the Y variable) and find a re-
duced representation of the input (the X variable)
by modeling their cross-covariance COVðX ; Y Þ.

We used what is called two-blocks PLS. The
software comes from a toolbox provided by Ras-
mus Bro and Claus A. Andersson called The N-way
toolbox for Matlab at the website http://www.
models.kvl.dk/source/nwaytoolbox/ index.asp.

Performance evaluation and hyper-parameters
selection

The hyper-parameters of the neural networks are
the number of hidden units and the weight-decay
parameter (the coefficient that multiplies the
squared norm of the parameters in the training
criterion). Because of the reduced size of our
datasets, they cannot be split into three disjoint
sets (training, validation and test) large enough to
allow meaningful training and error estimation.
Basic cross-validation works this way: the data set
is split into k folds which are used as follows. One
set, let us say the ith set, is kept as the test set, the

other k � 1 sets are used as the training set. Each
combination of training and test sets is considered
as i varies from 1 to k. The error is estimated as the
average error over the k test sets considered. In
double cross-validation, a similar process is used to
perform model selection within each of the outer
folds: the k � 1 sets forming the ‘training plus
validation’ set are in turn split in l folds (the inner
cross-validation), to estimate the error of each set
of hyper-parameters and select a value for them.
Note that the choice of hyper-parameter values
may be different for each of the outer folds, so in
the end we do not estimate the error of a particular
choice of hyper-parameter value, but rather the
error of the process which maps a data set into a
function and that includes hyper-parameter selec-
tion. Thus we used double cross-validation to
estimate the error and perform model selection.

Explored parameters for LLE, PLS and the neural
network
We used a double five-by-five-fold cross-validation
to choose the hyper-parameters (inner cross-vali-
dation) and evaluate generalization (outer cross-
validation) The hyper-parameters for this model
are grouped as follows:

1. The hyper-parameters for LLE are k, the
number of nearest neighbors used to recon-
struct the manifold of lower dimension and d,
the dimension in which the data is projected.
The values that were explored for these hyper-
parameters are:

k : 8 16 32
d : 8 16 32 64 128

2. For PLS, the only hyper-parameter is the
number of latent variables in the PLS model.

latent variables : 1 2 . . . 10

3. The hyper-parameters for the neural networks
are h, the number of hidden units and k, which
controls the weight-decay penalty. The values
that were explored for these hyper-parameters
are:

h : 1 2 4
k : 0:001 0:01 0:1 1 10 100

In some experiments, on top of the hyper-param-
eters explored for LLE, we also add the possibility

478

of using directly the data without projecting it at
all.

Data

In this section, we describe the datasets used in this
work.

Raw data sets

The first dataset is named Benzodiazepines. It is
freely available at the QSAR Society website
http://www.ndsu.nodak.edu/qsarsoc/. It orig-
inally contains 245 benzodiazepine compounds
that act on the benzodiazepine receptor [17, 18].
After virtual screening of the dataset, we found
two identical molecules that had differing biolog-
ical activity. We deleted the lowest entry in both
cases, namely: Ro-14-1359 and R0-13-9868.

Different benzodiazepines are used for different
indications including: muscle relaxation, anxiety
relief, treatment of convulsive disorders and spe-
cific types of seizures, sedation, insomnia, anes-
thesia (induction and maintenance), ethanol
withdrawal.

The second dataset is named Muscarinic and
contains 162 compounds that act on the M1
muscarinic receptor. It is freely available from
Milano Chemometrics [18, 19].

The M1 muscarinic receptor is a G-protein
coupled receptor. Of the five muscarinic acetyl-
choline receptor genes identifed to date, musca-
rinic m1, m3 and m5 receptors are thought to
couple predominantly to the activation of phos-
phoinositidase C via the Gq

11
family of G-proteins.

However, m1 and m3 muscarinic receptor-medi-
ated stimulation of adenylate cyclase activity has
also been observed in some cell lines.

Of the five muscarinic receptors, M1 is also the
most densely distributed muscarinic receptor in the
hippocampus and forebrain. It is believed to play a
significant role in memory, specifically in processes
for which the cortex and hippocampus interact.

The first two datasets have a continuous
response for the logðIC50Þ.

The third dataset is named AZCombiChem,
and contains 26000 compounds. They are a subset
of the AstraZeneca R&D Montreal combinatorial
chemistry library. Two percent of the compounds
are actives. The dataset is proprietary.

Molecular descriptor calculation

For the datasets tested here, we were only given
the molecular connectivities and the biological
activities. Before computing any descriptors, we
created a 3D representation, filtering out counter-
ions, putting hydrogen atoms to obtain a neutral
pH, calculating partial charge on each atom, and
finally minimizing the free energy.

We have done all the descriptor calculations
inside the MOE framework [20]. The important
details are that each entry has a single molecule,
that the molecular mechanics force field is
MMFF94 and the partial charge uses a bond
charge increment method [21].

All the descriptors for each compound were
computationally produced. We do not have
experimental values in our dataset, apart from the
activity measurements. The software used to
compute the descriptors was MOE from CCG.
MOE produces 474 descriptors from 2D to 3D
representations. The two public datasets processed
with MOE can be obtained upon request.

Assessment of unsupervised learning: size of training

set needed for learning

The out-of-sample extension of LLE enables us to
construct a test of convergence that does not de-
pend on the activity data. The convergence test can
be used towards answering some fundamental
questions about the dimensionality reduction step.
One of these questions is which size of the training
set is needed to construct a stable embedding.
Obtaining a stable embedding would mean that
the reduced space would correspond to a general-
ized chemical manifold. The question is funda-
mental because it relates to the structure of the
data in high dimension. The hunger for data of
any non-linear dimensionality reduction technique
will grow with the complexity of the data struc-
ture. It is thus important to assess how the com-
plexity of the chemical data is handled by LLE and
alternative methods.

In order to qualitatively determine the size of
the training set needed to obtain a stable
embedding, we devised the following test. In a
large database of compounds, we first put aside a
test set. We then select randomly two equal size
and disjoint data subsets. We individually

479

compute the embedding on each subset. We then
project the test set into the two reduced spaces.
After an affine transformation that aligns the
projected test sets, we compute the perturbation
error, which is the average squared difference
between the affine-aligned embeddings. For
statistical significance, we repeat 30 times for each
size of the data subsets. We tried many training set
sizes on the AZCombiChem data set. We tested four
dimensionality reduction methods: Isomap,
Additive Kernel PCA, Divisive Kernel PCA and
LLE. Because the perturbation error depends on the
number of principal components, only the shape of
the curve is meaningful across different methods.

Figure 1 shows clearly that LLE continues to
improve its stability as the size of the training set
increases. This could mean two things. Either LLE
had an unstable embedding to begin with and
needs a lot more data than other dimensionality
reduction techniques, or LLE succeeds in captur-
ing more of the complexity of the chemical data.

Note that the capacity to create a stable kernel
and capture structure in the data is different from
capturing the relevant information in the data.
Ultimately, a good measure of the capacity to
capture relevant information is through supervised
learning.

Results of dimensionality reduction on supervised

learning

The space where the descriptors of the molecules
lie has a very high dimension (474). Moreover, the

training set size is quite small (a few hundreds of
examples). High dimensionality and small training
set size together make the learning task very diffi-
cult. We will try to demonstrate the usefulness of
LLE to tackle such a problem.

Capturing non-linearity

LLE, like other dimensionality reduction tech-
niques, can be viewed as distorting the data.
Starting with a very complicated dataset, it tries to
find some locally linear manifold in the data. The
neural network thus works on a less complicated
space, from which a linear relationship with
activity may be easier to capture. To support our
conjecture, we tried a single unit neural network
without LLE preprocessing.

Specific results for these datasets with the
neural network models show that often only one
hidden unit is kept in the hidden layer during
cross-validation. This could be explained by the
small amount of data and the amount of noise
(lack of predictability from the given input de-
scriptors), or by a truly simple relation between
inputs and outputs (which is unlikely). Note that if
the compounds are close together in space, the
manifold in which they lie may be simpler.

In order to characterize the learning of non-
linearity, we designed two experiments with the
Benzodiazepines dataset. The first one is designed
to show whether LLE is capable of learning non-
linearity in the chemical data. The second is
designed to show whether the nonlinearity in the
neural network is useful. Note that for both
experiments, LLE usage is a choice inside the
double cross-validation. Both experiments use two
neural networks constrained to have one hidden

Table 1. Single unit neural network with different activation
functions on the Benzodiazepines dataset, with or without LLE
preprocessing.

Activating

function

Hidden

units

LLE MSE Spread Time (h)

Linear 1 No 5.50 2.3 3

Linear 1 Yes 0.49 0.05 6

tanh 1 No 0.62 0.07 1

tanh 1 Yes 0.58 0.06 3

tanh Many Yes 0.51 0.05 43

Test/training size 48/195

 0.6

 0.8

1

 1.2

 1.4

 1.6

 1.8

2

0 2000 4000 6000 8000 10000

Pe
rt

ur
ba

tio
n

er
ro

r

Number of training examples

kpca add
isomap

kpca div
lle

Figure 1. Stability of different non-linear dimensionality re-
duction techniques when varying the size of the training set.
AZCombiChem dataset with MOE descriptors.

480

unit. The first network has a linear activation
function and the second one uses tanh.

The mean squared error (MSE) is estimated by
double cross-validation, as explained previously.
The spread is an estimator of standard deviation of
the MSE. Computation time is on a linux work-
station with a 2GHz P4 CPU, and includes the
total time of the double cross-validation experi-
ment (training 90 � 5 � 5 times when there is a
single hidden unit, 3 times more with 3 choices of
hidden layer size). Note that LLE in itself is quick.

Table 1 summarizes the results of the two
experiments. For the first experiment, the results of
the two linear networks show that LLE alone can
learn the nonlinearity in the data. For the second
experiment, if we compare the linear and tanh
network without LLE, we see that the tanh func-
tion captures the nonlinearity in the data.

In fact, choosing the number of hidden units by
cross-validation or forcing it to be one has small
effect on the results. This can be seen in Table 1,
where no matter the method of hidden unit selec-
tion, we get around 0.5. It would thus seem that
the neural network treats the relationship between
chemical descriptors and biological activity as
linear, after LLE preprocessing. Indeed, Table 1
shows that one should either use LLE or the non-
linear activation function in order to obtain good
results with those special neural networks.

Learning with LLE

We now present learning experiments where we
test the usefulness of LLE as a preprocessing to
PLS or neural networks learning.

The results for the Benzodiazepines and Mus-
carinic datasets are summarized in Table 2. Note

that for every experiment where LLE was a choice
inside the double cross-validation, it has been
chosen as the best model.

Table 2 first shows that neural networks always
give better results than PLS, for a given choice of
LLE. Note that the spread of the data is impor-
tant, so the difference between differing models
cannot be statistically proved. In particular, Table
1 shows better results with a linear model than
with a full neural network.

Table 2 also shows that LLE almost always
enhances the learning. Either PLS or neural net-
work models get better predictive power after LLE
preprocessing. The only exception is with PLS on
the Muscarinic dataset, where we see no enhance-
ment.

Conclusions

In this work, we have described an experimental
investigation of LLE in QSAR. We have also
shown how to use LLE to obtain a low-dimen-
sional representation for new compounds.

We introduced a novel form of analysis for
dimensionality reduction methods, based on sta-
bility of the induced embedding, and compared
three spectral dimensionality reduction methods
on that basis (LLE, Isomap, and kernel PCA). We
conclude that the power of LLE to capture the
chemical manifold will grow as we enlarge the
training set, and this power appears greater than
that of other non-linear non-parametric dimen-
sionality reduction methods (Isomap and kernel
PCA).

We then tried specially designed neural net-
works to investigate the capacity of LLE to

Table 2. Predictive model performance on Benzodiazepines and Muscarinic datasets with or without LLE.

Dataset Model LLE MSE Spread Test/training

size

Benzodiazepines PLS No 0.82 0.08 48/195

Benzodiazepines PLS Yes 0.75 0.08 48/195

Benzodiazepines NNet No 0.71 0.09 48/195

Benzodiazepines NNet Yes 0.52 0.05 48/195

Muscarinic PLS No 0.68 0.08 32/130

Muscarinic PLS Yes 0.68 0.08 32/130

Muscarinic Nnet No 0.67 0.12 32/130

Muscarinic NNet Yes 0.49 0.06 32/130

481

capture nonlinearity. We conclude that LLE can
capture as well as a neural network the nonlin-
earity in the relatively small datasets tested here.

Finally, we ran several experiments to demon-
strate the enhancement of LLE to the predictive
power of models built with PLS and neural net-
works. For the datasets at hand, the combination
of LLE and PLS or LLE and a neural network
yields better average test error.

Other investigations should be done with more
and larger datasets to improve the statistical sig-
nificance of the enhancement provided by LLE.
Nonetheless, the current results show that LLE’s
low-dimensional representations will increase in
stability as we increase the training set size. Future
work should also focus on comparing LLE with
variable selection techniques.

Acknowledgements

We thank Valorisation Recherche Québec and the
NSERC for financial support.

References

1. Hansch, C. and Leo, A., Exploring QSAR: Fundamentals
and Applications in Chemistry and Biology. ACS Profes-
sional Reference Book, 1995.

2. Saul, L. and Roweis, S., J. Mach. Learn. Res., 4 (2002)
119.

3. Jolliffe, I.T., Principal Component Analysis. Springer,
New York, 2002.

4. Tenenbaum, J., de Silva, V. and Langford, J., Science,
290(5500) (2000) 2319.

5. Roweis, S. and Saul, L., Science, 290(5500) (2000) 2323.
6. Schölkopf, B., Smola, A. and Müller, K.-R., Neural

Comput., 10 (1998) 1299.
7. Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Le

Roux, N. and Ouimet M., Out-of-Sample Extensions for
LLE, Isomap, MDS, Eigenmaps, and Spectral Cluster-

ing. In Thrun, S., Saul, L. and Schölkopf, B. (Eds),
Advances in Neural Information Processing Systems 16,
2004.

8. Williams, C.K.I. and Seeger, M., Using the Nyström
method to speed up kernel machines. In Leen, T.,
Dietterich, T. and Tresp, V. (Eds), Advances in Neural
Information Processing Systems 13. Cambridge, MA,
2001, pp. 682–688.

9. Shawe-Taylor, J., Cristianini, N. and Kandola., J., On the
concentration of spectral properties. In Dietterich, T.,
Becker, S. and Ghahramani, Z. (Eds), Advances in Neural
Information Processing Systems 14, 2002.

10. Shawe-Taylor, J. and Williams, C., The stability of kernel
principal components analysis and its relation to the
process eigenspectrum. In Becker, S., Thrun, S. and
Obermayer, K. (Eds), Advances in Neural Information
Processing Systems 15, 2003.

11. Zwald, L., Bousquet, O. and Blanchard, G., Statistical
Properties of Kernel Principal Component Analysis. In
Shawe-Taylor, J. and Singer, Y. (Eds), Learning Theory:
Proceedings of 17th Annual Conference on Learning
Theory, COLT 2004, Banff, Canada, July 1–4. Vol. 3120
of Lecture Notes in Computer Science. Springer, Berlin,
Germany, 2004, pp. 594–608.

12. Cox, T. and Cox, M., Multidimensional Scaling. Chap-
man & Hall, London, 1994.

13. Schölkopf, B., Smola, A. and Müller, K.-R., Nonlinear
Component Analysis as a Kernel Eigenvalue Problem.
Technical Report 44, Max Planck Institute for Biological
Cybernetics, Tübingen, Germany, 1996.

14. Schölkopf, B., Burges, C.J.C. and Smola, A.J., Advances
in Kernel Methods – Support Vector Learning, MIT
Press, Cambridge, MA, 1999.

15. Rumelhart, D., Hinton, G. and Williams, R., Nature, 323
(1986) 533.

16. Frank, I. and Friedman, J., Technometrics 35(2) (1993)
109.

17. Harrison, P., Barlin, G., Davies, L., Ireland, S., Matyus,
P. and Wong, M., Eur. J. Med. Chem., 31(1996) 651.

18. Burden, F., Ford, M., Whitley, D. and Winkler, D.,
J. Chem. Inf. Comput. Sci., 40 (2000) 1423.

19. Orlek, B., Blaney, F., Brown, F., Clark, M., Hadley, M.,
Hatcher, J., Riley, G., Rosenberg, H., Wadsworth, H. and
Wyman, P., J. Med. Chem., 34 (1991) 2726.

20. Santavy, M. and Labute, P., SVL: The Scientific Vector
Language, 1997. www.chemcomp.com/Journal_of_CCG/
Features/svl.htm.

21. Halgren, T., J. Comput. Chem., 17 (1996) 490.

482

