
On the Challenge of Learning Complex Functions

Yoshua Bengio
Dept. IRO, Université de Montréal

P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, Qc, Canada
{bengioy}@iro.umontreal.ca

Abstract

A common goal of computational neuroscience and of artificial intelligence re-
search based on statistical learning algorithms is the discovery and understanding
of computational principles that could explain what we consider adaptive intelli-
gence, in animals as well as in machines. This chapter focuses on what is required
for the learning of complex behaviors. We believe it involves the learning of highly
varying functions, in a mathematical sense. We bring forward two types of argu-
ments which convey the message that many currently popular machine learning
approaches to learning flexible functions have fundamental limitations that render
them inappropriate for learning highly varying functions. The first issue concerns
the representation of such functions with what we call shallow model architectures.
We discuss limitations of shallow architectures, such as so-called kernel machines,
boosting algorithms, and one-hidden-layer artificial neural networks. The second
issue is more focused and concerns kernel machines with a local kernel (the type
used most often in practice), that act like a collection of template matching units.
We present mathematical results on such computational architectures showing that
they have a limitation similar to those already proved for older non-parametric
methods, and connected to the so-called curse of dimensionality. Though it has
long been believed that efficient learning in deep architectures is difficult, recently
proposed computational principles for learning in deep architectures may offer a
breakthrough.

1 Introduction

Much research in Artificial Intelligence (AI) and in computational neuroscience has
focused on how to perform a “function”1. This is tedious work that is being done
in both AI and computational neuroscience because of the very large number of tasks,
sub-tasks, and concepts that need to be considered to explain the rich array of behaviors
that are observed or desired. Research in learning algorithms started from the premise
that much more robust and adaptive behaviors would result if we focused on how to
learn “function”, i.e., the development of procedures that apply more general-purpose
knowledge (how to learn to perform a task) to the specific examples encountered by

1e.g., object recognition in vision, motor control for grasping, etc.: we quote “function” to talk about its
biological sense, and otherwise use the word in its mathematical sense.

1

the machine or the animal in order to yield behaviors tuned to the specifics of the
environment. However, as argued here, we believe that something important has been
missing from most accounts of how brains or machines learn. Expressing complex
behaviors requires highly varying mathematical functions, or high-level abstractions,
i.e., mathematical functions that are highly non-linear, in complex ways, in terms of
the raw sensory inputs of the machine or animal. Consider for example the task of
interpreting an input image such as the one in Figure 1. A high-level abstraction such
as the ones illustrated in that figure has the property that it corresponds to a very large
set of possible raw inputs, which may be very different from each other from the point
of view of simple Euclidean distance in pixel space. Hence that set (e.g., the set of
images to which the label “man” could be attributed) forms a highly convoluted region
in pixel space, which we call a manifold.

The raw input to the learning system is a high dimensional entity, made of many
observed variables, related by unknown intricate statistical relationships. Over the
years, research in the field of statistical machine learning has revealed fundamental
principles for learning predictive models from data, in addition to a plethora of useful
machine learning algorithms (Duda, Hart, & Stork, 2001; Hastie, Tibshirani, & Fried-
man, 2001; Bishop, 2006). The last quarter century has given us a set of flexible (i.e.,
non-parametric) statistical learning algorithms that can, at least in principle, learn any
continuous input-output mapping, if provided with enough computing resources and
training data. In practice, traditional machine learning and statistics research has fo-
cused on relatively simple problems (in comparison to full-fledged AI). In these simple
cases, the data distribution was explicitly or implicitly assumed to have a rather simple
form: it was either assumed known ahead of time up to a few parameters, or smooth,
or to involve only a few interactions between variables.

One long-term goal of machine learning research is to produce methods that are
applicable to highly complex tasks, such a perception, reasoning, intelligent control,
and other artificially intelligent behaviors. However, despite impressive progress on
both the academic and technological sides, these long-term goals remain elusive. What
makes these learning tasks challenging and difficult for the computer and presum-
ably for animals as well is that not enough is known ahead of time about the gen-
erating distribution (or process) from which the data come. There are currently two
major modes of performing statistical machine learning: one using rich explicit prior
knowledge about the generating process (such as using so-called probabilistic graph-
ical models (Jordan, 1998), Bayes nets, etc.); and another in which prior knowledge
is implicit in the choice of a metric or similarity function that compares examples
(e.g., kernel-based models – see www.kernel-machines.org – and other non-
parametric models such as artificial neural networks (Rumelhart, Hinton, & Williams,
1986) and boosting (Freund & Schapire, 1997)). Non-parametric models also implic-
itly assume a notion of smoothness of the function to be learned, i.e., if x is close to
y then we favor a function f such that f(x) is close to f(y). These principles work
quite well and have been employed in sophisticated ways in the last few years, but they
also have limits. This chapter aims at studying them in order to orient future research
towards learning algorithms that can plausibly learn the kind of intelligent behaviors
that animals and humans can learn.

An example of a complex task in which the smoothness prior is insufficient is the

2

Figure 1: The raw input image is transformed into gradually higher levels of represen-
tation, representing more and more abstract functions of the raw input. In practice, we
do not know ahead of time what the “right” representation (in the AI or in the biolog-
ical senses) should be for all these levels of abstractions, although linguistic concepts
sometimes help us to imagine what the higher levels might implicitly represent. We
need learning algorithms that can discover most of these abstractions, from mostly
unlabeled data.

3

recognition of multiple objects in an image, when each of the objects in the image can
come in many variations of shape, geometry (location, scale, angle), and when back-
grounds can also vary. This task involves a number of factors that can co-vary, creating
a combinatorial explosion of possible variations. This setting involves a highly varying
functions in the sense that if we were to parametrize all the instances of a particular
object, we would find that many pixel values would oscillate between the same colors
as we, for example, translated the object from left to right across the scene. This set-
ting has been studied in Bengio and Le Cun (2007), which draws many comparisons
between different learning algorithms with deep vs shallow architectures, and finds
that shallow architectures are fundamentally limited in their capacity to learn efficient
representations of this sort of function.

Most of the current non-parametric statistical learning techniques, studied by AI
researchers and computational neuroscientists, rely almost exclusively, implicitly or
explicitly, on the smoothness prior. We discuss two fundamental limitations of these
computational architectures. The first limitation, discussed in section 2, is more gen-
eral and concerns the representation of a function with an architecture of one or two
levels of adaptive elements (elements which one can think of as neurons, or groups of
neurons, and that we sometimes call units, here). We call such architectures shallow.
We give several examples suggesting that such architectures can be very inefficient, in
the sense that many more units are required to represent some functions than in a deep
architecture. An example of a deep architecture is that of a multi-layer neural network
with many layers (e.g., 5 to 10 layers). The second limitation is more specific, and con-
cerns architectures of kernel machines. Most learning algorithms for kernel machines
compute linear combinations of the outputs of template matchers, units that produce
a large output [activation] when the raw input matches a specific template associated
with the unit, and a small output otherwise. The mathematical form of the Gaussian
kernel permits the theoretical analysis summarized in section 3, which gives us insight
into the limitations of more general forms of template matcher, which we call local
kernels. This second limitation might also plague feed-forward artificial neural net-
works with one hidden layer, which become kernel machines in the mathematical limit
as the number of neurons becomes very large (Bengio, Le Roux, Vincent, Delalleau, &
Marcotte, 2006).

These limitations both lead us to the same conclusion: in order to learn and repre-
sent highly-varying functions (such as those we believe are required in the computa-
tions involved with complex behaviors) with a shallow architecture, one would need a
very large number of units. This number may even grow exponentially with the num-
ber of factors influencing the variations that can occur in the sensory inputs. With a
shallow architecture, the number of examples required to learn a task to a given degree
of accuracy would also be very large (in contradiction with what is observed with ani-
mals and humans) with the consequence that it would be impractical to implement an
artificial intelligence that can learn truly complex behaviours.

One way around the limitations of shallow or local architectures is to embed a lot
of prior knowledge in the architecture. For example, if the hard-wired form of the first
layer of units in such an architecture already computes an appropriate representation
for the task at hand, then the number of units required may remain small: in the right
space, any learning problem becomes easy. However, such hard-wired non-linear trans-

4

formations would have to be designed by human engineers in the case of machines, and
evolved in the case of biological brains. It would seem much more efficient, for human
designers, as well as for evolution, to take advantage of broad priors about a large set
of tasks, such as those that humans solve easily. Therefore, we set our goals towards
learning algorithms that do not require very detailed priors on each task, but yet, can
learn the kind of complex functions required for intelligent behavior.

In section 5, we put the requirement for deep architectures in a broader context: we
present a number of computational principles which we believe should be present, ei-
ther in an attempt to explain biological learning of complex behaviors or in an attempt
to achieve artificial intelligence through machine learning. These include: a deep ar-
chitecture, on-line learning (not having to store all examples and return to them many
times), semi-supervised learning (dealing with mostly unlabeled examples), multi-task
learning (capitalizing on the common processing involved in a large number of tasks),
reinforcement learning (learning using reinforcement signals rather than supervised
signals, which may be delayed in time), and probably active learning (choosing actions
to acquire more information about the data-generating process) as well.

2 The Problem with Shallow Architectures

Here we consider a limitation of the general class of architectures that are shallow,
i.e., have one or two levels of adaptive elements. In addition to kernel machines, this
includes ordinary feed-forward artificial neural networks with one hidden layer.

Any specific function can be implemented by a suitably designed shallow architec-
ture or by a deep architecture. Furthermore, when parameterizing a family of functions,
we have the choice between shallow or deep architectures. The important questions are:
1. how large is the corresponding architecture (with how many parameters, how many
neurons, how much computation to compute the output); 2. how much manual labor /
evolutionary time is required in specializing the architecture to the task.

Using a number of examples, we shall demonstrate that deep architectures are often
more efficient (more compact) for representing many functions. Let us first consider
the task of adding two N -bit binary numbers. The most natural digital circuit for
doing so involves adding the bits pair by pair and propagating the carry. The carry
propagation takes a number of steps and circuit elements proportional to N . Hence a
natural architecture for binary addition is a deep one, with N layers and on the order
of N elements in total. It is also possible to implement it efficiently with a less deep
circuit, with log N layers, with less than N elements per layer, for a total of about
N log N computations and elements. On the other hand, a shallow architecture with
two layers can implement any boolean formula expressed in disjunctive normal form
(DNF), by computing the min-terms (applying AND functions on the inputs) in the
first layer, and applying an OR on the second layer. Unfortunately, even for primitive
boolean operations such as binary addition and multiplication, the number of terms in
the intermediate layer can be extremely large (up to 2N for N -bit inputs in the worst
case). In fact, most functions in the set of all possible boolean functions of N bits
require an exponential number of min-terms (i.e., an exponentially large number of
basis functions) (Bengio & Le Cun, 2007). Only an exponentially small fraction of

5

possible boolean functions require a less than exponential number of min-terms. The
computer industry has devoted a considerable amount of effort to optimize the imple-
mentation of 2-level boolean functions with an exponential number of terms, but the
largest it can put on a single chip has only about 32 input bits (a 4 Gbit RAM chip).
This is why practical digital circuits, e.g., for adding or multiplying two numbers are
built with deep circuits, i.e., with multiple layers of logic gates: their 2-layer imple-
mentation would be prohibitively expensive. There are many theoretical results from
circuits complexity analysis which clearly indicate that circuits with a small number
of layers can be extremely inefficient at representing functions that can otherwise be
represented compactly with a deep circuit (Hastad, 1987; Allender, 1996). See (Utgoff
& Stracuzzi, 2002; Bengio & Le Cun, 2007) for discussions of this question in the
context of learning architectures.

Another interesting example is the boolean parity function. The N -bit boolean
parity function can be implemented in at least these three ways:

1. with N daisy-chained XOR gates (an N -layer architecture or a recurrent circuit
with one XOR gate and N time steps);

2. with N − 1 XOR gates arranged in a tree (a log2 N layer architecture);

3. a DNF formula (i.e. two layers) with a number of min-terms proportional to 2N .

In theorem 3.4 (Section 3) we state a similar result for learning architectures: an ex-
ponential number of terms is required with a Gaussian kernel machine in order to rep-
resent the parity function. In many instances, space can be traded for time (or layers)
with considerable advantage. In the case of boolean circuits, a similar theorem shows
that an exponential number of elements (logical AND, OR, or NOT gates) are required
to implement parity with a 2-level circuit (Ajtai, 1983).

Another interesting example in which adding layers is beneficial is the fast Fourier
transform algorithm (FFT). Since the discrete Fourier transform is a linear operation,
it can be performed by a matrix multiplication with N 2 scalar multiplications, which
can all be performed in parallel, followed by on the order of N 2 additions to collect the
sums. However the FFT algorithm can reduce the total cost to 1

2N log2 N , multiplica-
tions, with the trade-off of requiring log2 N sequential steps involving N

2 multiplica-
tions each. This example shows that, even with linear functions, adding layers allows
us to take advantage of the intrinsic regularities in the task.

These exemples and the complexity theory circuits highlight a severe limitation of
shallow architectures, i.e., of kernel machines (grandmother cells followed by linear
predictors) and one-hidden-layer neural networks. They may need to be exponentially
large to represent functions that may otherwise be represented compactly with a deep
architecture, e.g. a deep neural network.

3 The Problem with Template Matching and Local Ker-
nels

This section focusses more mathematically than the previous one on specific shallow
architectures, kernel machines with local kernels, corresponding to a layer of template-

6

matching units followed by linear aggregation. It shows that when the function to be
learned has many variations (twists and turns), which can come about because of the
interaction of many explanatory factors, such architectures may require a very large
number of training examples and computational elements. This section can be skipped
without losing the main thread of the chapter.

Kernel machines compute a function of their input that has the following structure:

f(x) = b +
∑

i

αiK(x, xi) (1)

where K(·, ·) can be understood as a matching function. It is chosen a priori and
represents a notion of similarity between two input objects. A typical kernel function
is the Gaussian kernel,

Kσ(u, v) = e−
1

σ2
||u−v||2 , (2)

in which the width σ controls the locality of the kernel. In biological terms, this ap-
proach corresponds to two levels of processing: first the estimation of similarity of the
current sensory pattern x with many previously-encountered patterns, and then some
form of voting between the matching patterns, in order to come up with a decision or a
prediction f(x). When K(x, xi) is substantially greater than its base output level, this
would be like a grandmother cell for the “grandmother image” xi firing in response to
input x. This architecture can be summarized as follows: at the bottom, a matching
level and at the top, a linear classification or linear regression level that aggregates all
the matches into one prediction or decision. Only the top level is fully tuned to the task
(the bottom one is learned in a simple and unsupervised way by copying raw inputs).
In an artificial neural network with a single hidden layer, trained in a supervised way or
by reinforcement learning, there are also two levels but both can be fully tuned to the
task. Both are shallow architectures. A more shallow architecture is the linear classifier
or linear regressor, corresponding to a single layer of neurons, as in Rosenblatt’s Per-
ceptron (Rosenblatt, 1957). The limits of the Perceptron are well understood (Minsky
& Papert, 1969). In this chapter, we emphasize the less obvious but nonetheless serious
limits of shallow architectures such as a kernel machine. One reason why these limi-
tations may have been overlooked is that unlike the Perceptron, such architectures are
universal approximators; with enough [training] data, they can approximate any con-
tinuous function arbitrarily closely. However, the number of required elements (i.e.,
the number of training examples, or grandmother cells) could be very large. As we
show below, in many cases it the requirement may be exponential with respect to the
size of the input pattern.

To establish the intuition motivating the mathematical results below, consider the
apparently simple problem of pattern recognition and classification when the input im-
ages are handwritten characters with various backgrounds. One of the fundamental
problems in pattern recognition is how to handle intra-class variability. For example,
we can picture the set of all the possible ’2’ images as a continuous manifold in the
pixel space. Any pair of ’2’ images on this manifold can be connected by a path,
along which every point corresponds to some image of a ’2’. The dimensionality of
this manifold at one location corresponds to the number of independent distortions that
can can be applied to a shape while preserving its category. For handwritten character

7

Figure 2: The set of images asssociated with the same object class forms a manifold,
i.e. a region of lower dimension than the original space of images. By rotating, trans-
lating, or shrinking the image we get other images of the same class, i.e., on the same
manifold. Since the manifold is locally smooth, it can in principle be approximated lo-
cally by linear patches. However, if the manifold is highly curved, many such patches
will be needed.

categories, the manifold has a high dimension: characters can be distorted using affine
transforms (6 parameters), distorted using an elastic sheet deformation (high dimen-
sion), or modified so as to cover the range of possible writing styles (with or without
a loop, with tick or thin stroke,...), and the backgrounds can change (high dimension).
Even for simple character images, the manifold is highly non-linear, with high curva-
ture. Moreover, manifolds for different categories are closely intertwined. Consider
the shape of a capital U and an O at the same location. They have many pixels in
common, many more pixels in fact than with a shifted version of the same U. Another
insight about the high curvature of these manifolds can be obtained from the example
of translating a high-contrast image. The tangent of a manifold is a locally linear ap-
proximation of the manifold, appropriate around a particular point of the manifold, as
illustrated in Figure 2. Consider the one-dimensional manifold that is the set of images
generated by taking a particular image and allowing it to be rotated or translated left or
right by different amounts. Analyzing such a manifold shows that the tangent vector
of this manifold (which can be seen as an image itself) changes abruptly as we trans-
late the image only one pixel to the right, indicating high curvature of the manifold.
As discussed earlier, many kernel algorithms make an implicit assumption of a locally
smooth function around each training example xi. They approximate the manifold with
a locally linear patch around each xi. For Support Vector Machines or SVMs (Boser,
Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995; Vapnik, 1998), as discussed in sec-
tion 3.2, the function is locally linear. Hence a high curvature implies the necessity of
a large number of training examples in order to cover all the desired turns with locally
constant or locally linear patches. The basic problem is that we have many factors of

8

variation that can be combined in order to give rise to a rich set of possible patterns.
With pattern matching architectures such as kernel machines with a local kernel (e.g.,
the Gaussian), one must cover the space of these variations, with at least one grand-
mother cell for each combination of values, especially if a change in values can give
rise to a change in the desired response. Even more variations than those outlined above
could be obtained by simply combining multiple objects in each image. The number
of possible variations then grows exponentially with the number of objects and with
the number of dimensions of variation per object. An even more dire situation occurs
if the background is not uniformly white, but can contain random clutter. To cover all
the important combinations of variations the kernel machine will need many different
templates containing each motif with a wide variety of different backgrounds.

3.1 Minimum Number of Bases Required

The following theorem informs us about the number of sign changes that a Gaussian
kernel machine can achieve, when it has k bases (i.e., k support vectors, or at least k
training examples).

Theorem 3.1 (Theorem 2 of Schmitt (2002)). Let f : R → R computed by a Gaus-
sian kernel machine (eq. 1) with k bases (non-zero αi’s). Then f has at most 2k zeros.

We would like to say something about kernel machines in R
d, and we can do this

simply by considering a straight line in R
d and the number of sign changes that the

solution function f can achieve along that line.

Corollary 3.2. Suppose that the learning problem is such that in order to achieve a
given error level for samples from a distribution P with a Gaussian kernel machine
(eq. 1), f must change sign at least 2k times along some straight line (i.e., in the case
of a classifier, a good decision surface must be crossed at least 2k times by that straight
line). Then the kernel machine must have at least k bases (non-zero αi’s).

A proof can be found in Bengio, Delalleau, and Le Roux (2006).

Example 3.3. Consider the decision surface shown in figure 3, which is a sinusoidal
function. One may take advantage of the global regularity to learn it with few pa-
rameters (thus requiring few examples). By contrast, with an affine combination of
Gaussians, corollary 3.2 implies one would need at least dm

2 e = 10 Gaussians. For
more complex tasks in higher dimension, the complexity of the decision surface could
quickly make learning impractical when using such a local kernel method.

Of course, one only seeks to approximate the decision surface S, and does not
necessarily need to learn it perfectly: corollary 3.2 says nothing about the existence of
an easier-to-learn decision surface approximating S. For instance, in the example of
figure 3, the dotted line could turn out to be a good enough estimated decision surface
if most samples were far from the true decision surface, and this line can be obtained
with only two Gaussians.

The above theorem tells us that if we are trying to represent a function that locally
varies a lot (in the sense that its sign along a straight line changes many times), then

9

decision surface

Class −1

Class 1

Figure 3: The dotted line crosses the decision surface 19 times: one thus needs at least
10 Gaussians to learn it with an affine combination of Gaussians with same width.

we need many training examples to do so with a Gaussian kernel machine. Note that it
says nothing about the dimensionality of the space, but we might expect to have to learn
functions that vary more when the data is high-dimensional. The next theorem confirms
this suspicion in the case of a highly-varying function, the d-bits parity function, which
changes value whenever any one of its inputs bits is flipped:

parity : (b1, . . . , bd) ∈ {0, 1}d 7→

{

1 if
∑d

i=1 bi is even
−1 otherwise.

This function is interesting because it varies a lot as we move around in input space.
Learning this apparently simple function with Gaussians centered on any of the possi-
ble input bit patterns: it requires a number of Gaussians exponential in d (for a fixed
Gaussian width). Note that our earlier corollary 3.2 does not apply to this function,
so it represents another type of local variation (not along a line). However, it is also
possible to prove a strong result about that case.

Theorem 3.4. Let f(x) = b +
∑2d

i=1 αiKσ(xi, x) be an affine combination of Gaus-
sians with same width σ centered on points xi ∈ Xd. If f solves the parity problem,
then there are at least 2d−1 non-zero coefficients αi.

A proof can be found in Bengio et al. (2006).
The bound in theorem 3.4 is tight, since it is possible to solve the parity problem

with exactly 2d−1 Gaussians and a bias, for instance by using a negative bias and
putting a positive weight on each example satisfying parity(xi) = 1.

One may argue that parity is a simple discrete toy problem of little interest. But
even if we have to restrict the analysis to discrete samples in {0, 1}d for mathematical

10

reasons, the parity function can be extended to a smooth function on the [0, 1]d hy-
percube depending only on the continuous sum b1 + . . . + bd. Theorem 3.4 is thus a
basis to argue that the number of Gaussians needed to learn a function with many vari-
ations in a continuous space may scale linearly with these variations, and thus possibly
exponentially in the dimension.

3.2 Smoothness vs Locality

Consider a Gaussian SVM and how that estimator changes as one varies σ, the hyper-
parameter of the Gaussian kernel. For large σ one would expect the estimated function
to be very smooth, whereas for small σ one would expect the estimated function to
be more local, in the sense discussed earlier: the near neighbors of x have dominating
influence in the shape of the predictor at x.

The following proposition tells us what happens when σ is large, or when we con-
sider what happens in a ball of training examples with small radius (compared with
σ). It considers the space of possible input examples, and a sphere in that space, that
contains all the training examples. The proposition focusses on what happens when the
Gaussian width σ becomes large compared to that sphere.

Proposition 3.5. For the Gaussian kernel classifier, as σ increases and becomes large
compared with the diameter of the data, within the smallest sphere containing the data
the decision surface becomes linear if

∑

i αi = 0 (e.g., for SVMs), or else the normal
vector of the decision surface becomes a linear combination of two sphere surface
normal vectors, with each sphere centered on a weighted average of the examples of
the corresponding class.

A proof can be found in Bengio et al. (2006).
This proposition shows that when σ becomes large, a kernel classifier becomes

non-local (it approaches a linear classifier). However, this non-locality is at the price of
constraining the decision surface to be very smooth, making it difficult to model highly
varying decision surfaces. This is the essence of the trade-off between smoothness and
locality in many similar non-parametric models (including the classical ones such as
k-nearest-neighbor and Parzen windows algorithms).

Now consider in what senses a Gaussian kernel machine is local (thinking about
σ small). Consider a test point x that is near the decision surface. We claim that the
orientation of the decision surface is dominated by the Euclidean neighbors xi of x in
the training set, making the predictor local in its derivative. It means that variations
around an input x of the decision surface represented by the kernel machine f are
mostly determined by the training examples in the neighborhood of x. If we consider
the coefficients αi fixed (i.e., ignoring their dependence on the training xi’s), then it
is obvious that the prediction f(x) is dominated by the near neighbors xi of x, since
K(x, xi) → 0 quickly when ||x − xi||/σ becomes large. However, the αi can be
influenced by all the xj ’s. The following proposition skirts that issue by looking at the
first derivative of f .

Proposition 3.6. For the Gaussian kernel classifier, the normal of the tangent of the
decision surface at x, with x on the decision surface, is constrained to approximately

11

lie in the span of the vectors (x−xi) with ||x−xi|| not large compared to σ and xi in
the training set.

See Bengio and Le Cun (2007) for a proof.
The constraint of ∂f(x)

∂x
being in the span of the vectors x−xi for neighbors xi of x

is not strong if the the region of the decision surface where data concentrate (a manifold
of possibly lower dimension than the decision surface itself) has low dimensionality.
Indeed if that dimensionality is smaller or equal to the number of dominating neighbors,
then the kernel machine decision surface is not strongly constrained by the neighboring
examples. However, when modeling complex dependencies involving many factors of
variation, the region of interest may have high dimension (e.g., consider the effect of
variations that have arbitrarily large dimension, such as changes in clutter, background
, etc. in images). For such a complex highly-varying target function, we also need
a local predictor (σ small) in order to accurately represent all the desired variations.
With a small σ, the number of dominating neighbors will be small compared to the
dimension of the manifold of interest, making this locality in the derivative a strong
constraint, and allowing the following curse of dimensionality argument.

This notion of locality in the sense of the derivative allows us to define a ball around
each test point x, containing neighbors that have a dominating influence on ∂f(x)

∂x
.

Smoothness within that ball constrains the decision surface to be approximately either
linear (case of SVMs) or a particular quadratic form. Let N be the number of such balls
necessary to cover the region Ω where the value of the predictor is desired (e.g., near
the target decision surface, in the case of classification problems). Let k be the smallest
number such that one needs at least k examples in each ball to reach error level ε. The
number of examples thus required is kN . To see that N can be exponential in some
dimension, consider the maximum radius r of all these balls and the radius R of Ω. If
Ω has intrinsic dimension d, then N could be as large as the number of radius-r balls

that can tile a d-dimensional manifold of radius R, which is on the order of
(

R
r

)d
. This

means that in order to cover the possibly variations in the data that matter to define the

decision surface, one may need a number of examples that grows as
(

R
r

)d
.

4 Learning Abstractions One on Top of the Other

The analyses of the previous sections point to the difficulty of learning highly-varying
functions, i.e., functions that have a large number of variations in the domain of in-
terest. These analyses focus on shallow architectures and learning algorithms that
generalize only locally, such as kernel machines with Gaussian kernels, i.e. grand-
mother cells. This problem also plagues many non-parametric unsupervised learn-
ing algorithms which attempt to cover the manifold near which the data concentrate.
Such models can in principle cover the space of variations of the input examples by
a large number of locally linear patches. Since the number of locally linear patches
can be made to grow exponentially with the number of input variables, this problem
is directly connected with the well-known curse of dimensionality for classical non-
parametric learning algorithms (for regression, classification and density estimation).
If the shapes of all these linear patches are unrelated, one needs enough examples for

12

each patch in order to generalize properly. However, if these shapes are related and
can be predicted from each other, non-local learning algorithms have the potential to
generalize to regions not covered by the patches arising from the training set. Such
ability would seem necessary for learning in complex domains such as those involved
in intelligent behavior.

One way to represent a highly-varying function compactly (with few parameters)
is through the composition of many non-linearities. Such multiple composition of non-
linearities appear to grant non-local properties to the estimator, in the sense that the
value of f(x) or f ′(x) can be strongly dependent on training examples far from xi

while at the same time allowing f(·) to capture a large number of variations. We have
already discussed the example of parity in the previous two sections. Other arguments
can be brought to bear to strongly suggest that learning of more abstract functions
is much more efficient when it is done sequentially, composing previously learned
concepts in order to represent and learn more abstract concepts (Utgoff & Stracuzzi,
2002).

The raw input object, e.g., the vector of gray-scale values of all the pixels in an im-
age constitutes an initial low level representation of the input. This is to be contrasted
with high level representations such as a set of symbolic categories for that input object
(e.g., in an image: man, sitting. . .). Many intermediate levels of representation
can exist in between these two extremes. Indeed, deep multi-layered systems, with each
layer extracting a slightly higher level representation of its input patterns, have long
been believed to be the key to building the ultimate intelligent learning systems (Ut-
goff & Stracuzzi, 2002). Unfortunately, we generally do not know a set of intermediate
and high-level concepts which would appropriate to explain the data. It would there-
fore be important to have algorithms that can discover such abstractions. However this
vision has proved difficult to actualize; learning deep-layered architecture is known to
be problematic (Tesauro, 1992) because it is a difficult optimization problem. For this
reason, many recent successful approaches in machine learning (Schölkopf, Burges, &
Smola, 1999) seem to have given up on the notion of multiple levels of transformations
altogether, in favor of analytical simplicity and theoretical guarantees. Recently, how-
ever, Hinton, Osindero, and Teh (2006) have demonstrated algorithms that suggest that
the difficulties of learning with many layers can be overcome.

Deep architectures are perhaps best exemplified by multi-layer neural networks
with several hidden layers. In general terms, deep architectures form a composition of
non-linear modules, each of which can be adapted. Deep architectures rarely appear
in the literature. Indeed, the vast majority of neural network research has focused on
shallow architectures with a single hidden layer, because of the difficulty of training
networks with more than 2 or 3 layers (Tesauro, 1992). Notable exceptions include
work on convolutional networks (LeCun, Boser, Denker, Henderson, Howard, Hub-
bard, & Jackel, 1989; LeCun, Bottou, Bengio, & Haffner, 1998), and recent work on
Deep Belief Networks (Hinton et al., 2006; Bengio, Lamblin, Popovici, & Larochelle,
2007) or DBNs. The latter are probabilistic generative models of the data, along with
a fast approximation of the posterior (determining what higher-level causes or abstrac-
tions are likely to be involved in explaining the current input), and a greedy layer-wise
training algorithm that works by training one layer at a time in an unsupervised fash-
ion. Each layer is trained to model the distribution of its input, which is the output

13

of the previous layer. Upper layers of a DBN are supposed to represent more abstract
concepts that explain the input observation x, whereas lower layers extract low-level
features from x. They learn simpler concepts first, and more abstract concepts are
learned by composing them. Although DBNs have been introduced only recently, it
has already been shown that they can learn efficient high-level representations. They
have also been shown to beat state-of-the-art methods by a comfortable margin (Hinton
et al., 2006; Bengio & Le Cun, 2007) on MNIST (a well known benchmark task in-
volving classification of digit images), when no prior knowledge on images is allowed.
Deep Belief Networks are described in more detail in this book, in Hinton’s chapter.

However, the idea that learning occurs in stages, with different levels of concepts,
dates back at least to Piaget (Piaget, 1952). Humans do not learn very abstract math-
ematical concepts until the end of adolescence. For example, they start by learning
the notion of objects in the world, they learn to count and doing simple mathematical
operations on them, and gradually build on these early concepts in order to learn to rep-
resent more abstract concepts. This strategy makes a lot of sense from a mathematical
point of view: the optimization problem of learning the more abstract concepts directly
would appear too difficult (e.g., training a deep neural network gets stuck in poor local
minima), whereas sequentially breaking the problem into simpler ones (e.g., learning
less abstract concepts first, and gradually more abstract ones on top) is a common type
of optimization heuristic. Biological evidence for maturation one stage after the other
is less clear (Guillery, 2005), but some observations support a hierarchical sequence of
maturations.

5 What is Needed

To design learning algorithms that handle more complex data distributions such as
those presumably involved in artificial and natural intelligence, we believe that bold
steps are required, not just fine-tuning of existing algorithms. We hypothesize that
significant progress can be achieved through a small set of computational and mathe-
matical general-purpose principles, by opposition to a large set of engineered special-
purpose tricks. By general-purpose or special-purpose we want to distinguish methods
that apply to a large class versus a tiny class of tasks. Keeping in mind that there exists
no completely universal statistical learning algorithm (Wolpert, 1996), it suffices that
such broadly applicable generalization principles be relevant to the type of learning
tasks that we care about, such as those solved by humans and animals.

Another hypothesis on which this chapter has focused, is that we are are better off
using deep architectures than shallow architectures in order to learn complex highly-
varying functions such as those involved in intelligent behaviors. In particular one of
our objectives is to investigate deep architectures that are obtained by the principle
of composition: more abstract and more non-linear functions are represented as the
composition of simpler ones, and this is done at multiple levels. The number of such
levels is the depth of the architecture, and corresponds to depth of a circuit if that
function is represented as a circuit. To achieve generalization on examples that are
truly novel, and to generalize across tasks, it is important that the components get to be
re-used in different places and different tasks.

14

In order to be able to learn highly-varying complex functions, we believe that one
needs learning algorithms that can cope with very large datasets, that can take advan-
tage of a large number of inter-related tasks, that have a deep architecture obtained by
composition of simpler components, and that can learn even when most of the exam-
ples are unlabeled, and when the inputs are very high-dimensional.

We put together below a set of requirements which we believe necessary in learning
algorithms for intelligent behaviors.

• Learning complex abstractions through composition of simpler ones. Our work
already strongly suggests that high-level abstractions require deep architectures,
but there remains the question of optimizing these architectures. Learning com-
plex abstractions (highly-varying functions) is likely to involve a difficult opti-
mization problem, but a promising strategy is to break this problem into simpler
(even possibly convex) sub-problems. Successful examples of this strategy are
found in recent work, following the work on Deep Belief Networks (Hinton et al.,
2006), i.e., with greedy layer-wise training of deep networks (Bengio et al., 2007;
Hinton & Salakhutdinov, 2006; Ranzato, Poultney, Chopra, & LeCun, 2006).

• Unsupervised and semi-supervised learning are key. To learn complex abstrac-
tions requires a lot of data, and tagging it would be prohibitively expensive. Most
current state-of-the-art unsupervised and semi-supervised learning algorithms
are of the memorizing type (local non-parametric models) and the mathematical
results outlined here show that they will suffer from the curse of dimensionality,
i.e., they are unlikely to have the ability to learn abstractions that actually have a
simple expression but appear complex because they correspond to a great variety
of examples or give rise to highly variable functions.

• The more variables and task, the better? Although common belief (that has some
justifications) is that learning is harder when there are more variables involved
(high-dimensional spaces, curse of dimensionality, etc.), we hypothesize that one
can take advantage of the presence of many variables, as long as their relations
are not arbitrary but relate to shared underlying realities. If we consider predict-
ing one variable from the others to be one of a series of tasks, and we apply the
principles of multi-task learning, there should be an advantage to working with
more random variables, as long as they are meaningfully related. This idea also
means that instead of separately tackling each task, we devote a great part of
our effort on learning concepts that are relevant to a large number of tasks, e.g.,
concepts that help to make sense of the world around us.

• Great quantities of data call for on-line learning. If a large number of examples
are required to learn complex concepts then we should strive to develop learning
algorithms whose computational requirements scale linearly with the number
of examples. On-line learning algorithms visit each example only once. Other
variants are possible, but the overall training time should not scale much worse
than linearly in the number of examples.

• Predictive, reinforcement and active learning. Although most data are unlabeled,
the task of predicting what comes next can be achieved with supervised learning

15

algorithms, as components in the unsupervised learning task. Because what we
are trying to learn is complex, passively observing it for a lifetime may not be
sufficient to collect and process enough data. Active learning algorithms (Cohn,
Ghahramani, & Jordan, 1995; Fukumizu, 1996) suggest actions that influence
what examples are seen next, i.e., in which direction to explore in order to ac-
quire data that brings more information. They can potentially give rise to expo-
nentially faster learning. In this context, the learning algorithms must consider
the optimization of a sequence of decisions, as in reinforcement learning.

• Learning to represent context at multiple levels. Another challenge for learning
algorithms is that many of the statistical dependencies that matter in the perfor-
mance of intelligent tasks involve events at different times and are greatly influ-
enced by temporal context. This means that learning algorithms must involve
models of the dynamics in the data, and that an unobserved state representation
must be learned, which necessarily involves long-term dependencies, that are
unfortunately hard to learn with currently known techniques (Bengio, Simard, &
Frasconi, 1994; Bengio & Frasconi, 1995). We believe that one of the keys to
achieving this goal is to represent context at different levels of abstraction and
different time scales (ElHihi & Bengio, 1996).

6 Conclusion

Because the brain may be seen as a deep network, computational neuroscience research
on the learning mechanisms that involve many layers could serve as very useful inspi-
ration for AI research. Conversely, the algorithmic and mathematical development of
ideas in statistical machine learning geared towards training deep networks could also
provide hypotheses to inspire computational neuroscience research into learning mech-
anisms.

The main messages of this chapter are the following.

1. Shallow architectures such as those of linear predictors, kernel machines (grand-
mother cells and template matching) and single-hidden-layer neural networks are
not efficient enough in terms of representation to address the learning of complex
functions such as those involved in intelligent behavior. Computational research
should pay particular attention to possible learning mechanisms involving many
layers of processing together.

2. Local estimators such as kernel machines with a local kernel (e.g., the Gaussian
kernel, template matching) are similarly limited, because they cannot discover
regularities in the data that are both fine-grained (many local variations) but span
a large region of data space (globally coherent structures, principles applicable
to many different types of possible inputs). Computational neuroscience mod-
els that are limited to template matching followed by linear prediction or linear
classification are insufficient to explain the richness of human or animal learning.

3. Deep architectures (e.g., neural networks with many layers) appear the only way
to avoid these limitations, and although they were until recently thought to be

16

too difficult to train, new algorithms strongly suggest that they can be trained
efficiently using a greedy layer-wise unsupervised strategy.

4. Deep architectures and the greedy layer-wise strategy exploits the principle, ap-
parently also exploited by humans (Piaget, 1952), that one can more easily learn
high-level abstractions if these are defined by the composition of lower-level
abstractions, with the property that these lower-level abstractions are useful by
themselves to describe the data, and can thus be learned before the higher level
abstractions are learned. How such a training by stages could occur in brains
remains a question. However, our work (Bengio et al., 2007) suggest that all
the levels could be learning simultaneously, even though lower levels would pre-
sumably converge near their final state earlier.

5. To achieve the learning of intelligent behaviors, this multi-level learning of ab-
stractions should be combined with several other characteristics of learning al-
gorithms: ability to exploit unlabeled data (unsupervised and semi-supervised
learning), ability to exploit commonalities between a large number of tasks (multi-
task learning) and a large number of inputs (multi-modal learning), on-line learn-
ing, learning to represent context at multiple levels, active learning, predictive
learning, and reinforcement learning. Most of these have been considered sep-
arately in the machine learning community, but it is time to start putting them
together in one system.

Acknowledgments

The author wants to acknowledge the intellectual influence and contributions to the
results and ideas discussed in this chapter, primarily from Yann Le Cun, but also from
Geoffrey Hinton, Pascal Lamblin, François Rivest, Olivier Delalleau, Pascal Vincent,
Nicolas Le Roux, and Hugo Larochelle. The following funding agencies have also con-
tributed to this work: NSERC, the NCE (MITACS), and the Canada Research Chairs.

References

Ajtai, M. (1983).
∑1

1-formulae on finite structures. Annals of Pure and Applied Logic,
24(1), 48.

Allender, E. (1996). Circuit complexity before the dawn of the new millennium. In
16th Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, pp. 1–18. Lecture Notes in Computer Science 1180.

Bengio, Y., & Frasconi, P. (1995). Diffusion of context and credit information in
markovian models. Journal of Artificial Intelligence Research, 3, 223–244.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–
166.

17

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). The curse of highly variable functions
for local kernel machines. In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Ad-
vances in Neural Information Processing Systems 18, pp. 107–114. MIT Press,
Cambridge, MA.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In Advances in Neural Information Processing Sys-
tems 19. MIT Press, Cambridge, MA.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In Bottou, L.,
Chapelle, O., DeCoste, D., & Weston, J. (Eds.), Large Scale Kernel Machines.
MIT Press.

Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O., & Marcotte, P. (2006). Convex
neural networks. In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Advances in
Neural Information Processing Systems 18, pp. 123–130. MIT Press, Cambridge,
MA.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin
classifiers. In Fifth Annual Workshop on Computational Learning Theory, pp.
144–152 Pittsburgh.

Cohn, D., Ghahramani, Z., & Jordan, M. I. (1995). Active learning with statistical
models. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural
Information Processing Systems 7. Cambridge MA: MIT Press.

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20,
273–297.

Duda, R., Hart, P., & Stork, D. (2001). Pattern Classification, Second Edition. Wiley
and Sons, New York.

ElHihi, S., & Bengio, Y. (1996). Hierarchical recurrent neural networks for long-term
dependencies. In Touretzky, D., Mozer, M., & Hasselmo, M. (Eds.), Advances in
Neural Information Processing Systems 8, pp. 493–499. MIT Press, Cambridge,
MA.

Freund, Y., & Schapire, R. E. (1997). A decision theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ence, 55(1), 119–139.

Fukumizu, K. (1996). Active learning in multilayer perceptrons. In Touretzky, D.,
Mozer, M., & Hasselmo, M. (Eds.), Advances in Neural Information Processing
Systems 8. MIT Press, Cambridge, MA.

Guillery, R. (2005). Is postnatal neocortical maturation hierarchical?. Trends in Neu-
roscience, 28(10), 512–517.

18

Hastad, J. T. (1987). Computational Limitations for Small Depth Circuits. MIT Press,
Cambridge, MA.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning:
data mining, inference and prediction. Springer Series in Statistics. Springer
Verlag.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18, 1527–1554.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504–507.

Jordan, M. (1998). Learning in Graphical Models. Kluwer, Dordrecht, Netherlands.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel,
L. (1989). Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4), 541–551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Minsky, M., & Papert, S. (1969). Perceptrons. MIT Press, Cambridge.

Piaget, J.-P. (1952). The origins of intelligence in children. International Universities
Press, New York.

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2006). Efficient learning of sparse
representations with an energy-based model. In et al., J. P. (Ed.), Advances in
Neural Information Processing Systems (NIPS 2006). MIT Press.

Rosenblatt, F. (1957). The perceptron — a perceiving and recognizing automaton.
Tech. rep. 85-460-1, Cornell Aeronautical Laboratory, Ithaca, N.Y.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-
propagating errors. Nature, 323, 533–536.

Schmitt, M. (2002). Descartes’ rule of signs for radial basis function neural networks.
Neural Computation, 14(12), 2997–3011.

Schölkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in Kernel Methods
— Support Vector Learning. MIT Press, Cambridge, MA.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8, 257–277.

Utgoff, P., & Stracuzzi, D. (2002). Many-layered learning. Neural Computation, 14,
2497–2539.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, Lecture Notes in Economics
and Mathematical Systems, volume 454.

19

Wolpert, D. (1996). The lack of a priori distinction between learning algorithms. Neu-
ral Computation, 8(7), 1341–1390.

20

