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Abstract

In the presence of a heavy-tail noise distribution, regression becomes much
more di�cult. Traditional robust regression methods assume that the noise
distribution is symmetric and they downweight the in�uence of so-called out-
liers. When the noise distribution is asymmetric these methods yield strongly
biased regression estimators. Motivated by data-mining problems for the
insurance industry, we propose in this paper a new approach to robust re-
gression that is tailored to deal with the case where the noise distribution is
asymmetric. The main idea is to learn most of the parameters of the model
using conditional quantile estimators (which are biased but robust estimators
of the regression), and to learn a few remaining parameters to combine and
correct these estimators, to minimize the average squared error. Theoretical
analysis and experiments show the clear advantages of the approach. Results
are on arti�cial data as well as real insurance data, using both linear and
neural-network predictors.

∗ This work has been done while Takafumi Kanamori was at Université de Montréal, DIRO,
CP 6128, Succ. Centre-Ville, Montréal, Québec, Canada.

1



1 Introduction

In a variety of practical applications, we often �nd data distributions with an asym-
metric heavy tail extending out towards more positive values, as in Figure 1 (ii).
Modeling data with such an asymmetric heavy-tail distribution is essentially dif-
�cult because outliers, which are sampled from the tail of the distribution, have
a strong in�uence on parameter estimation. When the distribution is symmetric

(around the mean), the problems caused by outliers can be reduced using robust

estimation techniques [1, 2, 3] which basically intend to ignore or put less weights
on outliers. Note that these techniques do not work for an asymmetric distribution:
most outliers are on the same side of the mean, so downweighting them introduces
a strong bias on its estimation.
Our goal is to estimate the conditional expectation E[Y |X] (measuring perfor-
mance in the least-square sense). Regression can also su�er from the e�ect of
outliers when the distribution of the noise (the variations of the output variable Y
that are not explainable by the input variable X) has an asymmetric heavy tail.
As in the unconditional case, the robust methods which downweight outliers[3] do
not work for asymmetric noise distributions. We propose a new robust regression
method which can be applied to data with an asymmetric heavy-tail noise distri-
bution. The regressor can be linear or non-linear (e.g., approximating the desired
class of functions with a multi-layer neural network). The proposed method can
provably approximate the conditional expectation (provided the approximating
class is large enough) for a wide range of noise structures including additive noise,
multiplicative noise and combinations of both. Di�erent variants of the proposed
method are compared both theoretically and experimentally to Least Squares (LS)
regression (both linear and non-linear). We demonstrate the e�ectiveness of the
proposed method with numerical experiments on arti�cial datasets and with an ap-
plication to a auto-insurance premium estimation problem in which the data have
an asymmetric heavy-tail noise distribution. Throughout the paper, we use the
following notations: X and Y for the input and the output random variables re-
spectively, FW (·) and PW (·) for, respectively, the cumulative distribution function
(cdf) and the probability density function (pdf) of random variable W .

2 Robust Methods

Let us �rst consider the easier task of estimating from a �nite sample the uncon-
ditional mean E[Y ] of a heavy-tail distribution (i.e., the density decays slowly to
zero when going towards ∞ or −∞). The empirical average may here be a poor
estimator because the few points sampled from the tails are highly variable and
in�uence greatly the empirical average. In the case of a symmetric distribution, we
can downweight or ignore the e�ect of these outliers in order to greatly reduce this
variability. For example, the median estimator is much less sensitive to outliers
than the empirical average for heavy-tail distributions.
This idea can be generalized to conditional estimators, for example one can esti-
mate the regression E[Y |X] from an estimated conditional median by minimizing
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(i: symmetric distribution) (ii: asymmetric distribution)

Figure 1: The schematic illustration of empirical averages and empirical medians
for (i) symmetric distribution and for (ii) asymmetric distribution: Distributions of
a heavy-tail random variable Y , empirical average and empirical median and their
expectations (black circles) are illustrated. Note that in (i) those expectations
coincide, while in (ii) they do not. As indicated by dashed areas, we de�ne pµ as
the order of the quantile coinciding with the mean. In (i), pµ = 0.5.

absolute errors:

f̂0.5 = argmin
f∈F

∑
i

|yi − f(xi)|, (1)

where F is a set of functions (e.g., a class of neural networks), {(xi, yi), i =
1, 2, · · · ,N} is the training sample, and a ĥat denotes estimation on data. Min-
imizing the above over P (X,Y ) and a large enough class of functions yields the
conditional median f0.5, i.e., P (Y < f0.5(X)|X) = 0.5. For regression problems
with a heavy tail noise distribution, the estimated conditional median is much less
sensitive to outliers than least squares (LS) regression (which provides an estimate
of the conditional average of Y given X).
Unfortunately, this method and other methods which downweight the in�uence
of outliers [1, 2, 3] do not work for asymmetric distributions. Whereas removing
outliers symmetrically on both sides of the mean does not change the average,
removing them on one side changes the average considerably. For example, the
median of an asymmetric distribution does not coincide with its mean (and the
more asymmetric the distribution, the more they di�er). Note that, instead of the
median, there is another quantile that coincides with the mean. We call its
order pµ: i.e. for a distribution P (Y ), we de�ne pµ , FY (E[Y ]) =P (Y < E[Y ]).
Note that pµ > 0.5 (< 0.5) suggests P (Y ) is positively (negatively) skewed. When
the distribution is symmetric, pµ = 0.5. See Figure 1.
For regression problems with an asymmetric noise distribution, we may extend me-
dian regression eq. (1) to p-th quantile regression [4] that estimates the conditional
p-th quantile, i.e. we would like P (Y < f̂p(X)|X) = p:

f̂p = argmin
f∈Fq

 ∑
i:yi≥f(xi)

p|yi − f(xi)|+
∑

i:yi<f(xi)

(1− p)|yi − f(xi)|

 , (2)
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where Fq is a set of quantile regression functions. One could be tempted to ob-
tain a robust regression with asymmetric noise distribution by estimating fpµ,
instead of f0.5. But what is pµ for regression problems ? It must be de�ned as
pµ(x) , FY |X(E[Y |X = x])=P (Y < E[Y |X]|X = x). So the above idea raises 3
problems, which we will address with the algorithm proposed in the next section:
(i) pµ(x) of P (Y |x) may depend on x in general, (ii) unless the noise distribution
is known, pµ itself must be estimated, which is maybe as di�cult as estimating
E[Y |X], (iii) if the noise density at pµ is low (because of the heavy tail and large
value of pµ), the estimator in eq. (2) may itself be very unstable. See Figure 3.

3 Robust Regression for Asymmetric Tails

3.1 Introductory Example

To explain the proposed method, we �rst consider an introductory example, a
simple scalar linear regression problem with additive noise:

Y = aX + b+ Z, (3)

where Z is a zero-mean noise random variable (independent of X) with an asym-
metric heavy-tail distribution whose (unknown) pµ is 0.9, and a and b are param-
eters to estimate. Let us consider the 3 problems raised in the previous section.
Consider (i): is pµ of P (Y |X) independent of X? yes: P (Y < E[Y |X]|X) =
P (aX + b + Z < aX + b) = P (Z < 0) = pµ does not depend on X. Concerning
(ii) and (iii) we do not know a priori the value of pµ, and even if we knew it,
the quantile estimation at p = 0.9 might be very unstable (the 0.9-th empirical
quantile sample is highly variable if it is in the tail). Therefore we propose to
estimate a quantile regression at p = 0.5, ideally near the mode of the distribution.
Let us call fp1 this ideal quantile regression and f̂p1 the estimated function. It
can be noted that fp1(x) and E[Y |x] can both be written as linear functions of x
with the same coe�cient a (but a di�erent intercept b′ and b). This suggests the
following strategy: (1) estimate a using p = 0.5 quantile regression, (2) keeping â
�xed, estimate b to minimize the least squares error. In this way, b might not be
estimated any better, but at least a is ∗. This idea is illustrated in Figure 3.

3.2 Algorithm

To overcome the di�culties raised above, we propose a new algorithm, RRAT, for
Robust Regression for Asymmetric Tails. The main idea is to learn most
of the parameters of the model using conditional quantile estimators (which are
biased but robust), and to learn a few remaining parameters to combine and correct
these estimators.

∗parameter a is B-robust [2] as shown later in appendix ??

4



 x 

 y 

Sample of conditional quantile at other orders

True 0.50-th quantile regression

Estimated 0.90-th quantile regression

Estimated 0.50-th quantile regression

Sample of conditional quantile at order 0.90

Sample of conditional quantile at order 0.50

y = ax + b

y = ax + b’ 

True 0.90-th quantile regression

Figure 2: Example of eq. (??) with order pµ = 0.9 and p1 = 0.5. Small circles
are samples at a few values of x (�xed for illustration), y is drawn from indicated
pdfs. Note that slope parameter (a) is common to both pµ and p1-th quantile
regressions and only intercept parameters (b and b′) are di�erent. Note also that
y values around order pµ (black circles) are more variable than those around order
p1 (grey circles). It suggests that pµ-th quantile regression yields worse estimates
than p1-th quantile regression.

Algorithm RRAT(n)

Input: data pairs {(xi, yi)}, quantile orders (p1, · · · , pn), function classes
Fq and Fc.
(1) Fit n quantile regressions at orders p1, p2, · · · pn, each as in eq. (2),
yielding functions f̂p1, f̂p2, · · · , f̂pn , with f̂pi : Rd → R, with f̂pi ∈ Fq.
(2) Fit a least squares regression with inputs q(xi) = (f̂p1(xi), · · · f̂pn(xi))
and targets yi, yielding a function f̂c : Rn → R, with f̂c ∈ Fc.
Output: conditional expectation estimator f̂(x) = f̂c(q(x)).

Some of the parameters are estimated through conditional quantile estimators
fp1, · · · , fpn and the latter are Combined and Corrected by the function fc in or-
der to estimate E[Y |X]. In the above example n = 1 and p1 = 0.5 is chosen,

5



f̂p1 is linear in x, and f̂c just has one additive parameter. In general, we believe
that RRAT yields more robust regressions when the number of parameters re-
quired to characterize f̂c is small (because they are estimated with �non-robust�
least squares) compared to the number of parameters required to characterize the
quantile regressions fpi .
Problem (ii) above is dealt with by doing quantile regressions of orders p1 · · · pn not
necessarily equal to pµ. Problem (iii) is dealt with if p1 · · · pn are in high density
areas (where estimation will be robust). The issue raised with the remaining
problem (i) will be discussed in the next subsection.

3.3 Applicable Class of Problems

A class of regression problems for which the above strategy works (in the sense
that the analog of problem (i) above is eliminated) can be described as follows:

Y = gµ(X) + Z gσ(gµ(X)), (4)

where Z is a zero-mean random variable drawn from any form of (possibly asym-
metric) continuous distribution, independent of X. The conditional expectation is
characterized by an arbitrary function gµ and the conditional standard deviation
of the noise distribution is characterized by an arbitrary positive range function gσ.
Note that the regression in eq. (3) is a subclass of heteroscedastic regression [5],
i.e. the standard deviation of the noise distribution is not directly conditioned on
X, but only on gµ(X). This speci�cation narrows the class of applicable problems,
but eq. (3) still covers a wide variety of noise structures as explained later.
In eq. (3), E[Y |X] = E[gµ(X) + Z gσ(gµ(X))|X] = gµ(X) and pµ of the dis-
tribution P (Z) coincides with pµ of P (Y |X) and does not depend on x, i.e.
P (Y < E[Y |X]|X) = P (Z gσ(gµ(X)) < 0 | X) = P (Z < 0 | X) = P (Z < 0).
Since the conditional expectation E[Y |X] coincides with pµ-th quantile regression
of P (Y |X), we have gµ(x) ≡ fpµ(x).

The following two theorems show that RRAT(n) works if appropriate choices of
p1, · · · , pn and large enough classes of Fq and Fc are provided, by guaranteeing the
existence of the function fc that transforms the outputs of pi-th quantile regressions
fpi(x) (i = 1, · · · , n) into the conditional expectation E[Y |x] for all x. The cases
of n = 1 and n = 2 are explained in theorem 1 and theorem 2, respectively.
The applicable class of problems with only one quantile regression fp1, i.e. RRAT(1),
is smaller than the class satisfying eq. (3), but it is very important for practical
applications (see subsection 3.3).

Theorem 1. If the noise structure is as in eq. (3) then there exists a
function fc such that E[Y |X] = fc(fp1(X)), where fp1(X) is the p1-th
quantile regression, if and only if function h(ȳ) = ȳ + F−1

Z (p1) · gσ(ȳ) is
monotonic with respect to ȳ ∈ {E[Y |x] | ∀ x} (proof in appendix A).

With the use of two quantile regressions fp1 and fp2, we show that RRAT(2),
covers the whole of the class satisfying eq. (3).
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Theorem 2. If the noise structure is as in eq. (3) and

p1 6= pµ, p2 6= pµ, (5)

p1 6= p2, (6)

then there exists a function fc such that E[Y |X] = fc(fp1(X), fp2(X)),
where fpi(X) are the pi-quantile regressions (i = 1, 2) (proof in ap-
pendix B).

In comparison to Theorem 1, we see that when using n = 2 quantile regressions, the
monotonicity condition can be dropped. We conjecture that even the assumption
of noise structure eq. (3) can be dropped when combining a su�cient number of
quantile regressions. However, this may add more complexity (and parameters) to
fc, thereby reducing the gains brought by the approach.
One of the likely advantages to use a number of quantile regressions is that it
increases the possibilities of choosing �good� pi in the sense that (I) the probability
density at pi, i.e. PZ(F−1

Z (pi)), is large enough, and that (II) pi is near pµ.
The second property (II) is appreciable when eq. (3) does not hold globally to
the whole of the conditional distribution P (Y |X) but only does locally to the
part covering pi and pµ-th quantiles of P (Y |X). For example, in application to
insurance premium estimation, the noise distribution Z is not continuous at zero
because most customers do not �le any claims (the claim amounts of those are
zero). We can avoid this problem by being careful when we choose pi so that fpi
is never zero.

3.4 Some Properties for Practical Applications

Consider the case where gσ (in eq. (3)) is a�ne in gµ(x), and gµ(x) ≥ 0 for all x,

Y = gµ(X) + Z × (c+ d gµ(X)), (7)

where c and d are constants such that c ≥ 0, d ≥ 0, (c, d) 6= (0, 0). The conditions
of theorem 1 (including monotonicity of h(y)) are veri�ed for additive noise

(d = 0), multiplicative noise (c = 0), or combinations of both (c > 0, d > 0),
for any form of noise distribution P (Z) (continuous and independent of X).

Property 1. If the noise structure is a�ne eq. (6) and gµ(x) ≥ 0 for all
x, then a linear function fc is su�cient to map fp1 to f , i.e., only two
parameters need to be estimated by least squares (proof in appendix C).

Note that additive/multiplicative noise covers a very large variety of practical
problems†, so this result shows that RRAT(1) already enjoys wide applicability.
Figure ?? illustrates the above discussion.
Let us call risk of an estimator f̂(X) the expected squared di�erence between
E[Y |X] and f̂(X) (expectation over X, Y and the training set). Let us write

†The speci�cation of the conditional expectations to be non-negative is generally a trivial
problem because we can shift the output data. Also note that in many practical applications
with asymmetric heavy-tail noise distributions (including our application to insurance premium
estimation), the output range is non-negative.
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Figure 3: A schematic illustration of theorem 1 and property 1: The left �gure
illustrates pµ-th quantile regression, i.e. E[Y |X], and p1-th quantile regression
which we actually estimate in step (1) of RRAT algorithm. Right �gure illustrates
the correction/combination function fc, which maps from fp1(x) to fpµ(x). The-
orem 1 and property 1 gurantees the existence of fc under a certain condition.
The �gure demonstrates that some outputs of fp1(x) (indicated by various types
of circles) can be transformed into the corresponding output of fp1(x) ≡ E[Y |x]
(indicated by the circle of the same type) by function fc.

f̂c(f̂p1(X)) for the conditional expectation obtained by RRAT(1) with �nite vari-
ance.

Property 2. Consider the class of distributions Y = f(X;α∗) + β∗ + Z,
where f is an arbitrary function characterized by a set of parameters α∗ ∈
R
d (with the assumption that the second derivative matrix of f(X;α∗)

with respect to α∗ is full-rank.) and β∗ ∈ R is a scalar parameter, and
where Z is the zero-mean noise random variable drawn from a (possibly
asymmetric) heavy-tail distribution (independent of X). Then, the risk of
LS regression is given by 1

n(d+1)V ar[Z] and the risk of RRAT(1) is given

by 1
n(V ar[Z] + d p1(1−p1)

P 2
Z(F−1

Z (p1))
). It follows that the risk of RRAT(1) is less

than that of LS regression if and only if p1(1−p1)

P 2
Z(F−1

Z (p1))
< V ar[Z] (proof in

appendix D).

For instance, as we have also veri�ed numerically, if Z is log-normal (see sec. 4)
RRAT beats LS regression in average when pµ > 0.608 (recall that for symmetric
distributions pµ = 0.5).

4 Numerical Experiments

To investigate and demonstrate the proposed RRAT algorithm, we did a series
of numerical experiments using arti�cial data as well as actual insurance data.
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The experiments are designed for two major objectives. The �rst objective is to
understand when RRAT(n) works better than LS, i.e. for which classes of gµ, gσ
and Z in eq. (3) it works. The second objective is to �gure out which RRAT works
better than the other among variants, i.e. the choices of n, p1, p2, · · · , pn, Fq and
Fc. This section focusses on the synthetic data experiments, while the next section
presents the results on actual insurance data.

4.1 Overall Experimental Setting

In the synthetic data experiments, sample pairs (xi, yi) are generated as per eq. (3)
with:

xi ∼ U [0, 1]d, (8)

yi = gµ(xi) + zi(pµ) gσ(gµ(xi)), (9)

where gµ : Rd → R, gσ : R → (0,∞) and zi(pµ) is a random sample from log-
Normal distribution LN(z0(pµ), 0, σ2(pµ)) [7]: Z(pµ) = z0(pµ) + eW (pµ), where
z0(pµ) is the location parameter so that E[Z(pµ)] = 0 and where W (pµ) follows a
Normal distribution N(0, σ2(pµ)) with σ2(pµ) so that pµ = P (Z(pµ) < E[Z(pµ)]).
We tried several choices of gµ, gσ and pµ, which allowed us to investigate the
performance of the proposed RRAT algorithm with respect to (1) the complexity
of the approximated conditional expectation function, (2) the noise structures and
(3) the degree of �asymmetry� of the noise distribution.
The RRAT algorithm requires us to specify the number of quantile regressions n,
each order pi, i = 1, · · · , n and classes of functions Fp and Fc. We tried several
choices of n and pi to �nd out how they a�ect the performance and to get some
implications for practical applications. In terms of the choice of Fp, we used well-
speci�ed a�ne models to approximate a linear conditional expectation function,
and a multi-layer neural network (NN) model to approximate a non-linear condi-
tional expectation function. (NNs can be shown to be good approximators not
only for ordinary LS regression but also for quantile regression [8].) We always
used a�ne models for Fc because parameter estimation for fc is not robust and it
is thus preferable for it to have as few parameters as possible.
We used 1000 training samples for parameter estimation. The parameters of fpi
are estimated iteratively using the conjugate gradient descent method for a�ne
models and using the stochastic gradient descent method for NN models. The
parameters of fc are estimated analytically. The performance of the model is
quanti�ed with the test-set average of model squared error, i.e. the squared
di�erence between true E[Y |X](≡ gµ(X)) and estimated f̂c(f̂p1(X), · · · , f̂pn(X))
on 1000 test samples. The performance of RRAT was compared with that of
Least Square (LS) regression. In each comparison, the same classes of models (e.g.
a�ne, NN) were used. The parameters of the compared models were estimated
on the same training samples analytically when they are linear (with respect to
their parameters) and iteratively by stochastic gradient descent method when they
are non-linear. The models were compared on the basis of model squared error
on the same test samples. In each experimental setting, a number of experiments
are repeated using completely independent datasets. The statistical comparisons
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between RRAT and LS regression are given by a Wilcoxon signed rank test‡with a
null hypothesis that the model squared error in each experiment is not statistically
di�erent. (In this section, we use the term �signi�cant� for 0.01 level.)

4.2 Experiment 1 (When does RRAT work?)

A series of experiments are designed to investigate the performance of RRAT
with respect to gµ, gσ and pµ in eq. (8). We chose gµ either from a class of
a�ne functions with 2, 5 or 10 inputs (with parameters sampled from U [0, 1] in
each experiment), or from the class of 6-input non-linear functions § described
in [9]. gσ was chosen to be either additive(gσ(w) = 1 +w), multiplicative(gσ(w) =
0.1w), or the combination of both(gσ(w) = 1+0.1w). We tried positive skews, with
pµ ∈ {0.55, 0.60, · · · , 0.95}, without loss of generality. In the series of experiments
explained in this subsection, we �xed n = 1 and p1 = 0.50. We used well speci�ed
fc, i.e. in additive noise case: fc(w) = c+w, in multiplicative noise case; fc(w) =
d w, and in combination case: fc(w) = c + d w. Parameter estimation both for
fp1 and fc were done without speci�c capacity control (no weight decay and the
number of hidden units in NN models are �xed to 10 both for quantile regression
and for LS regression.). The number of independent experiments is 500 for the
linear models and 50 for the non-linear models. The results are summarized in
Table ?? and Figure 3.
Table ?? shows the results of statistical comparisons of all combinations of gµ, gσ

‡We used a non-parametric test rather than a Student t-test because the normality assumption
in the t-test does not hold in the presence of heavy tails.
§gµ(x) = 10 sin(πx1x2) + 20 sin(x3 − 0.5)2 + 10x4 + 5x5 (does not depend on x6).

gµ gσ d
pµ (degree of asymmetry)

.55 .60 .65 .70 .75 .80 .85 .90 .95

2 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ ◦
additive 5 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ ◦

10 ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦
2 - - ◦ ◦ ◦ ◦ ◦ ◦ ◦

a�ne multipl. 5 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ ◦
10 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ ◦
2 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ ◦

combin. 5 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ ◦
10 ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦

additive 6 ∗ - ◦ ◦ ◦ ◦ ◦ ◦ -
non-linear multipl. 6 ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

combin. 6 ∗ ◦ ◦ ◦ ◦ ◦ ◦ - ∗

Table 1: Statistical comparisons by a Wilcoxon signed rank test. `∗': LS-regression
signi�cantly better than RRAT, `-': no signi�cant di�erence, `◦': RRAT signi�-
cantly better than LS. d = number of inputs. In most cases, RRAT is signi�cantly
(0.01 level) better than LS when pµ > 0.608 as analytically expected.
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and pµ. As expected from the asymptotic analysis of property 2, RRAT(1) works
better than LS-regression when pµ (the degree of asymmetry) is more than 0.608
in most cases. There are few cases where the di�erences were not signi�cant or
LS regression works better than RRAT when the predictor is non-linear and pµ is
large.
This is not what asymptotic analysis suggests and the explanation is maybe related
to the overwhelming negative e�ects of the heavy tail on the estimation of a few
parameters by LS (step 2 of the algorithm). Figure 3 shows graphically the e�ect of
pµ and the number of parameters of fp1 on the di�erence between the performance
of RRAT and LS regression, in terms of the logarithm of the di�erence in average
model squared error between RRAT and LS regression. (Note that the correspond-
ing statistical signi�cances are given in Table ??.) In Figure 3, (i), (ii) and (iii) are
for additive, multiplicative and combination of additive/multiplicative noise struc-
tures, respectively. In each �gure, experimental curves for 2, 5 and 10-dimensional
a�ne models and for the non-linear models are given. In additive noise case (i),
the theoretical curves derived from property 2 are also indicated. Note that the
more asymmetric the noise distribution is (for larger pµ), the better RRAT (rel-
atively) works. Note also that as the number of parameters estimated through
quantile regression fp1 increases, the relative improvement brought by RRAT over
LS regression increases. ¶ The relative improvements decrease when the predictor
is non-linear and pµ is fairly large (but we do not have a good explanation yet).

4.3 Experiment 2 (Which RRAT works)

Another series of experiments are designed to compare the performance of RRAT
for varying choices of n, p1, · · · , pn. We tried n ∈ {1, 2, 3} and pi ∈ {0.2, 0.5, 0.8}.
In the series of experiments in this subsection, we �xed gµ a 2-dimensional a�ne
function, gσ additive (gσ(w) = 1.0 + w) and pµ = 0.75. Fp is the class of 2-
dimensional a�ne models and Fc is the class of additive constant models, i.e. they
are well-speci�ed. For parameter estimation, we introduced capacity control with
a weight decay parameter wd (penalty on the 2-norm of the parameters) chosen
from {10−5, 10−4, · · · , 10+5}. The best weight decay was chosen with another
1000 validation samples that is independent of training and test samples. From
100 independent experiments, we obtained the results summarized in Figure ??.
Figure ?? shows the mean and its standard error of the model squared error in
each method. The p-values for the Wilcoxon signed rank test (null hypothesis of no
di�erence) are also indicated. From the given p-values, it is clear that all variants
of RRAT work signi�cantly better than LS regression. Note that the choice of pi
does not change the performance considerably. In RRAT(1), the true pµ = 0.75,
RRAT(1) with p1 = 0.20 or 0.50 also worked as well as RRAT(1) with p1 = 0.80.
On the other hand, the choice of n changes the performance considerably. (The
p-values of the signi�cant di�erence between RRAT(1) and RRAT(2) were in the
range: [4.31×10−9, 8.65×10−8], those between RRAT(1) and RRAT(3) were in the
range: [7.73× 10−8, 1.62× 10−7] and those between RRAT(2) and RRAT(3) were
in the range: [3.50 × 10−1, 4.67 × 10−1].) As we assumed additive noise structure

¶The number of parameters of a�ne models are 3, 6 and 11, respectively and 81 for the NN.

11



here, RRAT(1) is su�cient and RRAT(n), n ≥ 2, are redundant as explained in
property 1. When the noise structure is more complicated, RRAT(1) might not
be su�cient and RRAT(n) with larger n might be more suitable, at the cost of
reducing the gains brought by RRAT.

5 Application to Insurance Premium Estimation

We have applied RRAT to an automobile insurance premium estimation: esti-
mate the risk of a driver given his/her pro�le (age, type of car, etc.). One of the
challenges in this problem is that the premium must take into account the tiny
fraction of drivers who cause serious accidents and �le large claim amounts. That
is, the data (claim amounts) has noise distributed with an asymmetric heavy tail
extending out towards positive values.
The number of input variables of the dataset is 39, all discrete except one. The
discrete variables are one-hot encoded, yielding input vectors with 266 elements.
We repeated the experiment 10 times using each time an independent dataset,
by randomly splitting a large data set with 150,000 samples into 10 independent
subsets with 15,000 samples. Each subset is then randomly split in 3 equal sub-

LS regression

mean 8.96 × 10−2

standard error 1.04 × 10−2

RRAT(1)

p1 = .2 p1 = .5 p1 = .8
mean 3.45 × 10−2 3.41 × 10−2 3.45 × 10−2

standard error 3.54 × 10−3 3.51 × 10−3 3.52 × 10−3

p-value 9.76 × 10−15 8.31 × 10−15 9.25 × 10−15

RRAT(2)

p1 = .2, p2 = .5 p1 = .2, p2 = .8 p1 = .5, p2 = .8
mean 4.56 × 10−2 4.61 × 10−2 4.52 × 10−2

standard error 4.22 × 10−3 4.11 × 10−3 4.20 × 10−3

p-value 1.73 × 10−11 4.87 × 10−11 2.34 × 10−11

RRAT(3)

p1 = .2, p2 = .5, p3 = .8
mean 4.66 × 10−2

standard error 4.17 × 10−3

p-value 3.97 × 10−11

Table 2: The mean and its standard error of the average model squared error in
each method. In the tables for RRAT(n), n = 1, 2, 3, the p-values for the Wilcoxon
signed rank test are also indicated. All variants of RRAT work signi�cantly better
than LS regression. Note that the choice of pi does not change the performance
considerably, but the choice of n does.

12



sets with 5000 samples respectively for training, validation (model selection), and
testing (model comparison).
In the experiment, we compared RRAT and LS regression using linear and NN
quantile predictors, i.e., Fq is a�ne or a NN, always �tted using conjugate gra-
dients. Capacity is controlled via weight decay ∈ {10−5, 10−4, · · · 105} (and the
number of hidden units ∈ {5, 10, · · · , 25} and early stopping in the case of the
NN), and selected using the validation set. The correction/combination function
fc is always a�ne (also with weight decay chosen using the validation set) and its
parameters are estimated analytically. We tried RRAT(n) with n = 1, 2, 3 and
pi = 0.20, 0.50, 0.80. For RRAT(1), we tried either additive, a�ne, or quadratic
correction/combination functions: fc ∈ {c0 + fp1, c0 + c1fp1, c0 + c1fp1 + c2f

2
p1
}.

For RRAT(n), n ≥ 2, we tried a�ne fc ∈ {c0 + c1fp1 + c2fp2 + · · · }.
Figure 4 (linear model cases) and Figure 5 (NN model cases) show the mean (and
its standard error) of the average squared error in each method as well as the
p-values for the Wilcoxon signed rank test, where `∗' (`∗∗') denotes LS regression
being signi�cantly better than RRAT at 0.05 (0.01) level, `−' denotes no signi�cant
di�erence between them and `◦' (`◦◦') denotes RRAT being signi�cantly better
than LS regression at 0.05 (0.01) level ‖. In RRAT(1), the choice of p1 = 0.20 does
not work, which suggests either that the underlying distribution of the dataset is
out of the class of eq .(3) or the noise structure is more complicated than those
tried. When p1 = 0.50, the choice of fc signi�cantly changed the performance.
The worse performance of additive fc and better performance of a�ne fc suggests
that the noise structure of the dataset is more multiplicative than additive. When
p1 = 0.80, RRAT worked better independently of the choice of fc, that suggests
the �true� pµ of the dataset (if it does not vary too much with x) stays around
0.80. Note that RRAT(n), n ≥ 2 always worked better than LS, even though one
of the components (f0.20) was very poor by itself. The choice of pi was therefore
not critical to the success of the application, i.e. we can choose several pi and
combine them. Furthermore, when we pick the best of the RRAT models (choice
of n, pi and fc from above) based on the validation set average squared error, even
better results are obtained.

6 Conclusion

We have introduced a new robust regression method, RRAT(n), that is well suited
to asymmetric heavy-tail distributions (where previous robust regression methods
are not well suited). It can be applied to both linear and non-linear regressions. A
large class of generating models for which a universal approximation property holds
has been characterized (and it includes additive and multiplicative noise with arbi-
trary conditional expectation). Theoretical analysis of a large class of asymmetric
heavy-tail noise distributions reveals when the proposed method beats least-square
regression. The proposed method has been tested and analyzed both on synthetic

‖The standard errors are fairly large because the e�ect of outliers signi�cantly varies the mean
in each dataset. However most of p-values are small enough because the statistical tests are on
paired samples. The outliers in each dataset a�ect in a consistent way both RRAT and LS
regression.
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data and on insurance data (which were the motivation for this research), showing
it to signi�cantly outperform least squares regression.
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A Proof of Theorem 1

proof: For all x, fp1(x) is represented as a function of fpµ(x) as follows:

∀ x, fp1(x) = fpµ(x)−
(
F−1
Z·gσ{gµ(x)}(pµ)− F−1

Z·gσ{gµ(x)}(p1)
)

= fpµ(x) + F−1
Z·gσ{gµ(x)}(p1)

= fpµ(x) + F−1
Z (p1) · gσ{gµ(x)}

= gµ(x) + F−1
Z (p1) · gσ{gµ(x)}, (10)

where note that F−1
W (p) is the p-th quantile of random variable W . In eq. (9)

from the �rst line to the second, we used E[Z gσ{gµ(X)}|X] = 0. From the
second to third, we used the following property of cdfs: if FaW (av) = FW (v) then
F−1
aW (p) = a · F−1

W (p), where a > 0, 0 < p < 1 are constants and W is a random
variable drawn from a continuous distribution. From the third to fourth, we used
fpµ(x) ≡ gµ(x) for all x.
If the monotonicity of h(ȳ) in the theorem holds, there is a one-to-one mapping
between fp1(x) and gµ(x) (= E[Y |x]). It follows that there exists a function fc
such that E[Y |X] = fc(fp1(X)). Q.E.D.

B Proof of Theorem 2

proof: As in eq. (9) in the proof of theorem 1, fp1(x) and fp2(x) are given, for all
x, by

fp1(x) = gµ(x) + F−1
Z (p1) · gσ(gµ(x)), (11)

fp2(x) = gµ(x) + F−1
Z (p2) · gσ(gµ(x)) (12)

As in theorem 1, it is necessary and su�cient to prove that the mapping between
gµ(x) and a pair of {fp1(x), fp2(x)} characterized by eq. (10) and eq. (11) is one-
to-one for all x.
Assume that it is not one-to-one, then there is at least one case where two di�erent
values ȳ and ȳ′ are mapped to identical {fp1(x), fp2(x)}, i.e.

ȳ − F−1
Z (p1) · gσ(ȳ) = ȳ′ − F−1

Z (p1) · gσ(ȳ′), (13)

ȳ − F−1
Z (p2) · gσ(ȳ) = ȳ′ − F−1

Z (p2) · gσ(ȳ′). (14)
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Dividing both sides of eqn.(12) and (13) by F−1
Z (p1) and F−1

Z (p2), respectively
(from the continuity of Z and eq. (5), F−1

Z (p1) and F−1
Z (p2) are not zero) and

substracting eqn.(12) from (13) yields

(
1

F−1
Z (p1)

− 1
F−1
Z (p2)

)(ȳ − ȳ′) = 0 (15)

From the continuity of Z and eq. (5), 1
F−1
Z (p1)

6= 1
F−1
Z (p2)

and from the assump-

tion ȳ 6= ȳ′, we �nd that the assumption that the mapping between gµ(x) and
{fp1(x), fp2(x)} is not one-to-one is false.
It follows that there exists a function fc such that E[Y |X] = fc(fp1(X), fp2(X)).
Q.E.D.

C Proof of property 1

proof: By applying gσ in eqn.(6) into eqn.(9), we get

fp1(x) = gµ(x)− F−1
Z (p1) · (c+ d · gµ(x)). (16)

We can exactly obtain a linear function fc:

gµ(x) = fc(fp1(x))

=
−F−1

Z (p1) · c
1− F−1

Z (p1) · d
+

1
1− F−1

Z (p1) · d
· fp1(x) (17)

except the case where the denominator appearing in the right-hand side of the
second line in eq. (16) is zero ∗∗ Q.E.D

D Proof of property 2

proof: We consider a class of regression problems in the following form:

Y = f(X;α∗) + β∗ + Z, (18)

where X and Y are the input and output random variables, respectively. f is
an arbitrary function characterized by a set of parameters α∗ ∈ R

d and β∗ ∈ R

is a scalar parameter. Z is the (zero-mean) noise random variable drawn from
a (possibly) asymmetric heavy-tail distribution (independent of X). We assume
that the model is well speci�ed, i.e. the true function f(x;α∗) + β∗ is a member
of the class of parametric models: M = {f(x;α) + β : α ∈ Θ ⊂ R

d , β ∈ R}, and
that the training data is i.i.d.

∗∗This problem can be solved just by choosing another order p2 6= p1. In application of this
method, we suggest to try several orders p1, p2, · · · , pn and choose the best one or use RRAT(n),
n ≥ 2. This is done in sec. 4 and 5. Note that this problem happens, in the schematic illustration
in Figure ??, when p1-th quantile regression is parallel to horizontal axis, i.e. p1-th quantile
regression does not provide any dependencies between x and y.
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The risk of the model by least squares (LS) regression is given by standard calcu-
lation of asymptotic statistics:

riskLS = EData

{
EX{(f(x;α∗) + β∗ − f(x; α̂LS)− β̂LS)2}

}
=

1
n
{V ar(Z) + d V ar(Z)}+ o

(
1
n

)
(19)

where n is the number of training data and α̂LS, β̂LS denotes the corresponding
estimated parameters by LS-regression.
As explained, RRAT provides the following estimates:

{α̂RRAT, γ̂RRAT} = argmin
α,γ

 ∑
i:yi≥f(xi;α)+γ

p1 |yi − f(xi;α)− γ|

+
∑

i:yi<f(xi;α)+γ

(1− p1) |yi − f(xi;α) − γ|

 , (20)

β̂RRAT =
1
n

n∑
i=1

{yi − f(xi; α̂RRAT)}. (21)

Using these estimated parameters, we will show that the risk of RRAT(1) is

riskRRAT = EData
{

EX{(f(x;α∗) + β∗ − f(x; α̂RRAT)− β̂RRAT)2}
}

=
1
n

{
V ar(z) + d · p1(1− p1)

PZ(F−1
Z (p1))2

}
+ o

(
1
n

)
, (22)

where PZ and FZ are the pdf and cdf of the noise distribution.
From eq. (18) and eq. (21), RRAT yields more e�cient estimates than LS-regression
when

V ar(Z) >
p1(1− p1)
P 2
Z(F−1

Z (p1))
. (23)

To prove eq. (21), let us introduce some notation. We de�ne |w|+ = max(0, w).
We also omit the subscript RRAT for parameters estimated by RRAT.
First of all we de�ne the matrix K as

K =
∫ ( d

dαf(x;α∗) d
dαf(x;α∗)′ d

dαf(x;α∗)
d
dαf(x;α∗)′ 1

)
p(x)dx =

(
M2 m1

m′1 1

)
,

where M2 is a d × d matrix and m1 is a d × 1 vector. The risk of the RRAT is
written as

risk = Tr V ar(α̂, β̂)K + o

(
1
n

)
.

To obtain the variance of α̂ we can use the following relation between the variance
and the in�uence function [2]:

lim
n→∞

nV ar(α̂, γ̂) =
∫
IF (x, y)IF (x, y)′p(y|x)p(x)dydx,
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where IF (x, y) is the in�uence function of the estimator (α̂, γ̂). The in�uence
function is de�ned as

IF (x̃, ỹ) = lim
κ→0

(ακ, γκ)− (α∗, γ∗)
κ

(26)

where (ακ, γκ) is given by minimizing the following with respect to (α, γ):

(1− κ)
∫ {

p1 |y − f(x;α)− γ|+ + (1− p1) |f(x;α) + γ − y|+
}
p(y|x)p(x)dydx

+κ
{
p1|ỹ − f(x̃;α) − γ|+ + (1− p1)|f(x̃;α) + γ − ỹ|+

}
.

To obtain the in�uence function we use d
dx |x|+ = σ(x) †† and d

dxσ(x) = δ(x) ‡‡.
We obtain (ακ, γκ) as follows:

(ακ, γκ)′ = (α∗, γ∗)′ − κ 1
PZ(F−1

Z (p1))
{1− p1 − σ(ỹ − f(x̃;α∗)− γ∗)}

·K−1

(
d
dαf(x̃;α∗)

1

)
+ o(κ). (27)

The in�uence function is

IF (x̃, ỹ) =
1

PZ(F−1
Z (p1))

{1− p1 − σ(ỹ − f(x̃;α∗)− γ∗)}K−1

(
d
dαf(x̃;α∗)

1

)
and

V ar(α̂, γ̂) =
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
K−1 + o

(
1
n

)
.

We decompose K−1 as

K−1 =
(
H t
t′ u

)
and write

V ar(α̂) =
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
H + o

(
1
n

)
. (28)

††σ(x) is 1 when x ≥ 0 and 0 when x < 0.
‡‡δ(x) is Dirac's delta function.
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Next we calculate the variance of β̂ in (20):

V ar(β̂) = V ar

(
1
n

n∑
i=1

(yi − f(xi|α̂))

)

=
1
n2

∑
i,j

EData{zizj} (29)

+
1
n2

∑
i,j

EData

{
d

dα
f(xi;α∗)′(α̂− α∗)(α̂− α∗)′

d

dα
f(xj;α∗)

}
(30)

− 2
n2

∑
i,j

EData

{
zi(α̂− α∗)′

d

dα
f(xj;α∗)

}
(31)

− 2
n2

∑
i,j

EData

{
zi(α̂− α∗)′

∂2f(xj;α∗)
∂α2

(α̂− α∗)
}

(32)

+o
(

1
n

)
The �rst term (28) is equal to V ar(z)

n . The second term (29) is calculated as follows.
First,

Ez|X
{

(α̂− α∗)(α̂− α∗)′
}

=
1
n

p1(1− p1)
pz(m1)2

H + op

(
1
n

)
, (33)

where op(·) is the probabilistic order with respect to p(x1, . . . , xn). Substituting
(32) into (29),

1
n2

∑
i,j

EData

{
d

dα
f(xi;α∗)′(α̂− α∗)(α̂− α∗)′

d

dα
f(xj;α∗)

}

=
1
n2

∑
i,j

Tr

{
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
HEX

{
d

dα
f(xi;α∗)

d

dα
f(xj;α∗)′

}
+ o

(
1
n

)}

=
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
m′1Hm1 + o

(
1
n

)
. (34)

The third term (30) is calculated as follows. First calculate Ez|X{zi(α̂ − α∗)}.
Then de�ne (α̂(i), γ̂(i)) as the estimator which is obtained from all the training
data except (xi, yi). By de�nition (α̂(i), γ̂(i)) is independent from zi. Thus(
α̂
γ̂

)
=

(
α̂(i)

γ̂(i)

)
− 1
n

1
PZ(F−1

Z (p1))
{1− p1 − σ(yi − f(xi|α̂)− γ̂)}K−1

(
d
dαf(xi;α∗)

1

)
+op

(
1
n

)
, (35)

and

α̂− α∗ = α̂(i) − α∗ −
1
n

1
PZ(F−1

Z (p1))
{1− p1 − σ(yi − f(xi|α̂)− γ̂)}

(
H

d

dα
f(xi;α∗) + t

)
+op

(
1
n

)
. (36)
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Substituting (35) in Ez|X{zi(α̂− a∗)} we obtain

Ez|X{zi(α̂− a∗)} =
1
n

1
PZ(F−1

Z (p1))

(∫ ∞
0

z̃pz(z̃)dz̃
)(

H
d

dα
f(xi;α∗) + t

)
+ op

(
1
n

)
(37)

and

− 2
n2

∑
i,j

EData

{
zi(α̂− α∗)′

d

dα
f(x;α∗)

}
= − 2

n2

1
n

1
PZ(F−1

Z (p1))

(∫ ∞
0

z̃pz(z̃)dz̃
)∑

i,j

EX

{
Tr
(
H

d

dα
f(xi;α∗) + t

)
d

dα
f(xj;α∗)′

}
+ o

(
1
n

)
= − 2

n

1
PZ(F−1

Z (p1))

(∫ ∞
0

z̃pz(z̃)dz̃
)(

m′1Hm1 +m′1t
)

+ o

(
1
n

)
= o

(
1
n

)
. (38)

The last equation is obtained from the de�nition of H and t, that is, we can �nd
that Hm1 + t = 0.
The fourth term (31) is also o

(
1
n

)
. This can be veri�ed by substituting (35) into

(31). From the previous discussion we obtain β̂ as

V ar(β̂) =
V ar(z)
n

+
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
m′1Hm1 + o

(
1
n

)
. (39)

Next we calculate the covariance between α̂ and β̂. β̂ − β∗ is written as

β̂ − β∗ =
1
n

n∑
i=1

zi −
1
n

n∑
i=1

(α̂− α)′
d

dα
f(xi;α∗) + op

(
1√
n

)
(40)

Substituting the above equation into EData{(β̂ − β∗)(α̂ − α∗)},

EData{(β̂ − β∗)(α̂− α∗)}

=
1
n

n∑
i=1

EX
{

Ez|X {zi(α̂− α∗)}
}
− 1
n

n∑
i=1

EX

{
Ez|X

{
(α̂− α∗)(α̂ − α∗)′

} d

dα
f(xi;α∗)

}
+o
(

1
n

)
=

1
n

n∑
i=1

EX

{
1
n

1
PZ(F−1

Z (p1))

(∫ ∞
0

z̃pz(z̃)dz̃
)(

H
d

dα
f(xi;α∗) + t

)}

− 1
n

n∑
i=1

EX

{
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
H

d

dα
f(xi;α∗)

}
+ o

(
1
n

)

=
1
n

1
PZ(F−1

Z (p1))

(∫ ∞
0

z̃pz(z̃)dz̃
)

(Hm1 + t)− 1
n

p1(1− p1)
PZ(F−1

Z (p1))2
Hm1 + o

(
1
n

)

= − 1
n

p1(1− p1)
PZ(F−1

Z (p1))2
Hm1 + o

(
1
n

)
(41)
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Now we have all the elements for calculating the risk of the estimator (α̂, β̂). The
variance of (α̂, β̂) is

V ar(α̂, β̂) =
1
n

p1(1− p1)
PZ(F−1

Z (p1))2

(
H −Hm1

−m′1H
PZ(F−1

Z (p1))2

p1(1−p1) V ar(z) +m′1Hm1

)
+ o

(
1
n

)
.(42)

The risk is calculated as TrV ar(α̂, β̂)K + o
(

1
n

)
:

TrV ar(α̂, β̂)K =
1
n

p1(1− p1)
PZ(F−1

Z (p1))2
Tr

(
H −Hm1

−m′1H
PZ(F−1

Z (p1))2

p1(1−p1) V ar(z) +m′1Hm1

)(
M2 m1

m1 1

)

=
1
n

p1(1− p1)
PZ(F−1

Z (p1))2

{
TrHM2 −m′1Hm1 +

PZ(F−1
Z (p1))2

p1(1− p1)
V ar(z)

}

=
1
n

{
V ar(z) + d · p1(1− p1)

PZ(F−1
Z (p1))2

}
, (43)

where we use the relation

H = M−1
2 +

1
1−m′1M−1

2 m1

M−1
2 m1m

′
1M
−1
2 .

Thus we obtain the assertion of eq. (21). Q.E.D.
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Figure 4: E�ect of pµ and number of parameters in fp1 on relative performance of
RRAT and LS regression when noise structure is (i) additive or (ii) multiplicative:
values above 0 suggest RRAT is better than LS-regression. In (i), the theoretical
curves are derived from property 2. More asymmetry and more parameters in
fp1 both generally increase the relative merit of RRAT. These numbers are 3,6,
11,respectively for a�ne models and 81 for the neural network.
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Figure 4 (continued): E�ect of pµ and number of parameters in fp1 on relative
performances of RRAT and LS regression when noise structure is (iii) combination
of additive and multiplicative.
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LS regression

mean 5.289 × 102

standard error 1.620 × 102

RRAT(1), fc(fp1) = c0 + fp1

p1 = .2 p1 = .5 p1 = .8
mean 5.366 × 102 5.346 × 102 5.275 × 102

standard error 1.643 × 102 1.640 × 102 1.619 × 102

p-value 8.302 × 10−3 ∗∗ 2.967 × 10−2 ∗ 2.343 × 10−2 ◦
RRAT(1), fc(fp1) = c0 + c1fp1

p1 = .2 p1 = .5 p1 = .8
mean 5.318 × 102 5.277 × 102 5.266 × 102

standard error 1.615 × 102 1.618 × 102 1.618 × 102

p-value 1.013 × 10−1 - 3.723 × 10−2 ◦ 3.455 × 10−3 ◦◦
RRAT(1), fc(fp1) = c0 + c1fp1 + c2f

2
p1

p1 = .2 p1 = .5 p1 = .8
mean 5.312 × 102 5.269 × 102 5.264 × 102

standard error 1.613 × 102 1.618 × 102 1.618 × 102

p-value 1.931 × 10−1 - 4.672 × 10−3 ◦◦ 2.531 × 10−3 ◦◦
RRAT(2), fc(fp1, fp2) = c0 + c1fp1 + c2fp2

p1 = .2, p2 = .5 p1 = .2, p2 = .8 p1 = .5, p2 = .8
mean 5.275 × 102 5.265 × 102 5.266 × 102

standard error 1.617 × 102 1.617 × 102 1.618 × 102

p-value 1.421 × 10−2 ◦ 3.455 × 10−3 ◦◦ 3.455 × 10−3 ◦◦
RRAT(3), fc(fp1, fp2, fp3) = c0 + c1fp1 + c2fp2 + c3fp3

p1 = .2, p2 = .5, p3 = .8
mean 5.265 × 102

standard error 1.617 × 102

p-value 2.531 × 10−3 ◦◦
Best model on validation

mean 5.265 × 102

standard error 1.618 × 102

p-value 2.531 × 10−3 ◦◦

Figure 5: Insurance experiment comparison of RRAT and LS regression on linear
predictors: The mean and its standard error of the average squared error in each
method as well as the p-values from Wilcoxon signed rank test are indicated,
where `∗' (`∗∗') denotes LS regression being signi�cantly better than RRAT at
0.05 (0.01) level, `−' denotes no signi�cant di�erence between them and `◦' (`◦◦')
denotes RRAT being signi�cantly better than LS regression at 0.05 (0.01) level.
Note that RRAT(n), n ≥ 2, always beat LS regression.
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LS regression

mean 5.310 × 102

standard error 1.633 × 102

RRAT(1), fc(fp1) = c0 + fp1

p1 = .2 p1 = .5 p1 = .8
mean 5.359 × 102 5.301 × 102 5.271 × 102

standard error 1.645 × 102 1.628 × 102 1.614 × 102

p-value 1.832 × 10−2 ∗ 1.664 × 10−1 - 1.091 × 10−2 ◦
RRAT(1), fc(fp1) = c0 + c1fp1

p1 = .2 p1 = .5 p1 = .8
mean 5.307 × 102 5.272 × 102 5.271 × 102

standard error 1.614 × 102 1.616 × 102 1.615 × 102

p-value 3.994 × 10−1 - 4.672 × 10−3 ◦◦ 1.833 × 10−2 ◦
RRAT(1), fc(fp1) = c0 + c1fp1 + c2f

2
p1

p1 = .2 p1 = .5 p1 = .8
mean 5.301 × 102 5.272 × 102 5.271 × 102

standard error 1.611 × 102 1.616 × 102 1.616 × 102

p-value 4.392 × 10−1 - 4.672 × 10−3 ◦◦ 1.421 × 10−2 ◦
RRAT(2), fc(fp1, fp2) = c0 + c1fp1 + c2fp2

p1 = .2, p2 = .5 p1 = .2, p2 = .8 p1 = .5, p2 = .8
mean 5.269 × 102 5.270 × 102 5.267 × 102

standard error 1.617 × 102 1.616 × 102 1.616 × 102

p-value 3.455 × 10−3 ◦◦ 1.421 × 10−2 ◦ 6.258 × 10−3 ◦◦
RRAT(3), fc(fp1, fp2, fp3) = c0 + c1fp1 + c2fp2 + c3fp3

p1 = .2, p2 = .5, p3 = .8
mean 5.267 × 102

standard error 1.616 × 102

p-value 8.303 × 10−3 ◦◦
Best model on validation

mean 5.267 × 102

standard error 1.616 × 102

p-value 4.672 × 10−3 ◦◦

Figure 6: Insurance experiment comparison of RRAT and LS regression on NN
predictors: The mean and its standard error of the average squared error in each
method as well as the p-values from a Wilcoxon signed rank test are indicated,
where `∗' (`∗∗') denotes LS regression being signi�cantly better than RRAT at
0.05 (0.01) level, `−' denotes no signi�cant di�erence between them and `◦' (`◦◦')
denotes RRAT being signi�cantly better than LS regression at 0.05 (0.01) level.
Note that RRAT(n), n ≥ 2, always beat LS regression.
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