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Abstract
Estimating insurance premia from data is a difficult regression problem for sev-

eral reasons: the large number of variables, many of which are discrete, and the
very peculiar shape of the noise distribution, asymmetric with fat tails, with a large
majority zeros and a few unreliable and very large values. We introduce a method-
ology for estimating insurance premia that has been applied in the car insurance
industry. It is based on mixtures of specialized neural networks, in order to reduce
the effect of outliers on the estimation. Statistical comparisons with several differ-
ent alternatives, including decision trees and generalized linear models show that
the proposed method is significantly more precise, allowing to identify the least
and most risky contracts, and reducing the median premium by charging more to
the most risky customers.

1 Introduction
A successful application of learning algorithms to real-world industrial problems often
requires considerable creativity in modifying the “textbook” methods to suit the ap-
plication. Still, in many cases, this effort pays off handsomely in producing a system
whose performance far exceeds that of existing solutions. This paper describes a most
fruitful embodiment of this principle, which our group developed as part of a large data
mining challenge with the insurance industry.

The concrete problem we were tackling is that of automobile insurance premia
estimation: how much should a driver pay for car insurance, given information about
the driver’s status (age, type of car, etc.), driving history (convictions, accidents, and so
forth), and type of insurance coverage. As we shall see below, this problem is nothing
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more than a classical case of conditional mean estimation, or in other words, a problem
of regression.

Unfortunately, as we discovered, the usual algorithms for regression that we tried
on this data (standard and generalized linear models (McCullagh and Nelder, 1989),
ordinary feed-forward neural networks, CHAID decision trees (Kass, 1980), support
vector machines (Vapnik, 1998)) did not perform very well. As it shall become clear
in the subsequent sections, the reasons for this failure are threefold. Firstly, there is a
statistical difficulty: most drivers will not file a claim with the insurance company in
any given year, and the premia for all drivers must be inferred from those few drivers
(whom might be called outliers but provide essential information) who do file for a
claim. Note also that the distribution of claim amounts is asymmetric with with a heavy
tail, which makes estimation difficult (and bars the use of classical robust regression
methods based on downweighting or eliminating outliers). Secondly, there is another
statistical difficulty, due to the large number of variables (mostly discrete) and the
fact that many interactions exist between them. Thus methods based on tabulating
average claim amounts for each combination of values are quickly hurt by the curse
of dimensionality, unless they make hurtful independence assumptions (Bailey and
Simon, 1960). Finally, there is a computational difficulty: we had access to a large
database of � �������	�

examples, and the training effort and numerical stability of
some algorithms can be burdensome.

This paper is organized as follows: we start by describing the mathematical crite-
ria underlying insurance premia estimation (section 2), followed by a brief review of
the learning algorithms that we consider in this study, including our best-performing
mixture of positive-output neural networks (section 3). We then highlight our most im-
portant experimental results (section 4), and in view of them conclude with an examina-
tion of the prospects for applying statistical learning algorithms to insurance modeling
(section 5).

2 Mathematical Objectives
The goal of insurance premia modeling is to estimate the expected claim amount for a
given insurance contract for a future one-year period (here we consider that the amount
is 0 when no claim is filed). Let 
���
�� denote the customer and contract input
profile, a vector representing all the information known about the customer and the
proposed insurance policy before the beginning of the contract. Let ����
�� denote
the amount that the customer claims during the contract period; we shall assume that
� is non-negative. Our objective is to estimate this claim amount, which is the pure
premium ��������� of a given contract � :1

� ����� ��! �#"%$'&)( �+* 
,$-�/.10 (1)

The Precision Criterion. In practice, of course, we have no direct access to the
quantity (1), which we must estimate. One possible criterion is to seek the most

1The pure premium is distinguished from the premium actually charged to the customer, which must
account for the risk remaining with the insurer, the administrative overhead, desired profit, and other business
costs.
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precise estimator, which minimizes the mean-squared error (MSE) over a data set� $����������
	��
���������� . Let � $�� � !������ "�� be a function class parametrized by the pa-
rameter vector � . The MSE criterion produces the most precise function (on average)
within the class, as measured with respect to

�
:

��� $! �"�#%$'&)(* �+ �, -
��� ! � ! �

-
��� "/.0	

-
"21 0 (2)

The Fairness Criterion. However, in insurance policy pricing, the precision cri-
terion is not the sole part of the picture; just as important is that the estimated premia
do not systematically discriminate against specific segments of the population. We call
this objective the fairness criterion. We define the bias of the premia 3 !54 " to be the
difference between the average premium and the average incurred amount, in a given
population 4 : 3 !64 " $

�
* 4 *

,798;:�< =
:6>@?�A � ! �
-
"%.B	

-
� (3)

where * 4 * denotes the cardinality of the set 4 , and � !2� " is some premia estimation
function. A possible fairness criterion would be based on minimizing the norm of
the bias over every subpopulation C of 4 . From a practical standpoint, such a min-
imization would be extremely difficult to carry out. Furthermore, the bias over small
subpopulations is not statistically significant. We settle instead for an approximation
that gives good empirical results. After training a model to minimize the MSE crite-
rion (2), we define a finite number of disjoint subsets (subpopulations) of the test set4 , 4/DFEG4 � 4/DIHJ4LK�M� D $ON , and verify that the absolute bias is not significantly dif-
ferent from zero. The subsets 4 D can be chosen at convenience; in our experiments,
we considered 10 subsets of equal size delimited by the deciles of the test set premium
distribution. In this way, we verify that, for example, for the group of contracts with a
premium between the 5th and the 6th decile, the average premium matches the average
claim amount.

3 Models Evaluated
An important requirement for any model of insurance premia is that it should produce
positive premia: the company does not want to charge negative money to its customers!
To obtain positive outputs neural networks we have considered using an exponential
activation function at the output layer but this created numerical difficulties (when the
argument of the exponential is large, the gradient is huge). Instead, we have success-
fully used the “softplus” activation function (Dugas et al., 2001):

P�QSRUT�V�W�X�P !5Y "%$ W�Q # ! �[Z]\_^ "
where Y is the weighted sum of an output neuron, and P�QSRUT
V`W�XaP !bY " is the corresponding
predicted premium. Note that this function is convex, monotone increasing, and can be
considered as a smooth version of the “positive part” function $c _d ! � � � " .

The best model that we obtained is a mixture of positive outputs neural net-
works. The idea is to reduce the undesirable interactions between the estimation of
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premia associated to small claims and large claims (the latter having much more vari-
ability). We consider a categorical variable � that corresponds to three components of
the mixture: � $ �

for zero claims, � $ �
for non-zero claims ��� ��� �	� �

, � $�� for
claims ��� ��� � �	�

. The overall expectation is decomposed accordingly:

& ( � * 
�. $ , - 4 ! ��$�� * 
 " &)( � * 
 �	� $�� .

Since the categorical variable � is observed (it is a deterministic function of the claim
amount � ), each component can be trained separately. A gater network (Jacobs et al.,
1991) with softmax outputs is trained by maximum likelihood to estimate 4 ! � $
� * 
 " .
The case of �,$ �

is handled trivially since & ( � * 
J���,$ � . $ �
. Two regressions

are separately estimated. First, using only the examples corresponding to small claims
( � $ �

), we estimate &)( �+* 
J�	��$ � . . Second, using only the examples corresponding
to large claims ( � $�� ), we estimate & ( � * 
J��� $
� . . Note that two out of these
three models are estimated on data that excludes the “outlier” large values ( 4 ! � * 
 "
and &)( �+* 
J�	� $ � . ), thereby “protecting” the estimation of their parameters from the
variability introduced by the large claims. It should be noted that this setup also a
significantly reduces the computational cost for the regressors, since the vast majority
of the contracts (about 90%) have a claim amount 	 $ �

; thus the two regression
models are each trained on a small fraction of the data. As for the gater, it is trained
on all the data but we found that it does not need to be trained for as many iterations
as a single NN regression model in order to obtain good results. Using the validation
set, we have made a choice of architecture for all three models, among the following:
linear (or multivariate logistic for the gater), neural network with one hidden layer, with
linear, exponential, or softplus output activation. The validation set was also used to
choose a weight decay penalty and the number of hidden units.

The mixture model was compared to other models. The constant model only has
intercepts as free parameters. The linear model corresponds to a ridge linear regression
(with weight decay chosen with the validation set). Generalized linear models (GLM)
estimate the conditional expectation from � ! �#"�$ \�� ����� 8 with parameters 3 and � .
Again weight decay is used and tuned on the validation set. There are many variants of
GLMs and they are popular for building insurance models, since they provide positive
outputs, interpretable parameters, and can be associated to parametric models of the
noise.

Decision trees are also used by practitioners in the insurance industry, in partic-
ular the CHAID-type models (Kass, 1980; Biggs, Ville and Suen, 1991), which use
statistical criteria for deciding how to split nodes and when to stop growing the tree.
We have compared our models with a CHAID implementation based on (Biggs, Ville
and Suen, 1991), adapted for regression purposes using a MANOVA analysis. The
threshold parameters were selected based on validation set MSE.

Regression Support Vector Machines (SVM) (Vapnik, 1998) were also evaluated
but yielded disastrous results for two reasons: (1) SVM regression optimizes an L1
criterion that finds a solution close to the conditional median, whereas the MSE cri-
terion is minimized for the conditional mean, and because the distribution is highly
asymmetric the conditional median is far from the conditional mean; (2) because the
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Figure 1: MSE results for eight models. Models have been sorted in ascending order of test
results. The training, validation and test curves have been shifted closer together for visualization
purposes (the significant differences in MSE between the 3 sets are due to “outliers”). The out-
of-sample test performance of the Mixture model is significantly better than any of the other.
Validation based model selection is confirmed on test results. CondMean is a constructive greedy
version of GLM.

output variable is difficult to predict, the required number of support vectors is huge,
also yielding poor generalization.

Finally, we compared the best statistical model with a proprietary table-based and
rule-based premium estimation method that was provided to us as the benchmark
against which to judge improvements.

4 Experimental Results
Data from five types of losses were included in the study (i.e. a sub-premium was
estimated for each type of loss), but we report mostly aggregated results showing the
error on the total estimated premium. The input variables contain information about
the policy (e.g., the date to deal with inflation, deductibles and options), the car, and
the driver (e.g., about past claims, past infractions, etc...). Most variables are subject to
discretization and binning. Whenever possible, the bins are chosen such that they con-
tain approximately the same number of observations. For most models except CHAID,
the discrete variables are one-hot encoded. The number of input random variables is
39, all discrete except one, but using one-hot encoding this results in an input vector
� of length � $ � ��� . An overall data set containing about 8 million examples is ran-
domly permuted and split into a training set, validation set and test set, respectively
of size 50%, 25% and 25% of the total. The validation set is used to select among
models (including the choice of capacity), and the test set is used for final statistical
comparisons. Sample-wise paired statistical tests are used to reduce the effect of huge
per-sample variability.
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Table 1: Statistical comparison of the prediction accuracy difference between several individual
learning models and the best Mixture model. The � -value is given under the null hypothesis of
no difference between Model #1 and the best Mixture model. Note that all differences are
statistically significant.

Model #1 Model #2 Mean MSE Diff. Std. Error � � -value

Constant Mixture 3.40709e-02 3.32724e-03 10.2400 0

CHAID Mixture 2.35891e-02 2.57762e-03 9.1515 0

GLM Mixture 7.54013e-03 1.15020e-03 6.5555 2.77e-11

Softplus NN Mixture 6.71066e-03 1.09351e-03 6.1368 4.21e-10

Linear Mixture 5.82350e-03 1.32211e-03 4.4047 5.30e-06

NN Mixture 5.23885e-03 1.41112e-03 3.7125 1.02e-04

Table 2: MSE difference between benchmark and Mixture models across the 5 claim categories
and the total claim amount. In all cases except category 1, the Mixture model is statistically
significantly (������� �
	 ) more precise than the benchmark model.

Claim Category MSE Difference 95% Confidence Interval

(Kind of Loss) Benchmark minus Mixture Lower Higher

Category 1 �
�
�
�
�
� �
� ( �����
�
�
� �
� – ���
�
�
�
� �
� )

Category 2 ���
�
�
� ��� ( ���
�
�
� ��� – �������
� ��� )

Category 3 ���
��� ��� ( �
����� – ���
�
� �
� )

Category 4 ���
����� �
� ( �
�
�
� ��� – �����
�
� �
� )

Category 5 ���
����� �
� ( �����
��� �
� – �������
� ��� )

Total claim amount �
�
������� �
� ( �
� ���
� �
� – �
���
�
�
�
� ��� )

Table 4 and Figure 3 summarize the comparison between the test MSE of the dif-
ferent tested models. NN is a neural network with linear output activation whereas
Softplus NN has the softplus output activations. The Mixture is the mixture of softplus
neural networks. This result identifies the mixture model with softplus neural net-
works as the best-performing of the tested statistical models. Our conjecture is that the
mixture model works better because it is more robust to the effect of “outliers” (large
claims). Classical robust regression methods (Rousseeuw and Leroy, 1987) work by
discarding or downweighting outliers: they cannot be applied here because the claims
distribution is highly asymmetric (the extreme values are always large ones, the claims
being all non-negative). Note that the capacity of each model has been tuned on the
validation set. Hence, e.g. CHAID could have easily yielded lower training error, but
at the price of worse generalization.

Table 4 shows a comparison of this model against the rule-based benchmark. The
improvements are shown across the five types of losses. In all cases the mixture im-
proves, and the improvement is significant in four out of the five as well as across the
sum of the five.

A qualitative analysis of the resulting predicted premia shows that the mixture
model has smoother and more spread-out premia than the benchmark. The analysis
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Figure 2: The premia difference distribution is negatively skewed, but has a positive median
for a mean of zero. This implies that the benchmark Model undercharges risky customers, while
overcharging typical customers.

(figure 4) also reveals that the difference between the mixture premia and the bench-
mark premia is negatively skewed, with a positive median, i.e., the typical customer
will pay less under the new mixture model, but the “bad” (risky) customers will pay
much more.

To evaluate fairness, as discussed in the previous section, the distribution of premia
computed by the best model is analyzed, splitting the contracts in 10 groups according
to their premium level. Figure 4 shows that the premia charged are fair for each sub-
population.

5 Conclusion
This paper illustrates a successful data-mining application in the insurance industry.
It shows that a specialized model (the mixture model), that was designed taking into
consideration the specific problem posed by the data (outliers, asymmetric distribu-
tion), performs significantly better than existing and popular learning algorithms. It
also shows that such models can significantly improve over the current practice, allow-
ing to compute premia that are lower for less risky contracts and higher for more risky
contracts, thus reducing the cost of the median contract.

Future work should investigate in more detail the role of temporal non-stationarity,
how to optimize fairness (rather than just test for it afterwards), and how to increase
further the robustness of the model with respect to large claim amounts.
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