
Learning Eigenfunctions of Similarity: Linking

Spectral Clustering and Kernel PCA

Yoshua Bengio, Pascal Vincent and Jean-François Paiement

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques

Université de Montréal
Montréal, Québec, Canada, H3C 3J7

{bengioy,vincentp,paiemeje}@iro.umontreal.ca

http://www.iro.umontreal.ca/∼bengioy

Technical Report 1232,
Département d’Informatique et Recherche Opérationnelle

February 28th, 2003

Abstract

In this paper, we show a direct equivalence between spectral clustering
and kernel PCA, and how both are special cases of a more general learning
problem, that of learning the principal eigenfunctions of a kernel, when
the functions are from a Hilbert space whose inner product is defined with
respect to a density model. This suggests a new approach to unsupervised
learning in which abstractions (such as manifolds and clusters) that rep-
resent the main features of the data density are extracted. Abstractions
discovered at one level can be used to build higher-level abstractions. This
paper also discusses how these abstractions can be used to recover a quan-
titative model of the input density, which is at least useful for evaluative
and comparative purposes.

1 Introduction

Spectral clustering can give very impressive results and has attracted much
interest in the last few years. It is based on two main steps: first embedding
the data points in a space in which clusters are more “obvious” (using the
eigenvectors of a Gram matrix) , a space in which the structure of the data is
revealed, and then applying a classical clustering algorithm such as K-means,
e.g. as in (Ng, Jordan and Weiss, 2002). What appears almost magical is the

1

way in which sets of points that are on different highly non-linear manifolds can
get mapped (in the above first step) to almost linear subspaces (different for
each of these manifolds), as shown below in Figure 1. The long-term goal of
the research described in this paper is to better understand such mappings and
take advantage of this understanding to open the door for new unsupervised
learning procedures.

⇒

Figure 1: Example of the transformation learned as part of spectral clustering.
Input data on the left, transformed data on the right, the colors and cross/circle
are only used to show which points get mapped where: the mapping reveals both
the clusters and the internal structure of the two manifolds.

One problem with spectral clustering is that the procedure is highly sensitive
to the choice of the kernel, for example it is very sensitive to the choice of the
spread (variance) of a Gaussian kernel. Another is that the procedure provides
an embedding for the training points, not for new points. A very similar method
for dimensionality reduction has been proposed in (Belkin and Niyogi, 2002a),
based on so-called Laplacian eigenmaps. The above paper proposes to use such
transformations in a semi-supervised and transductive setting: the unlabeled
test set and the input part of the training set are used to learn a mapping to a
more revealing representation, and the transformed training set is used with a
supervised learning algorithm.
Kernel PCA is another unsupervised learning method that was proposed ear-
lier and that is based on the simple idea of performing Principal Components
Analysis in the feature space of a kernel (Schölkopf and Müller, 1996). We will
explain this approach in much more detail in the paper.

In this paper, we show a direct equivalence between the embedding computed in
spectral clustering and the mapping computed with kernel PCA, and how both
are special cases of a more general learning problem, that of learning the prin-
cipal eigenfunctions of a kernel, when the functions are from a Hilbert space
whose inner product is defined with respect to a density model.

The motivations of this research are the following.

1. Understand better the strengths, weaknesses, and relations between spec-
tral methods that can be used to transform data in a space where its

2

structure may be more readily apparent.

2. Generalize the transformation found in spectral clustering and Laplacian
eigenmaps (which are both based on embeddings of the data examples)
so as to obtain mappings that can be applied to new test points and to
smoothed variant of the empirical data distribution.

3. Introduce a new multi-layered approach to learning abstractions of the
structure in the data density, on top of previously learned abstractions:
at each layer we indirectly model the density of the data by transforming
it in a space where the notion of similarity better represents the structure
of the underlying density of the data.

Note that very interesting links have already been established between kernel
PCA and learning eigenfunctions in (Williams and Seeger, 2000). In particular,
the eigenvalues and eigenvectors obtained from the eigen-decomposition of the
Gram matrix converge to the eigenfunctions of the linear operator defined by
the kernel with respect to the data density, as in equation 12 below, as the
number of data points increases.

2 Spectral Manifold Learning Methods

2.1 Kernels and Notation

In this paper we will consider symmetric semi-positive definite two-argument
functions called kernels. We also assume that the linear operator in L2 corre-
sponding to the kernel is a compact operator, i.e. it maps functions in L2 to a
closed and totally bounded set. Often a kernel K is assumed to be semi-positive
definite, and in that case it can be written as a dot product in a “feature space”
φ(x) (see Mercer theorem and a review of learning algorithms based on kernels,
e.g. (Schölkopf, Burges and Smola, 1999; Wahba, 1990)):

K(x, y) =
∑

i

φi(x)φi(y) = φ(x) · φ(y). (1)

where both x and y are in Rd, while φ(x) ∈ Rr, or to allow r not necessarily
finite, we write φ(x) ∈ l2, the space of bounded sum of squares sequences.
We are given data set {x1, . . . , xn} with examples xi ∈ Rd. We will associate a
density p(x) to the data generating process, either the empirical density or one
obtained through a model. We will write E[.] for expectations over that density,
or to make it clear over which variable the integral is performed, we will write

Ex[f(x)] =

∫

f(x)p(x)dx.

For example, in the next two sections (on spectral clustering and on kernel
PCA), we will restrict our attention to the empirical distribution associated

3

with our data set, so we would have

Ex[f(x)] =
1

n

∑

i

f(xi).

2.2 Spectral Clustering

Several variants of spectral clustering have been proposed (Weiss, 1999). They
can yield impressively good results where traditional clustering looking for
“round blobs” in the data, such as K-means, would fail miserably. Here we
follow the treatment of (Ng, Jordan and Weiss, 2002) (see the very impressive
figures in the same paper). The most commonly used kernel is the Gaussian
kernel:

K(x, y) = e−||x−y||/σ2

. (2)

Note that the choice of σ can strongly influence the results (so this hyper-
parameter has to be selected carefully).
Spectral clustering works by first embedding the data points in a space where
clusters are more clearly revealed. An example of such embedding is shown
in Figure 1. The embedding is obtained as follows. First form the symmetric
semi-positive definite Gram matrix M with

Mi,j = K(xi, xj) (3)

and then using the row sums

Di =
∑

j

Mi,j

normalize it as such:

M̃i,j =
Mi,j

√

DiDj

.

Note for comparison later in the paper that, equivalently, this normalization of
the Gram matrix corresponds (up to a constant) to defining a normalized kernel
K̃ as follows:

K̃(x, y) =
K(x, y)

√

Ex[K(x, y)]Ey[K(x, y)]
(4)

(where the expectations are over the empirical distribution). Finally compute
the m principal eigenvectors of M̃ , satisfying

M̃αk = λkαk.

Let A be the m× n matrix of these eigenvectors. The coordinates of the exam-
ples within the eigenvectors represent an embedding that has very interesting
properties (see Figure 1). The embedding associates the point xi in Rd to the
i-th column of A, Ai:

Ai = (α1i, α2i, . . . , αmi) (5)

4

Clustering is obtained from these coordinates. In the illustration of Figure 1,
the two clusters correspond to groups of points that have an approximately con-

stant angle, i.e. they are near one of two lines that start at the origin. Thus,
in (Ng, Jordan and Weiss, 2002) it is proposed to first project these coordinates
onto the unit sphere before performing K-means clustering. Projection onto the
unit sphere maps Ai into Ai/||Ai||.
See (Ng, Jordan and Weiss, 2002; Weiss, 1999) for further justification of this
procedure and its relation to the graph Laplacian and the min-cut problem.
Does the divisive normalization of the kernel in equation 4 yield a positive
definite operator? Let us write e(x) = Ey[K(x, y)], with e(x) strictly positive if
K(x, y) is strictly positive-valued. Then equation 4 is rewritten using eq. 1:

K̃(x, y) =
∑

i

φi(x)
√

e(x)

φi(y)
√

e(y)

so defining φ̂(x)
def
= φ(x)/

√

e(x) > 0 we obtain that K̃ is a positive-definite
kernel:

K̃(x, y) = φ̂(x).φ̂(y).

2.3 Kernel PCA

Kernel PCA is another unsupervised learning technique that maps data points
to a new space. It generalizes the Principal Components Analysis approach to
non-linear transformations using the kernel trick (Schölkopf and Müller, 1996;
Schölkopf, Smola and Müller, 1998; Schölkopf, Burges and Smola, 1999). The
algorithm implicitly finds the leading eigenvectors and eigenvalues of the (nor-
mally centered) second moment (i.e. the covariance) of the data x when it is
projected in the “feature space” φ(x) (see eq. 1):

C = Ex[φ(x)φ(x)′] (6)

Let us define the eigen-vectors of the covariance matrix:

Cvk = λkvk.

Using the notation of the previous section, the kernel PCA algorithm has the
following steps.

• Training:

1. Centering: the kernel K is first “normalized” into K̃ such that the
corresponding feature space points φ̃(xi) have zero expected value
(under the data empirical distribution):

K̃(x, y) = K(x, y)−Ex[K(x, y)]−Ey[K(x, y)]+Ex[Ey[K(x, y)]] (7)

See derivation of this expression in the next subsection. A corre-
sponding normalized Gram matrix M̃ is formed.

5

2. Eigen-decomposition: find the principal eigenvectors αk and eigen-
values ak of the Gram matrix M̃ (eq. 3 but using K̃), i.e. solving

M̃αk = λkαk.

with eigenvalues λk and eigenvectors αk.

• Test points projection: to project a test point x on the k-th eigenvector
of the covariance matrix, compute

πk(x) = vk · φ̃(x) =
1

ak

∑

i

αkiK̃(xi, x). (8)

2.4 Normalization of the Kernel by Centering

It can be shown that the above normalization of the kernel indeed yields to
centering of φ̃(x), as follows. We want to define

φ̃(x)
def
= φ(x)− Ex[φ(x)].

Thus the corresponding kernel

K̃(x, y) = φ̃(x) · φ̃(y)

is expanded as follows

K̃(x, y) = (φ(x)− Ex[φ(x)]) · (φ(y)− Ey[φ(y)])

= K(x, y)− Ex[K(x, y)]− Ey[K(x, y)] + Ex[Ey[K(x, y)]] (9)

2.5 Other Spectral Dimensionality Reduction Methods

Several other dimensionality reduction and manifold discovery methods rely on
the solution of an eigen-decomposition problem. For example, Local Linear
Embedding (Roweis and Saul, 2000) and Isomap (Tenenbaum, de Silva and
Langford, 2000) try to discover a non-linear manifold, while Multidimensional
Scaling (Cox and Cox, 1994) looks for a linear manifold (but starting from a
matrix of similarities between pairs of points, whereas Principal Components
Analysis starts from a set of points and the definition of a dot product). An
interesting link between multidimensional scaling and kernel PCA is discussed
in (Williams, 2001).
A non-linear manifold discovery method very close to the mapping procedure
used in spectral clustering is that of Laplacian eigenmaps (Belkin and Niyogi,
2002a; Belkin and Niyogi, 2002b; He and Niyogi, 2002; Belkin and Niyogi,
2002c), which have been proposed to perform semi-supervised learning: the
mapping is obtained through the eigen-decomposition of an affinity matrix, on
the input part of both labeled and unlabeled data. The mapped inputs from the
labeled data set can then be used to perform supervised learning from a rep-
resentation that is hoped to be more meaningful, since only the coordinates of

6

variation that are relevant to the input distribution would be represented in the
transformed data. Note the review paper on semi-supervised learning (Seeger,
2001), for other related references. A closely related work, also aiming at semi-
supervised learning, is that of (Chapelle, Schölkopf and Weston, 2003), in which
a full but shared covariance matrix Parzen windows density estimator is com-
puted in the space of kernel PCA projections.
Note also that it has already been proposed to use kernel PCA as a preprocessing
step before doing clustering, in (Christianini, Shawe-Taylor and Kandola, 2002),
and (Zha et al., 2002) hint at the apparent similarity between PCA and a
spectral embedding obtained for clustering.

3 Similarity Kernel Eigenfunctions

In this section we introduce the notion of eigenfunctions of a kernel, which
we will find later to generalize both spectral clustering and kernel PCA. The
link between kernel PCA and the eigenfunctions of the kernel has already been
introduced in (Williams and Seeger, 2000), where the convergence of the Gram
matrix eigenvalues to the kernel operator eigenvalues is shown. In section 3.2,
we discuss how one might learn them in the case when the reference density
p(x) below is not the empirical density.

3.1 Hilbert Space and Kernel Decomposition

Consider a Hilbert space H, a set of real-valued functions in Rd accompanied
by an inner product defined with a density p(x):

〈f, g〉 def
=

∫

f(x)g(x)p(x)dx. (10)

This also defines a norm over functions:

||f ||2 def
= 〈f, f〉.

As discussed in (Williams and Seeger, 2000), the eigenfunctions of the linear
operator corresponding to a given semi-positive kernel function K(x, y) are thus
defined by the solutions of

Kfk = λkfk (11)

where f ∈ H, λk ∈ R, and Kf is the application of the linear operator K to
the function f , i.e.

(Kf)(x)
def
=

∫

K(x, y)f(y)p(y)dy. (12)

When seen as a linear operator, the kernel K can thus be expanded in terms of
a basis formed by its eigenfunctions (Mercer):

K =
∑

k

λkfkf ′
k

7

where by convention |λ1| ≥ |λ2| ≥ . . . This can also be written as follows:

K(x, y) =
∞
∑

k=1

λkfk(x)fk(y).

and because we choose the eigenfunctions to form an orthonormal basis, we have

〈fk, fl〉 = δk,l.

Section 3.2 shows a criterion which can be minimized in order to learn the
principal eigenfunctions.
Note that, as shown in (Williams and Seeger, 2000), when p(x) is the true data
generating density and when we want to learn an unknown function f using
an approximation g that is a finite linear combination of basis functions, if the
unknown function f is assumed to come from a zero-mean Gaussian process
prior with covariance Ef [f(x)f(y)] = K(x, y), then the best basis functions,
in terms of expected squared error, are the leading eigenfunctions of the linear
operator K as defined above.

3.2 Learning the Leading EigenFunctions

Using the Fourier decomposition property, the best approximation of K(x, y)
w.r.t. H’s norm using only m terms is the expansion that uses the first m terms
(with largest eigenvalues):

m
∑

k=1

λkfk(x)fk(y) ≈ K(x, y),

in the sense that it minimizes the H-norm of the approximation error. In par-
ticular, let us consider the principal eigenfunction. It is the norm 1 function f
which minimizes

JK(f, λ) =

∫

(K(x, y)− λf(x)f(y))2p(x)p(y)dxdy

i.e.
(f1, λ1) = argminf,λJK(f, λ) (13)

under the constraint ||f || = 1. This is not very original and can be proven easily,
as it is only a generalization to functional spaces of the auto-encoder view of
principal component analysis.

Proposition 1 The principal eigenfunction of the linear operator correspond-
ing to kernel K is the norm-1 function f that minimizes the reconstruction
error

J(f, λ) =

∫

(K(x, y)− λf(x)f(y))2p(x)p(y)dxdy.

Proof

8

Take the derivative of J w.r.t. the value of f at a particular point z (under
some regularity conditions to bring the derivative inside the integral):

∂J

∂f(z)
= 2

∫

(K(z, y)− λf(z)f(y))λf(y)p(y)dy

and set it equal to zero:
∫

K(z, y)f(y)p(y)dy = λf(z)

∫

f(y)2p(y)dy.

Using the constraint ||f ||2 = 〈f, f〉 =
∫

f(y)2p(y)dy = 1, we obtain the eigen-
function equation:

Kf = λf. (14)

Note that in practice it maybe inconvenient to minimize J under the constraint
that ||f || = 1. A practical solution is to minimize with respect to an uncon-
strained function g,

J(g) =

∫

(K(x, y)− g(x)g(y))2p(x)p(y)dxdy.

where we can always later decompose g into its norm and a normalized function:

g(x)
def
=
√

λf(x)

with ||f || = 1 and λ = ||g||2. Minimizing J w.r.t. g yields the first-order
equation

Kg = g||g||2

which when it is solved implies a solution to the eigenfunction equation (plugging
the definition of g):

√
λKf = λ3/2f ⇒ Kf = λf

for λ > 0 (which is what we care about here). Note that there are many solutions
to this equation (all the eigenfunctions with positive eigenvalue). Before we show
that the one that minimizes J is the principal eigenfunction, let us consider the
minimization with respect to λ:

∂J

∂λ
= 2

∫

(K(x, y)− λf(x)f(y))f(x)f(y)p(x)p(y)dxdy = 0

which gives rise to

λ =

∫

K(x, y)f(x)f(y)p(x)p(y)dxdy
∫

f(x)2f(y)2p(x)p(y)dxdy

where the denominator is
∫

f(x)2p(x)dx
∫

f(y)2p(y)dy = ||f ||2||f ||2 = 1 and the
numerator is

∫

f(x)(
∫

K(x, y)f(y)p(y)dy)p(x)dx so the solution is

λ = 〈f,Kf〉. (15)

9

Let us rewrite J(f, λ) by expanding the square, using inner product notation and
the notations

Kx(y) = K(x, y)

and

E[f] =

∫

f(x)p(x)dx,

so

J(f, λ) =

∫

(

∫

Kx(y)2p(y)dy)p(x)dx− 2λ

∫

f(x)(

∫

K(x, y)f(y)p(y)dy)p(x)dx + λ2||f ||4

= E[||Kx||2]− 2λ〈f,Kf〉+ λ2

= E[||Kx||2]− λ2 (16)

using eq. 15 in the last step. Plugging the above solutions, the k-th eigenfunction
would yield an error

J(fk, λk) = E[||Kx||2]− λ2
k

which is minimized for k = 1 if λ1 > λ2 or more generally by any eigenfunction
fk such that |λk| = |λ1|. Therefore, the principal eigenfunction minimizes J .
Q.E.D.

Note that the proof also gives us a criterion in which the norm 1 constraint is
eliminated:

JK(g) =

∫

(K(x, y)− g(x)g(y))2p(x)p(y)dxdy (17)

which gives a solution g from which we can recover λ and f through λ = ||g||2
and f = g/

√
λ.

Note that the function g that we obtain is actually a component of a “feature
space” φ for K. Indeed, if

K(x, y) =
∑

i

λifi(x)fi(y)

then writing φi(x) =
√

λifi(x) gives rise to a dot product decomposition of K,

K(x, y) = φ(x) · φ(y).

Let us now consider learning not only the first but also the leading m eigen-
functions. To simplify notation, let us define the “residual kernel”

Kk(x, y) = K(x, y)−
k

∑

i=1

λkfk(x)fk(y), (18)

with K0 = K. The corresponding kernel reconstruction error is

Kk(x, y)2 = (K(x, y)−
k

∑

i=1

λkfk(x)fk(y))2. (19)

Justified by Proposition 2 below, a general algorithm for learning the first m
eigenfunctions (and corresponding eigenvalues) of a linear operator K can thus
be written as follows:

10

• For k = 1 to m

(fk, λk) =
argminf,λ

||f ||=1
JKk−1

(f, λ)

In practice the minimization would have to be performed on a large class of
functions or non-parametrically, i.e. we impose some restrictions on the class
of functions. A special case of interest is that in which the density p(x) is the
empirical density. In that case the minimization of J can be done with numerical
analysis methods for finding the eigenvectors of a matrix. However, it might be
interesting to consider smooth classes of functions (which can only approximate
the above minimization).
Following the reasoning exposed for online learning of the principal compo-
nents (Diamantras and Kung, 1996), a simpler implementation would not have
to wait for the first m − 1 eigenfunctions before beginning to learn the m-th
one. They can all be learned in parallel, using the algorithm to learn the m-th
one that assumes that the first m − 1 are learned: convergence will simply be
faster for the leading eigenfunctions. Note that convergence also depends on
the ratios of eigenvalues, as usual for PCA and iterative eigen-decomposition
algorithms (Diamantras and Kung, 1996).
Like the previous proposition, the following proposition is not very original and
generalizes well known results on eigenvectors.

Proposition 2 Given the first principal m − 1 eigenfunctions fi of the linear
operator associated with a continuous symmetric kernel K(x, y) (with a discrete
spectrum), the m-th one can be obtained by minimizing w.r.t. g the expected
value of the kernel reconstruction error:

∫

(K(x, y)− g(x)g(y)−
k−1
∑

i=1

λifi(x)fi(y))2p(x)p(y)dxdy (20)

Then we get the m-th eigenvalue λm = ||g||2 and the m-th eigenfunction fm =
g/
√

λm.

Proof

Let us consider the reconstruction error using the approximation g(x)g(y) +
∑m−1

i=1 λifi(x)fi(y):

Jm =

∫

(K(x, y)− g(x)g(y)−
m−1
∑

i=1

λifi(x)fi(y))2p(x)p(y)dxdy.

where g(x) can be decomposed into g(x)
def
= λ′f ′(x) with ||f ′|| = 1, and (fi, λi)

are the first m−1 (eigenfunction,eigenvalue) pairs in order of decreasing absolute
value of λi. We want to prove that g that minimizes Jm is fm.

11

The minimization of Jm with respect to λ′ gives

∂Jm

∂λ′
= 2

∫

(K(x, y)−λ′f ′(x)f ′(y)−
m−1
∑

i=1

λifi(x)fi(y))f ′(x)f ′(y)p(x)p(y)dxdy = 0

which gives rise to

λ′ = 〈f ′,Kf ′〉 −
m−1
∑

i=1

∫

λifi(x)fi(y)f ′(x)f ′(y)p(x)p(y)dxdy (21)

We have

Jm = Jm−1

−2
∫

λ′f ′(x)f ′(y)(K(x, y)−∑m−1
i=1 λifi(x)fi(y))p(x)p(y)dxdy

+
∫

(λ′f ′(x)f ′(y))2p(x)p(y)dxdy

which gives
Jm = Jm−1 − λ′2

using eq. 21.
The value of λ′2 should be maximized for the last expression to be minimized
(that is what will give rise to the ordering of the eigenfunctions in terms of
absolute value).
Take the derivative of Jm w.r.t. the value of f ′ at a particular point z (under
some regularity conditions to bring the derivative inside the integral):

∂Jm

∂f ′(z)
= −2

∫

(K(z, y)− λ′f ′(z)f ′(y)−
m−1
∑

i=1

λifi(z)fi(y))λ′f ′(y)p(y)dy

and set it equal to zero:

∫

K(z, y)f ′(y)p(y)dy =

∫

λ′f ′(z)f ′(y)2p(y)dy+

m−1
∑

i=1

∫

λifi(z)fi(y)f ′(y)p(y)dy.

Using the constraint ||f ′||2 = 〈f ′, f ′〉 =
∫

f ′(y)2p(y)dy = 1, we obtain:

(Kf ′)(z) = λ′f ′(z) +

m−1
∑

i=1

∫

λifi(z)fi(y)f ′(y)p(y)dy (22)

which rewrites into

Kf ′ = λ′f ′ +
m−1
∑

i=1

λifi〈f ′, fi〉.

Since we can always write the application of K in terms of the eigenfunctions
as follows,

Kf ′ =
∞
∑

i=1

λifi〈f ′, fi〉,

12

we obtain

λ′f ′ = λmfm〈f ′, fm〉+
∞
∑

i=m+1

λifi〈f ′, fi〉.

Using the assumption that fi are orthogonal eigenfunctions for i < m, we can
apply Perceval’s theorem to obtain the norm on both sides:

λ′2 = λm
2〈f ′, fm〉2 +

∞
∑

i=m+1

λi
2〈f ′, fi〉2.

If the eigenvalues are distinct, we have λm > λi for i > m, and the last expres-
sion is maximized when 〈f ′, fm〉 = 1 and 〈f ′, fi〉 = 0 for i > m, which proves
that fm = f ′

m is in fact the m-th eigenfunction of the kernel K and thereby
λm = λ′

m.
If the eigenvalues are not distinct, then the result can be generalized in the sense
that the choice of eigenfunctions is not anymore unique but the eigenfunctions
sharing the same eigenvalue form an orthogonal basis for a subspace.
Then since we have assumed g =

√
λ′f ′, after obtaining g through the mini-

mization of Jm, since this minimization yields λ′ = λm and f ′ = fm, and since
||fm|| = 1 by definition, we get λm = ||g||2 and fm = g/

√
λm.

Q.E.D.

Discussion

The above proposition is not very surprising since it is analog to the well-known
results on eigenvectors. However, it may help us understand a bit better what
it means to learn the eigenfunctions of a kernel (and thus as we show below,
doing kernel PCA or spectral clustering). Indeed, it highlights the fact that
the embedding obtained by these methods is one that attempts to preserve

dot products in the mean-squared error sense, just like classical mul-
tidimensional scaling, but in a high-dimensional “feature space”. What are
the dominant dot-products that this approximation is trying to preserve?
Those corresponding to pairs of points which are colinear in feature space.
This maybe helps to explain why these embedding tend to result in groups of
points which are colinear (or locally colinear), as for example in Figure 1. This
is interesting but maybe raises the question of whether preserving the largest
dot products is always the most appropriate objective. Note that if one uses a
Monte-Carlo method to minimize the expectation of the kernel reconstruction
error (eq. 19, and see section 5) then it is not difficult to generalize the learning
algorithm to other error criteria.

4 Links between the Methods

In this section we show that that finding the eigenfunctions of the kernel function
includes as a special case both the embedding found in spectral clustering and
that found by Kernel PCA.

13

Proposition 3 If we choose for p(x) (the weighing function in the Hilbert space
inner product of eq. 10) the empirical distribution of the data, then the embed-
ding Aik obtained with spectral clustering (see eq. 5) is equivalent to values of
the eigenfunctions: Aik = fk(xi) where fk is the k-th principal eigenfunction of
the kernel.

Proof

As shown in Proposition 1, finding function f and scalar minimizing

∫

(K̃(x, y)− λf(x)f(y))2p(x)p(y)dxdy

such that ||f || = 1 yields a solution that satisfies the eigenfunction equation

∫

K̃(x, y)f(y)p(y)dy = λf(x)

with λ the (possibly repeated) maximum norm eigenvalue, i.e. we obtain f =
f1 and λ = λ1 respectively the principal eigenfunction (or one of them if the
maximum eigenvalue is repeated) and its corresponding eigenvalue.
Here K̃ refers to a possibly normalized kernel, e.g. such as may be defined in
eq. 4 for spectral clustering.
Using the empirical density and considering the values of x at the data points
xi, the above equation becomes (for all xi):

1

n

∑

j

K̃(xi, xj)f(xj) = λf(xi).

Let us write uj = f(xj) and M̃ij = K̃(xi, xj), then the above can be written

M̃u = nλu.

The spectral clustering method thus solves the same eigenvalue problem (up to
scaling the eigenvalue by n) and thus we obtain for the principal eigenvector the
expected result:

Ai1 = f1(xi).

To obtain the result for the other coordinates, i.e. other eigenvalues, simply
consider the “residual kernel” Kk as in eq. 18 and recursively apply the same
reasoning to obtain that Ai2 = f2(xi), Ai3 = f3(xi), etc...
Q.E.D.

Discussion

What do we learn from this proposition? Firstly, there is an equivalence between
the principal eigenvectors of the Gram matrix and the principal eigenfunctions

14

of a the kernel, when the Hilbert space is defined with an inner product of the
form of eq. 10, and the density in the inner product is the empirical density.
(Williams and Seeger, 2000) had already shown a related result when the number
of data points goes to infinity. Why are these results interesting? For one, it
suggests generalizations of the transformation performed for spectral clustering
in which one uses a smoother density p(x), e.g. obtained through a parametric
or non-parametric model.
Another nice fallout of this analysis is that it provides a simple way to general-

ize the embedding to a mapping: whereas the methods used with spectral
clustering and Laplacian eigenmaps only give the transformed coordinates of
training points (i.e. an embedding of the training points), it is easy to obtain
the transformed coordinates of a new point, once it is realized that the trans-
formed coordinates are simply the values of the principal eigenfunctions. Let
us first consider the easiest case, where p(x) is the empirical distribution. Then
Proposition 4 allows us to write

fk(x) =
1

λk

∑

i

αkiK̃(xi, x)

where αk is the k-th principal eigenvector of the normalized Gram matrix M̃ ,
with M̃ij = K̃(xi, xj).
Using the eigenfunctions obtained from the empirical distribution in order to
generalize to new points is justified by several recent results on the conver-
gence (?) and the stability of the leading eigenvectors (to the correspond-
ing eigenfunctions) as the number of examples increases.In particular (Shawe-
Taylor, Cristianini and Kandola, 2002) introduce the use of concentration in-
equalities to bound the sampling variability of eigenvalue estimation, and (Shawe-
Taylor and Williams, 2003) push these results further to give bounds on the
kernel PCA reconstruction error, using the same linear operator eigensystem
used here.
When p(x) is not the empirical distribution, Propositions 1 and 2 provide a
criterion that can be minimized in order to learn the principal eigenfunctions
fk.

Proposition 4 The test point projection πk(x) (eq. 8) on the k-th principal
component obtained by kernel PCA with normalized kernel K̃(x, y) is equal to

πk(x) = λkfk(x)

where λk and fk(x) are respectively the k-th leading eigenvalue and eigenfunc-
tion of K̃, when the Hilbert space inner product weighing function p(x) is the
empirical density.

Proof

Let us start from the eigenfunction equation 11 on kernel K̃ and apply the linear
operator K̃ on both sides:

K̃K̃fk = λkK̃fk.

15

which can be written
∫

K̃(x, y)

∫

K̃(y, z)fk(z)p(z)p(y)dzdy = λk

∫

K̃(x, y)fk(y)p(y)dy

or changing the order of integrals on the left-hand side:

∫

fk(z)

(∫

K̃(x, y)K̃(y, z)p(y)dy

)

p(z)dz = λk

∫

K̃(x, y)fk(y)p(y)dy

Let us now plug-in the definition of K̃(x, y) =
∑

i φ̃i(x)φ̃i(y):

∫

fk(z)

∫

∑

i

φ̃i(x)φ̃i(y)
∑

j

φ̃j(y)φ̃j(z)p(y)dy

 p(z)dz = λk

∫

∑

i

φ̃i(x)φ̃i(y)fk(y)p(y)dy.

In this expression we can see the element (i, j) of the feature space covariance
matrix C (eq. 6):

Cij =

∫

φ̃i(y)φ̃j(y)p(y)dy

and we obtain (plugging this definition on the left hand side and pulling sums
out of integrals)

∑

i

φ̃i(x)
∑

j

Cij

∫

φ̃j(z)fk(z)p(z)dz = λk

∑

i

φ̃i(x)

∫

fk(y)φ̃i(y)p(y)dy

or
φ̃(x) · (C〈fk, φ̃〉) = φ̃(x) · (λk〈fk, φ̃〉)

where 〈fk, φ̃〉 is the feature space vector with elements
∫

fk(y)φ̃i(y)p(y)dy. Since

this is true for all x, it must be that in the region where φ̃(x) takes its values,

Cvk = λkvk

where vk = 〈fk, φ̃〉 and it is also the k-th eigenvector of the covariance matrix
C. Finally, the kernel PCA test projection on that eigenvector is

πk(x) = vk · φ̃(x)

= (

∫

fk(y)φ̃(y)p(y)dy) · φ̃(x)

=

∫

fk(y)φ̃(y) · φ̃(x)p(y)dy

=

∫

fk(y)K(x, y)p(y)dy

= λkfk(x) (23)

Q.E.D.

16

Discussion

What do we learn from this second proposition? again, we find an equivalence
between the eigenfunctions of the kernel (in an appropriate Hilbert space) and
the mapping computed through kernel PCA. By combining this with the first
proposition, we trivially obtain an equivalence between the mappings computed
for spectral clustering and for kernel PCA, up to scaling by the eigenvalues, and
up to a different normalization of the kernel.
This result also suggests to investigate new avenues of research, involving a
weighing function p(x) that is not the empirical distribution but a smoother
distribution. Can this further smoothness be useful? for sure however learning
(or rather estimating) the eigenfunctions is more difficult as an optimization
problem than computing the eigenvectors from the sample Gram matrix. In
general it will not be possible any more to represent the eigenfunctions exactly,
so the estimation of eigenfunctions is likely to involve a non-convex optimization
problem. On the other hand, a possible advantage is that the eigenfunctions
could be estimated through a stochastic minimization process that does not
require to explicitly compute and store the Gram matrix, as outlined in the
next section.
The links thus discovered leave open other questions. For example, is there a
“geometric” meaning to the divisive normalization of the kernel used with spec-
tral clustering (equation 4)? This normalization comes out of the justification of
spectral clustering as a relaxed statement of the min-cut problem (Chung, 1997;
Spielman and Teng, 1996) (to divide the examples into two groups such as to
minimize the sum of the “similarities” between pairs of points straddling the two
groups). The additive normalization performed in with kernel PCA (equation 7)
makes sense geometrically as a centering in feature space. Both normalization
procedures make use of the kernel row/column average Ex[K(x, y)].

5 Unsupervised Stochastic Learning of Eigen-

functions

Based on the previous considerations, we can outline a general stochastic algo-
rithm for unsupervised learning through learning of a kernel’s eigenfunctions.
One interesting advantage of this approach is that it does not require to store
the whole Gram matrix, since it uses stochastic sampling of data pairs to ap-
proximate the integral of eq. 20 (and minimize it). Future experiments should
compare this approach to the use of the Nystrom method (Williams and Seeger,
2000), in which a fixed subsample is chosen, small enough to handle its Gram
matrix, so as to be amenable to conventional (but numerically more powerful)
eigenvector / eigenvalue computation routines.
The outline of the algorithm is thus the following:

• Choose a primary data density model (which could be the empirical dis-
tribution, but we favor smoother models, e.g. a Parzen windows density)

17

p(x).

• Choose a kernel K (e.g. Gaussian with fixed variance σ).

• Choose a normalization method for the kernel (e.g. divisive as in eq. 4 or
subtractive as in eq. 7), to obtain K̃.

• Choose a flexible but smooth class of functions F over which one can easily
tune a function using gradient-based methods (e.g. neural networks).

• Choose a number k of dimensions for the transformed space (number of
eigenfunctions to learn).

• Apply the eigenfunction learning algorithm described in section 3.2 to
obtain a (smoothed and approximate) estimation of the first k eigenfunc-
tions of K̃, minimizing J over the class F . Note that this can be done
“on-line” without having to store the Gram matrix, sampling i.i.d. pairs
of examples from p(x).

• Optionally estimate out-of-sample likelihood using the method described
in the next section (sec. 6).

When sampling pairs x and y from p(x, y) = p(x)p(y), many pairs may yield
very little information on the eigenfunctions, those pairs such that K(x, y) is
near a constant (e.g. near zero for the Gaussian kernel, when ||x − y||2/σ2

is large). For this reason it might be very useful to approximate Jm using
importance sampling rather than straightforward Monte-Carlo sampling. The
minimum variance proposal distribution for importance sampling would be one
that picks x and y in proportion to

(K(x, y)−
∑

i

gi(x)gi(y))2p(x)p(y),

where gi(x) is our current guess at
√

λifi(x), i.e our current guess at φi(x). If
the approximation

∑

i gi(x)gi(y) is “local” in the sense that it easily assigns
small values to regions of (x, y) space in which x is far from y and K(x, y) is
tiny (because that is the first thing and easiest thing that would be learned),
then a reasonable approximation to the ideal proposal distribution is one that
simply gives low probability to y, given x, when K(x, y) is small. For example,
it would be reasonable to use in the case of the Gaussian kernel the proposal
distribution

q(x, y) = p(x)q(y|x) = p(x)
e−0.5||x−y||2/σ2

(2π)d/2σd

which samples x from p(x) and y from a Gaussian centered at x with variance
σ2.
An outline of the algorithm when p(x) is not the empirical distribution is given
in Algorithm 1 at the end of this document.

18

6 Estimating the Likelihood and Mapping Back

in Input Space

The above unsupervised learning algorithm hopefully allows to reveal salient
characteristics of the data distribution, such as clusters and manifolds, through
a data-dependent mapping f(x). Implicitly, the algorithm tells us something
about the density and we would like to be able to formalize that link, by repre-
senting explicitly a corresponding density model pf (x). Note that we start from
a rough estimate of the density, p(x), that is used to define our Hilbert space
inner product, and the procedures discussed here allow to hopefully obtain a
better estimate, pf (x).
The goal of this section is thus to show how one could estimate the training or
out-of-sample likelihood of data using an already learned mapping f(x). This
could be particularly important in order to compare quantitatively the value
added by the representation of the data in f(x), against traditional unsuper-
vised learning algorithms, many of which can be compared on a common yard-
stick through the average out-of-sample log-likelihood, i.e. here the average of
log pf (xi) over data xi not used to learn the model. How do we recover a density
model pf (x) from f(x)?
Suppose that we have already learned a map f(x) from Rd to Rk with k ≤ d
(future work should consider the case k > d). Then under smoothness and
topological assumptions on f (to be formalized), there exist two functions g and
h which together allow to approximately reconstruct x using f(x) as follows:

x̂ = h(f(x), g(x)).

Intuitively, h(x) captures the “complement” of f(x), i.e. the variations of x not
captured by f , such that the concatenation (f, g) is a bijective and invertible
mapping. One can approximate such an inversion by looking for g and h which
minimize a reconstruction error, e.g.

min
g,h

∫

(h(f(x), g(x))− x)2p(x)dx.

If we had such a mapping then we could use the integral change of variable
identities to recover the distribution of x from a model of the distribution of

y = (f(x), g(x)).

The density transformation that gives the density p̂f of x̂ given the density py

of y is
p̂f (x̂) = py(y)|h′|

where |h′| denotes the absolute value of the determinant of the Jacobian matrix
h′

ij = ∂hi

∂yj
.

However, in practice the above minimization might not be perfect (especially
if p(x) is not the empirical distribution), i.e. a residual error will remain and
x 6= x̂.

19

In that case we can still recover pf (x) up to an arbitrarily small sampling error by
estimating a convolution of p̂f (x̂). For example, we can model the reconstruction
errors

ε = x− x̂

with a noise model N(ε) (e.g. an isotropic Gaussian N(0, σ2) whose variance
σ2 is equal to the average of the reconstruction error ||x − x̂||2). From this we
can express the density pf (x) with p̂f (x̂) convolved with N(ε):

pf (x) =

∫

p̂f (x− ε)N(ε)dε. (24)

If the noise variance is small, this is a very local integral which should be “easy”
to perform numerically, e.g. by straightforward Monte-Carlo, sampling ε from
N(ε).

7 Open Questions and Future Work

7.1 Multi-Layered Similarity Learning

Can we improve on the unsupervised learning algorithm of section 5 by dis-
covering higher-level abstractions? Much previous work, especially related to
artificial neural networks has been based on the idea of discovering abstrac-
tions by building on top of already discovered abstractions, in a multi-layered
fashion (Hinton, 1986; Hinton, 2002).
Consider simply applying the procedure of section 5 iteratively, hopefully thus
gradually building up higher level abstractions to describe the structure of the
input density. Since the algorithm presented in the previous section allows to
obtain a presumably “better” density estimate pf (x) from a rougher one p(x)
(this remains to be shown!), we might hope that repeating the same procedure
would yield an even better estimate.
More precisely, at each iteration, one would use the unsupervised learning pro-
cedure to map the data x(i) at level i into the data x(i+1) at the next level:

x(i+1) = f (i)(x(i)).

In addition, to be consistent with the above discussion, one would like to sample
from pf(i) at level i of the unsupervised learning procedure.

7.2 Relation Between Kernel and Density

What is the right choice of kernel?
Intuitively, the right choice of kernel is related to the right notion of similarity
between data points, which is itself related to the density of the data.
For example, if we use a Gaussian kernel with a variance parameter σ that is
too small with respect to the typical nearest neighbor then all the points align
along the principal direction in features space (not revealing any structure at

20

all in the data). Similarly, if the density is very different in differents parts of
space, the procedure with a Gaussian kernel and a global σ does not work very
well (because a value of σ that is appropriate in one region is not appropriate
in the other and vice-versa).
Another example that may help drive our intuition in the right direction is
the special case where the data is distributed according to a single anisotropric
Gaussian with a covariance matrix Σ. In that case, an appropriate similarity
function might be one similar to the Mahalanobis distance, e.g.

K(x, y) = e−0.5(x−y)′Σ−1(x−y).

The general question we would like to answer is the following: given an arbitrary
density model p(x), what is the most appropriate similarity kernel (for use in
one of the spectral projection techniques)?
An interesting direction to look into is the work by Amari et al. on the geometry
of curved manifolds which define a local metric. They have exploited this idea
to propose improved kernels for SVMs (Amari and Wu, 1999), based on the
result that the local Riemannian metric tensor induced by the feature space
transformation φ(x) is given by the positive definite matrix

∂

∂xi

∂

∂yi
K(x, y) |x=y =

∂φ(x)

∂xi
· ∂φ(y)

∂yi

where xi and yi here denote the i-th coordinate respectively of x and y.
Previous litterature on the link between spectral clustering and the Laplacian
operator might be helpful to understand what the appropriate kernel should be.
The Laplacian operator (Belkin and Niyogi, 2002a) yields the Gaussian kernel
with variance t and corresponds to the solution of the heat equation after t
units of time in an isotropic environment. An intuition is that the generalization
we are seeking corresponds to the solution obtained with a density-dependent,
anisotropic environment.
Another link already mentionned earlier between the data density and the kernel
is also studied in (Williams and Seeger, 2000): it is shown that if the function
to be approximated is sampled from a Gaussian process prior with covariance
kernel K(x, y), then bases that minimize the expected squared error are the
leading eigenfunctions of the linear operator K (defined as in 12, i.e. with respect
to p(x)). Related to this work is the proposal in (Girolami, 2001) to approximate
the density directly as a linear combination of eigenfunctions of the kernel:
kernel PCA is thus extended to provide the discrete expansion coefficients for a
non-parametric orthogonal series density estimator.
Another related relevant recent work is that of (Chapelle, Schölkopf and Weston,
2003), in which the input data empirical distribution is used to adapt a metric
to be used for learning an SVM with labeled data, i.e. it is an application to
semi-supervised learning. The above paper considers a single shared covariance
matrix in a Parzen windows density estimate performed in the kernel PCA
space. This idea is linked to a flurry of other recent work on learning the
local structure of the density through local covariance matrices, as in (Vincent

21

and Bengio, 2003), and in the case of mixtures of factor analyzers, (Teh and
Roweis, 2003) and (Brand, 2003) (which also aim at discovering an underlying
low-dimensional manifold).

7.2.1 Fisher Kernel

Yann Le Cun (personal communication) has proposed to use the Fisher kernel
here, since it can be derived from a density (unfortunately, it should be a para-
metric density). The Fisher kernel is defined so, for a parametric model density
pθ(x):

K(x, y) ∝ ∂ log pθ(x)

∂θ

′

F−1 ∂ log pθ(y)

∂θ

where F is the Fisher matrix (which is a Hessian matrix and also a covariance
matrix):

Fij =

∫

∂ log pθ(x)

∂θi

∂ log pθ(x)

∂θj
pθ(x)dx.

What is interesting is that if one tries this formula with the Gaussian density
with free parameter µ and fixed covariance matrix Σ, one gets

(x− µ)′Σ−1(y − µ).

Note that if one considers that this is a dot product 〈x, y〉 in some vector space,
the corresponding distance is

||x− y||2 = 〈x, x〉+ 〈y, y〉 − 2〈x, y〉 = (x− y)′Σ−1(x− y),

which is the Mahalonabis distance. Since a reasonable way to define a kernel is
with exp(−distance2), one possible kernel is

K(x, y) = exp(−(x− y)′Σ−1(x− y)).

This is very nice, but the main problem with all this is that at this point we
don’t understand why one should use the Fisher kernel, why we should
use the exponential of the distance rather than the dot product, etc... Another
issue is that in general we may not have a nice parametric model pθ but rather
a non-parametric model. That might be circumvented if the non-parametric
model can be expressed parametrically, e.g. as a mixture of Gaussians. What
if we included the covariance matrix (or matrices in the case of a Gaussian
mixture) in the free parameters?

7.3 How to estimate a likelihood when k > d?

The technique proposed in section 6 only works when there are less projected
dimensions than original dimensions. What could be done otherwise?
It is always possible to write instead a density model as the normalization of
an energy function computed only on the projected data. For example, let us

22

assume we have a “simple” density model pu(u) for the projected data u = f(x).
Then our model of the original data x could be

pf (x) =
pu(f(x))

Z

where Z is the partition function, the integral of pu(f(x)). It is not clear
whether this integral can be approximated accurately, even with a large number
of samples, because pu(f(x)) may have many modes (in x) and x is generally
high-dimensional (contrast with the integral of eq. 24).
Another option is to generalize the procedure of eq. 24, taking into account
the fact that when k > d, the data u does not span the whole of Rk, only a
manifold of dimension at most d. The local structure of this manifold is given
by the singular value decomposition of the (rectangular, now) Jacobian matrix
∂fi(x)

∂xj
, since f(x) can only vary in the directions locally tangent to this manifold.

Note also that importance sampling might be used to estimate the conditional
density of u given that u is on that manifold, by sampling x’s (according to any
given distribution, say p(x)), and generating points u = f(x) that only lie on
the manifold.

8 Conclusion

Spectral methods discussed in this paper empirically appear to allow capturing
such salient features of a data set as its main clusters and submanifolds. This is
unlike previous manifold learning methods like LLE and Isomap which assume
a single manifold and have not been designed to say something about the modes
of the distribution.
However, there is much that remains to be understood about these methods. For
example, what is the role of normalization? how should the kernel be chosen?
and more fundamentally, why are these algorithms doing what they are doing?
to this question there are already partial answers, and this paper may have
contributed a little bit to this understanding, but the picture is far from clear.
Finally, a better understanding of these methods opens the door to new and
potentially much more powerful unsupervised learning algorithms. Several di-
rections have been proposed here:

1. Using a smoother distribution than the empirical distribution to define
the inner product. But why, fundamentally, might this be helpful?

2. Learning a density function from the mapping in order to compute likeli-
hoods. Many questions remain to be studied there.

3. Learning higher-level abstractions on top of lower-level abstractions by
iterating the unsupervised learning process in multiple “layers”. Prelim-
inary experiments on toy data suggests that this idea works, but why
should it work? that remains to be shown.

23

4. Using the data to define the kernel. Another paper is in preparation that
attempts to answer that question.

Acknowledgments

The authors would like to thank Yann Le Cun, Yves Grandvalet, Chris Williams,
Michael Jordan and Bernhard Schölkopf for helpful feedback, and the follow-
ing funding organizations: NSERC, MITACS, IRIS, and the Canada Research
Chairs.

References

Amari, S. and Wu, S. (1999). Improving Support Vector Machine classifiers by modi-
fying kernel functions. Neural Networks, 12:783–789. 21

Belkin, M. and Niyogi, P. (2002a). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Dietterich, T. G., Becker, S., and Ghahramani, Z.,
editors, Advances in Neural Information Processing Systems 14, Cambridge, MA.
MIT Press. 2, 6, 21

Belkin, M. and Niyogi, P. (2002b). Laplacian eigenmaps for dimensionality reduction
and data representation. Technical Report TR-2002-01, University of Chicago,
Computer Science. 6

Belkin, M. and Niyogi, P. (2002c). Semi-supervised learning on manifolds. Technical
Report TR-2002-12, University of Chicago, Computer Science. 6

Brand, M. (2003). Charting a manifold. In Becker, S., Thrun, S., and Obermayer,
K., editors, Advances in Neural Information Processing Systems, volume 15. MIT
Press. 22

Chapelle, O., Schölkopf, B., and Weston, J. (2003). Semi-supervised learning through
principal directions estimation. In Becker, S., Thrun, S., and Obermayer, K.,
editors, Advances in Neural Information Processing Systems, volume 15. MIT
Press. 7, 21

Christianini, N., Shawe-Taylor, J., and Kandola, J. (2002). Spectral kernel methods for
clustering. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances

in Neural Information Processing Systems 14, Cambridge, MA. MIT Press. 7

Chung, F. (1997). Spectral graph theory. In CBMS Regional Conference Series,
volume 92. American Mathematical Society. 17

Cox, T. and Cox, M. (1994). Multidimensional Scaling. Chapman & Hall, London. 6

Diamantras, K. and Kung, S. (1996). Principal Components Neural Networks: theory

and applications. Wiley. 11

Girolami, M. (2001). Orthogonal series density estimation and the kernel eigenvalue
problem. Neural Computation, 14(3):669–688. 21

He, X. and Niyogi, P. (2002). Locality preserving projections (lpp). Technical Report
TR-2002-09, University of Chicago, Computer Science. 6

Hinton, G. (1986). Learning distributed representations of concepts. In Proceedings

of the Eighth Annual Conference of the Cognitive Science Society, pages 1–12,
Amherst 1986. Lawrence Erlbaum, Hillsdale. 20

24

Hinton, G. (2002). Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800. 20

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: analysis and
an algorithm. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors,
Advances in Neural Information Processing Systems 14, Cambridge, MA. MIT
Press. 1, 4, 5

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326. 6

Schölkopf, B., A. S. and Müller, K.-R. (1996). Nonlinear component analysis as a ker-
nel eigenvalue problem. Technical Report 44, Max Planck Institute for Biological
Cybernetics, Tübingen, Germany. 2, 5

Schölkopf, B., Burges, C. J. C., and Smola, A. J. (1999). Advances in Kernel Methods

— Support Vector Learning. MIT Press, Cambridge, MA. 3, 5

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation, 10:1299–1319. 5

Seeger, M. (2001). Learning with labeled and unlabeled data. Technical report, Ed-
inburgh University. 7

Shawe-Taylor, J., Cristianini, N., and Kandola, J. (2002). On the concentration of
spectral properties. In Dietterich, T., Becker, S., and Ghahramani, Z., editors,
Advances in Neural Information Processing Systems 14. MIT Press. 15

Shawe-Taylor, J. and Williams, C. (2003). The stability of kernel principal components
analysis and its relation to the process eigenspectrum. In Becker, S., Thrun, S.,
and Obermayer, K., editors, Advances in Neural Information Processing Systems

15. MIT Press. 15

Spielman, D. and Teng, S. (1996). Spectral partitionning works: planar graphs and
finite element meshes. In Proceedings of the 37th Annual Symposium on Founda-

tions of Computer Science. 17

Teh, Y. W. and Roweis, S. (2003). Automatic alignment of local representations. In
Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Informa-

tion Processing Systems, volume 15. MIT Press. 22

Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323. 6

Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. In Becker, S., Thrun, S.,
and Obermayer, K., editors, Advances in Neural Information Processing Systems

15, Cambridge, MA. MIT Press. 22

Wahba, G. (1990). Spline models for observational data. In CBMS-NSF Regional

Conference Series in Applied Mathematics, volume 59, Philadelphia, PA. Society
for Industrial and Applied Mathematics (SIAM). 3

Weiss, Y. (1999). Segmentation using eigenvectors: a unifying view. In Proceedings

IEEE International Conference on Computer Vision, pages 975–982. 4, 5

Williams, C. (2001). On a connection between kernel pca and metric multidimensional
scaling. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural

Information Processing Systems 13, pages 675–681. MIT Press. 6

Williams, C. and Seeger, M. (2000). The effect of the input density distribution on
kernel-based classifiers. In Proceedings of the Seventeenth International Confer-

ence on Machine Learning. Morgan Kaufmann. 3, 7, 8, 15, 17, 21

25

Zha, H., Ding, C., Gu, M., He, X., and Simon, H. (2002). Spectral relaxation for
K-means clustering. In Dietterich, T., Becker, S., and Ghahramani, Z., editors,
Advances in Neural Information Processing Systems, volume 14. MIT Press. 7

26

Algorithm 1: Outline of a gradient-based online-algorithm for learning the lead-
ing eigenfunctions when p is not the empirical distribution.
Input: kernel K, number of desired eigenfunctions m, original

density p(x), conditional density for proposal distribution q(y|x),
type of kernel normalization (e.g. subtractive or divisive),

class of functions F for the scaled eigenfunctions gi(x), class of

functions E for the kernel expected value e(x) = Ey[K(x, y)].
Output: estimated eigenvalues λi and estimated eigenfunctions

fi(x) = gi(x)/
√

λi.

while (not stopping criterion)

sample x from p(x)
sample y from q(y|x)
w ← p(y)/p(x)
compute K(x, y)
clear parameter gradients for function e
compute e(x)
assign gradient 2w(e(x)−K(x, y)) to e’s output

back-propagate gradients from e’s output to e’s parameters

compute e(y)
assign gradient 2w(e(y)−K(x, y)) to e’s output

back-propagate gradients from e’s output to e’s parameters

update e’s parameters with one step of online gradient

compute normalized K̃(x, y) from K(x, y) using e(x) and e(y)
compute gi(x) (i = 1 to m)
update λi’s with a moving average of gi(x)2 (i = 1 to m)

compute reconstructions K̂i ← K̂i−1 + gi(x)gi(y) (i = 1 to m)

compute residues εi ← (K̂i − K̃(x, y)) (i = 1 to m)

assign gradient 2wεigi(y) to gi(x)’s output (i = 1 to m)

assign gradient 2wεigi(x) to gi(y)’s output (i = 1 to m)

back-propagate gradients from gi(x)’s output to g’s parameters

back-propagate gradients from gi(y)’s output to g’s parameters

update g’s parameters with one step of online gradient

update online gradient learning rate

27

