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Abstract

Most machine learning researchers perform quantitative experiments to
estimate generalization error and compare the performance of different al-
gorithms (in particular, their proposed algorithm). In order to be able to
draw statistically convincing conclusions, it is important for them to also es-
timate the uncertainty around the error (or error difference) estimate. This
paper studies the very commonly used K-fold cross-validation estimator of
generalization performance. The main theorem shows that there exists no
universal (valid under all distributions) unbiased estimator of the variance of
K-fold cross-validation. The analysis that accompanies this result is based
on the eigen-decomposition of the covariance matrix of errors, which has
only three different eigenvalues corresponding to three degrees of freedom
of the matrix and three components of the total variance. This analysis helps
to better understand the nature of the problem and how it can make naive
estimators (that don't take into account the error correlations due to the over-
lap between training and test sets) grossly underestimate variance. This is
confirmed by numerical experiments in which the three components of the
variance are compared when the difficulty of the learning problem and the
number of folds are varied.

Keywords: cross-validation, variance estimators, k-fold cross-validation, sta-
tistical comparisons of algorithms, error covariance, estimating generalization



1 Introduction

In machine learning, the standard measure of accuracy for trained models is the pre-
diction error PE), i.e. the expected loss on future examples. Learning algorithms
themselves are often compared on their average performance, which estimates ex-
pected value of prediction erroEPE) over training sets.

When the data distribution is unknowRE andEPE cannot be computed. If
the amount of data is large enoudttl can be estimated by the mean error over a
hold-out test set. The usual variance estimates for means of independent samples
can then be computed to derive error bars on the estimated prediction error, and to
assess the statistical significance of differences between models.

The hold-out technique does not account for the variance with respect to the
training set, and may thus be considered inappropriate for the purpose of algorithm
comparison [6]. Moreover, it makes an inefficient use of data which forbids its ap-
plication to small sample sizes. In this situation, one resorts to computer intensive
resampling methods such as cross-validation or bootstrap to esttfiaie EPE.

We focus here on K-fold cross-validation. While it is known that cross-
validation provides an unbiased estimateE®E, it is also known that its vari-
ance may be very large [4]. This variance should be estimated to provide faithful
confidence intervals oBE or EPE, and to test the significance of observed differ-
ences between algorithms. This paper provides theoretical arguments showing the
difficulty of this estimation.

The difficulties of the variance estimation have already been addressed [6, 10,
11]. This paper builds upon the work of Nadeau and Bengio [11], which inves-
tigated in detail the theoretical and practical merits of several estimators of the
variance of cross-validation. Our analysis departs from this work in the sampling
procedure defining the cross-validation estimate. While [11] considers K inde-
pendent training and test splits, we focus on the standard K-fold cross-validation
procedure, where there is no overlap between test sets: each example of the original
data set is used once and only once as a test example.

This paper is organized as follows. Section 2 defines the measures of per-
formance for algorithms, their estimation by K-fold cross-validation and similar
procedures such as deletejackknife. Our theoretical findings are summarized
in Sections 3—6. They are followed in Section 7 by experiments illustrating the ef-
fect of experimental conditions on the total variance and its decomposition in three
components, and confirming the underestimation of variance obtained by the naive
estimator commonly used by researchers.



2 General Framework

2.1 Measures of performance

In machine learning, the performance measure differs according to the experi-
menter’s viewpoint. In applications, we are interested in finding the best algorithm
for solving the particular task at hand, specified by one particular training set and
some information about the data generating process. In algorithm evaluation, we
want to compare several learning algorithms for different learning tasks, and we
care about the sensitivity of the learning algorithm to the choice of training exam-
ples.

Formally, we have a training sé? = {zi,...,z,}, with z; € Z, indepen-
dently sampled from an unknown distributién We also have a learning algorithm
A, which maps a data set of (almost) arbitrary size to a functionZ* — F.
Throughout this paper, we consider symmetric algorithms,A.&s insensitive to
the ordering of examples in the training 9@t The discrepancy between the pre-
diction and the observatianis measured by a loss functional: F x Z — R.
Typically, L is the quadratic loss in regressioh(ff, (z,v)) = (f(z) — y)?) and
the misclassificatiof0, 1}-loss in classification(.(f, (z,y)) = 1))

Let f = A(D) be the function returned by algoritheh on the training set
D. In application based evaluation, the goal of learning is usually stated as the
minimization of the prediction error, i.e. the expected loss on future test examples

PE(D) = E[L(f,2)] , (1)

where the expectation is taken with respect sampled fromP. 1

In algorithm based evaluation, we are not really interested in performances on
a specific training set; we would like comparisons on a more general basis. In
this context, the lowest level of generality can be stated as “training sets of size
sampled fromP”, and the performance of learning algorithincan be measured
by the expected performance of the functions returned in this situation

EPE(n) = E[L(A(D),z)] , (2)

where the expectation is taken with respecitsampled fromP” andz indepen-
dently sampled frond.

Note that other types of performances measure can be proposed, based for
example on parameters, or defined by the predictability in other frameworks, such
as the prequential analysis [5].

'Note that we are using the same notation for random variables and their realization. The intended
meaning will be specified when not clear from the context.



When the data distribution is unknowRE and EPE cannot be computed.
They have to be estimated, and it is often crucial to assess the uncertainty attached
to this estimation:

e in application-oriented experiments, to give a confidence interv&on

e in algorithm-oriented experiments, to take into account the stability of a
given algorithm. For comparisons between algorithms, it is essential to as-
sess the statistical significance of observed differences in the estiiate

Although this point is often overlooked, estimating the variance of the estimates
PE andEPE requires caution.

2.2 Hold-out estimates of performance

If the amount of data is large enougBE can be estimated by the mean error
over a hold-out test set, and the usual variance estimate for means of independent
variables can then be computed. However, even in the ideal situation where several
independent training and test sets would be available, this estimate should not be
applied to compute the variance BPE: even though training and test examples
are independent, the test errors are correlated, since many test errors are computed
for each training set, now considered as a random variable.

Figure 1 illustrates how crucial it is to take these correlations into account.
The mean of two variance estimators is reponsd the empirical variance of
the hold-out estimate, in an ideal situation where 10 independent training and test
sets are available. The varianceEﬁ(n) (estimated on 100 000 independent
experiments) is displayed for reference by the dotted line. The averatje thie
variance estimator ignoring correlations, shows that this estimate is highly biased,
even for large sample sizes, whereas the variance estifiataiking into account
correlations, is unbiased. The details of this experiment are given below.

Experiment 1 Ideal hold-out estimate diPE.

We haveK = 10 independent training set®q, ..., D of n independent
example; = (x;,y;), wherex; = (z;1,...,z;q) is ad-dimensional centered,
unit covariance Gaussian variabld (= 30), y; = \/%22121 ik + &; With ;
being independent, centered, unit variance Gaussian variable¢e also haves
independent test sef§, . . ., Tk of sizen sampled from the same distribution.

The learning algorlthm consists in fitting a line by ordinary least east squares, and
the estimate oEPE is the average quadratic loss on test examm&E =L =

% Do & > set, Lii» whereLy; = L(A(Dg), z;).

2The /3/d factor provides atk* of approximately3 /4.
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Figure 1: Estimates of the varianceﬁﬁj( ) vs. empirical variance cﬂﬁ( )
(shown by bold curve) on 100 000 experiments. The average of the variance esti-
matorsf; (ignoring correlations, dashed curve) ahd(taking into account corre-
lations, dotted curve) are displayed for different training samplersize

The first estimate of variance &PE is 6; = W S (L —
L)%, which is unbiased prowded there is no correlation between test errors. The

second estimate & — K(K R—Tn? S i (Lki — L)(Ly; — L), which takes
into account correlations between test errors.

Looking at Figure 1 suggests that asymptotically the naive estimator of vari-
ance converges to the true variance. This can be shown formally by taking advan-
tage of the results in this paper, as long as the learning algorithm converges as the
amount of training data goes to infinity (i.e.7as— oo the functionA (D) obtained
does not depend on the particular training 8¢t In that limit, the correlations be-
tween test errors converge to 0. The rate of convergence will depend on the stability
of the learning algorithm as well as on the nature of the data distribution (e.g., the
presence of thick tails and outliers will slow down convergence).

The hold-out technique makes an inefficient use of data which forbids its ap-
plication in most real-life applications with small samples. Then, one can resort to
K-fold cross-validation to estimateE or EPE.

2.3 K-fold cross-validation estimates of performance

Cross-validation is a computer intensive technique, using all available examples as
training and test examples. It mimics the use of training and test sets by repeatedly
training the algorithmi times with a fractionl /K of training examples left out

for testing purposes. This kind of hold-out estimate of performance lacks compu-

tational efficiency due to the repeated training, but the latter are meant to lower the
variance of the estimate [12].



In practice, the data sd? is first chunked intaX disjoint subsets (oblock9

of the same sizem 2 n/K. Let us writeT}, for the k-th such block, and;, the
training set obtained by removing the element$jjrfrom D. The cross-validation
estimator is defined as the average of the errors on test Blooktained when the
training set is deprived frory,:

K
V(D)= £ 3 LDy, =) - 3)
k=1 z; €T},

DoesCV estimatePE or EPE? Such a question may seem pointless consider-
ing thatPE(D) is an estimate cEPE(n), but it becomes relevant when consider-
ing the variance o€V: does it inform us of the uncertainty abdE or EPE?

On the one hand, only one training s&t, enters the definition o'V, which
can be, up to an approximation, an unbiased estimaR¥gD) [8]. 4 In a more
general context, it has also been proved that, under suitable stability assumptions
on the algorithmA4, CV (D) estimate®E(D) at least as accurately as the training
error [9, 2]. A more appealing result states that is a more accurate estimate of
PE than hold-out testing [3]. However, this statement does not appBREIQD),
but to the prediction error of a randomized algorithm picking solutions uniformly
within {A(Dy,) H£ ;.

On the other hand;V is explicitly defined from the learning algorithr, and
not from the functionf = A(D). The inner average in the definition 6fV (3)
is an average test loss fek(Dy) which thus estimates unbiasedNe(Dy). The
training setsD;, ..., Dk are clearly not independent, but they are sampled from
P"~™. Hence, the outer average of (3) estimates unbiade®lly(n —m). ° Here,
following [6, 11], we will adopt this latter point of view.

The variance estimate GiPE provided by the hold-out estimate has to ac-
count for test error dependencies due to the choice of training set, which cannot be
estimated using a single training/test experiment. Here, the situation is more com-
plex, since there are additional dependencies due to the overlapping training sets
Dy, ..., Dg. Before describing this situation in detail and summarizing the results
of our theoretical analysis in Sections 3-6, we detail some procedures similar to
K-fold cross-validation, for which the forthcoming analysis will also hold.

3To simplify the analysis below we assume thas a multiple of K

“More precisely, following [8], wherL is the quadratic loss, and writinf = A(D), f=* =
A(Dy), assuming that fofx;, y:) = z: € Tk, & >rey [~ F(x:) = f(x:) (which is weaker than
f7% ~ f)yields E[CV] ~ E[2 Y7 | (f(x:) — y:)?], where the expectation is taken with respect
toyi, ..., Yn.

SNote that leave-one-out cross-validation is known to fail to estiB®RE for unsmooth statistics
(e.g. [4, 7]). This failure is due to the similarity of the training sBXs, . . . , Dx which are far from
being representative samples drawn fr&¥h™"™.



2.4 Other estimates of the K-fold cross-validation type

One of the main use of variance estimatedi®ft is to compare learning algo-
rithms. The analysis presented in this paper also applies to the version of cross-
validation dedicated to this purpose: if we want to compare the performances of
algorithmsA; and A,, cross-validation with matched pairs should be the method
of choice

K
ACY(D Z%Z (A(Dy), ) ~ L(Aa(Dy)zi) . (&)

Compared to the difference of two independent cross-validation estinist&g,
avoids the additional variability due to train/test splits.

In application oriented experiments, we would like to estimai{ D), the
expected error when training with the givéh We have seen in Section 2.3 that
under stability assumptions;V can be used to estimaieE. Alternatively, we
may resort to the jackknife or the deletejackknife (see e.g. [7]) to estimate the
optimism (i.e. the bias of the mean error on training examples, when the latter is
used to estimat@E(D)). Ideally, the estimate of optimism should be an average
over all subsets of size — m, but a less computationally intensive alternative is

(K -1) ZZ (A7) ~ - S L(AD),2) | - )
=1

k 1z; EDk

The link with cross-validation is exhibited more clearly by the following ex-
pression of the (debiased) jackknife estimatd bf

K n
JK = OV 4 -3 S (LAD). ) ~ LAD. =) - (6)

k=1 1i=1

For additional information about jackknife estimates and clues on the derivation of
(5) and (6), the reader is referred to [7].

2.5 Generic notations

This paper studies the variance of statistics suckds ACV or JK. In what
follows, these statistics will be denoted fiya generic notation for means of ob-
servationg; splitin K groups.



1 n
po= Ezei
=1
1.1
~ Klwm

= €Ty,
where, slightly abusing notatioh ¢ T, meansz; € T}, and
L(A(Dy), z) for i =CV |
Vi €Ty, €, = L(Al(Dk),Zi) — L(AQ(Dk), Zi) for o= ACV
KL(A(D),2i) = > g, L(A(De), z;)  for i =JK .

Note thatj: is the average of identically distributed (dependent) variables.
Thus, it asymptotically converges to a normally distributed variable, which is com-
pletely characterized by its expectatififi] and its variancé/ar|/i].

3 Structure of the Covariance Matrix

The variance of: is defined as follows
1
0 = o Z Cov(e;, ej) .
.3

By using symmetry arguments over permutations of the exampl&s ime show
that many distributions os; and pairwise joint distributions ofe;, ¢;) are identi-
cal. As aresult, the covariance matbixhas a very particular block structure, with
only three possible values fat;; = Cov(e;, ¢;), and the expression défis thus a
linear combination of these three values.

Lemma 1 Using the notation introduced in section 2.5,

1. all ¢; are identically distributed:
Vi, P(e; =u) = f(u).

2. all pairs (e;, ej) belonging to the same test block are jointly identically dis-
tributed:
V(i,j) € T? : j # i, Ple; =u,ej =v) = g(u,v).

3. all pairs (e;, e;) belonging to different test blocks are jointly identically dis-
tributed:
VieTy, VjeTy:t#k, Ple,s=u,ej =v) = h(u,v).

8



Proof
These results are derived immediately from the permutation-invariané¥ bf
and the symmetry of.

e invariance with respect to permutations within test blocks:

1. V(i,i') € T¢, P(e; = u) = Pley = u) = fi(u);
V(i,i') € TZ, Vj € Ty:
P(e; =u,e; =v) = Pley =u,e; =v)
hence:
2. Y(i,j) € T,? 1§ #i, Pleg =u,ej =v) = gr(u,v).
B.VieTy, VjeTy: l#k, Ple;=u,ej =v) = hye(u,v).
e invariance with respect to permutations between test blocks.

1. V(kE), fr(u) = frr(u) = f(u);
2. V(k, k), gx(u,v) = gr(u,v) = g(u,v);
3. V(k, K, YU b #£ kb £ KA # kO £, hg(u,v) =
hkg/(U,U) = hyrpr (uvv) = hkz’Z(uvv) = h(uvv)'
Q.E.D.

Corollary 1 The covariance matri¥ of cross-validation errore = (e, ..., e,)

has the simple block structure depicted in Figure 2:
1. all diagonal elements are identical
Vi, Cov(e;, e;) = Var[e;] = 02;
2. all the off-diagonal entries of th& m x m diagonal blocks are identical
V(i.5) € T} : § #4, T(j) = T(i), Cov(ei,e;) = wi
3. all the remaining entries are identical
Vie Ty, VjeTy:L#Ek, Cov(e;,ej) =7.

Corollary 2 The variance of the cross-validation estimator is a linear combina-
tion of three moments:

1
0 = 3 ZCOV(ei,ej)
Y]
1 m—1 n—m
—o% + w+ vy (7)




3

B
)

Figure 2: Structure of the covariance matrix.

Hence, the problem of estimatigdoes not involve estimating(n + 1)/2
covariances, but it cannot be reduced to that of estimating a single variance param-
eter. Three components intervene, which may be interpreted as followsjnisen
the K-fold cross-validation estimate BPE:

1. the variancers? is the average (taken over training sets) variance of errors
for “true” test examples when algorithm is fed with training sets of size
m(K —1);

2. the within-block covariance would also apply to “true” test examples; it
arises from the dependence of test errors stemming from the common train-
ing set.

3. the between-blocks covariangeis due to the dependence of training sets
(which sharen(K — 2)/(K — 1) examples) and the fact that test bldtk
appears in all the training sef3 for ¢ # k.

The forthcoming section makes use of this structure to show that there is no uni-
versal unbiased estimator 6f

4 No Unbiased Estimator ofVar|ji] Exists
Consider a generic estimatérthat depends on the sequence of cross-validation

errorse = (e, e,...,e,)". Let us assume thaktis an analytic function of the
errors, so that we can write its Taylor expansion:

0 =ag+ Z aq(i)e; + Z as(i, j)eiej + Z as(i, j, k)eiejer + ... (8)

1] 1,5,k
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We first show that for unbiased variance estimates {i] = Var[a)), all thea;
coefficients must vanish except for the second order coefficients.

Lemma 2 There is no universal unbiased estimatoiat|/i] that involves the;
in a non-quadratic way.

Proof

Take the expected valueén‘expressed as in (8), and equate it withr[] (7):

Elf] =ao+ Y a1(i)Elei] + > asli, j)Eleie;] + Y (i, j, k) Eleiejex] + . ..
i i,j 1,9,k
=152+ mTflw—i- oM

n n

For having E[6] = 6 for all possible values of the moments:pbne must have
ag = 0 becausé has no such constant term, not depending on any of the moments
of e. Similarly, a1 (-) must be zero becaugehas no term inE[e;] = p. Finally,
the third and higher order coefficients(. . .), ¢ > 2 must also be zero becauée
has only quantities depending on the second order moraénts and .

Q.E.D.

Since estimators that include moments other than the second moments in their
expectation are biased, we now focus on the class of estimators which are quadratic
forms of the errors, i.e.

é = e'We = Z Wijeiej . (9)
&3

Lemma 3 The expectation of quadratic estimatdtslefined as in (9) is a linear
combination of only three terms

Elf] = a(0® + p?) + b(w + p?) + ¢(y + 1) (10)

where(a, b, c) are defined as follows:

a
b

Cc

> i Wii
K
Zk:l ZieTk ZjeTk:j;éi Wij
K
P Eé;ﬁk ZiETk ZjETz Wij .

A “trivial” representer of estimators with this expected value is

e e e

0 = asi + bsy + cs3 (11)

11



where(s1, s2, s3) are the only quadratic statistics ef that are invariants to the
within blocks and between blocks permutations described in Lemma 1.

S1 é l zn:€2
7
n =1
A 1 &
So = mz Z Z €i€j , (12)
k=14€T), j€ETy:j#i
1 K
S3 é WZZZ Zezej .
k=1 {#£k i€Ty jeTy

Proof
This result is obtained exploiting Corollary 1 and grouping the term&iofEqua-
tion (9) that have the same expected values.

K
Bl = Y 3 [WaBle)+ Y WiiBlee] + > > WiiEleie;)

k=11€T}y JET ) j#i l#k jET,

= U +,U ZW“_'_W_'_/’L ZZ Z WTJ+

k=11i€Ty, jET):j#i

W+MQ:ZD§§:mj

k=1 (£ i€Ty, j€T
= a(o? + )+ b(w + ) + ey + 1?)
= aE[s1] + bE[s3] + cE[s3] ,

which is recognized as the expectation of the estimator defined in Equation (11).
Q.E.D.

We now use Lemma 3 to prove that there isumversallyunbiased estimator
of Varli], i.e. there is no estimatdt such thatE[§] = Var[;] for all possible
distributions ofe.

Theorem 1 There exists no universally unbiased estimatovef|/].

Proof

Because of Lemma 2 and 3, it is enough to prove the result for estimators that
are quadratic forms expressed as in Equation (11). To obtain unbiasedness, the
expected value of that estimator must be equated Witty:] (7):

1 —1 —
a(0” + 1)+ bw + p?) + ey + p?) = o+ T—w oy L (13)

12



For this equality to be satisfied for all distributions of cross-validation errors, it
must be satisfied for all admissible valuesmeQ, w, and~. This imposes the
following unsatisfiable constraints dn, b, ¢):

a -1,

b — mfl7

; ~ um (14)
n b

a+b+c = 0.

Q.E.D.

5 Eigenanalysis of the covariance matrix

One way to gain insight on the origin of the negative statement of Theorem 1 is via
the eigenanalysis dE, the covariance oé. This decomposition can be performed
analytically thanks to the very particular block structure displayed in Figure 2.

Lemma 4 Letvy, be the binary vector indicating the membership of each example
to test blockk. The eigensystem &f is as follows:

e )\ = 02 — w with multiplicityn — K and eigenspace defined by the orthog-
onal of basis{v; } & ;

e )y = 02+ (m — 1)w — my with multiplicity K — 1 and eigenspace defined
in the orthogonal ofl by the basi{v}& ;

e \3 =02+ (m—1)w+ (n —m)y with eigenvectod.

Proof
From Corollary 1, the covariance matriX = F[ee’] — E[e|E[e|’ can be decom-
posed as
= (0" w1+ mw-7)S2+mZs

whereX; =1, 35 = % (Vl c.. VK) (Vl c. VK)/ andZ]g = %11,.

31, X9 and X3 share the same eigenvectors, with eigenvalues being equal
either to zero or one:

¢ the eigenvectot has eigenvalué for 31, 35 and X3;

e the eigenspace defined in the orthogonal dfy the basis{vk}f:l defines
K — 1 eigenvectors with eigenvaluégor 3, and 35 and0 for X3;

¢ all remaining eigenvectors have eigenvalidsr 31 and0 for s and Xs.

13



Q.E.D.

Lemma 4 states that the vectercan be decomposed into three uncorrelated
parts:n — K projections to the subspace orthogonaﬂm}le, K —1 projections
to the subspace spanned{)yk},f:l in the orthogonal ofi, and one projection on
1. A single vector example with independent elements can be seen amlepen-
dent examples. Similarly, these projectionseofan be equivalently represented
by respectively» — K, K — 1 and one uncorrelated one-dimensional examples,
corresponding to the coordinateseoin these subspaces.

In particular, for the projection oh, with only a single one-dimensional point,
the sample variance is null, resulting in the absence of unbiased variance estimator
of A\3. The projection ofe on the eigenvectoa};l is preciselyii. Hence there
is no unbiased estimate &far[i] = % when we have only one realization of
the vectore. For the same reason, even with simple parametric assumptioss on
(such as= Gaussian), the maximum likelihood estimatefaé not defined. Only
A1 and, can be estimated unbiasedly. Note that this problem cannot be addressed
by performing multiple K-fold splits of the data set. Such a procedure would not
provide independent realizationsef

6 Possible values fow and

Theorem 1 states that no estimator is unbiased, and in its demonstration, it is shown
that the bias of any quadratic estimator is a linear combinatiqr? of2, w and-.
Regarding estimation, it is thus interesting to see what constraints restrict the pos-
sible range of these quantities. There are no such constraint lipkiag? which

are the mean and varianceef but only a restricted set of values are possible for
o2, w and~.

Lemma5 For i = CV and i = ACV, the following inequalities hold:

0_2

(02 + (m—1)w)

1
m

—N—
3

| |~
3

)

o
+ o
3

|

=
E
SIA A
=2 €&
IAINA

The shape of the admissilgle, v) region corresponding to the first set of (tighter)
inequalities is displayed in Figure 3.

Proof

The constraints o result from the Cauchy-Schwartz inequality which provides
Cov(u,v)? < Var[u]Var[v], hence

—02§w§02.

14



o? o?
0 0
—0? —0?
—o? 0 o2 —o? 0 o2
w w
K =10 K =100
o? o?
- 0 0
—o? —0?
—o? 0 o2 —o? 0 o2
w w

Figure 3: Possible values dfv,~) according tos? for n = 200 and K =
{2,5,10,100}.

Moreover, the following reasoning shows that, fo= CV andji = ACV, w is
non-negative:w is the covariance of (differences in) test errors for training sets
of sizen — m and test sets of size= m. The variance of the average test error
is given by the mean of covarianceés? + (¢ — 1)w). The variances? and
covariancew of test errors are not affected lfy and the variance of the average
test error should be non-negative for any test set gizelencew is bound to be
non-negative. When this type of reasoning cannot be used, d@s$odK, w can
only be proved to be greater thars?/(m — 1).

The constraints ory simply rephrase that the eigenvalugs and A3 of the
covariance matrixx should be non-negative. The simpler (and looser) form is
obtained by using < o2.

Q.E.D.
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7 Experiments

We already mentioned that the bias of any quadratic estimator is a linear combina-
tion of 12, 02, w and~y. The admissible values provided in the preceding section
suggest that> and~ cannot be proved to be negligible comparedto This sec-

tion illustrates that in practice, the contribution to the variancg dfie tow and~y

(see Equation (7)) can be of same order than the one-8luk therefore suggests

that the estimators df should indeed take into account the correlations; of

Experiment 2 True variance of K-fold cross-validation.

We repeat the experimental setup of Experiment 1, except that now, we are
in the more realistic situation where only one sample of sitg available. Since
cross-validation is known to be sensitive to the instability of algorithms, in addition
to this standard setup, we also consider another one with outliers:

The inputx; = (241, ..., 2q)" is still 30-dimensional, but it is now a mixture
of two centered Gaussian variables: tete a binary variable, withP(t;, = 1) =
p = 0.95; whent; = 1, z; ~ N(0,I); whent; = 0, z; ~ N(0,100I); y; =
V/3/(d(p +100(1 = p))) Xy @in + & With & ~ N(0,1/(p + 100(1 — p)))
whent; = 1 ande; ~ N(0,100/(p + 100(1 — p))) whent; = 0.

We now look at the variance of K-fold cross-validatidd & 10), and decom-
pose in the three orthogonal componemts w and~. The results are shown in
Figure 4.

4
m
3 [ Jw
v
D D 2
1
0 0
60 80 100120 160 220 280 360 460 600 60 80 100120 160 220 280 360 460 600
n—m n-m
no outliers outliers

Figure 4: Bar plots of the contributions to total variaricer[C'V] due too?, w
and~ vs.the number of training examples— m.

When there are no outliers, the contributionofs very important for small
sample sizes. For large sample sizes, the overall variance is considerably reduced
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and is mainly caused hy’. In these situations, the learning algorithm returns very
similar answers for all training sets. When there are outlierbas little effect,
but the contribution ofy is of same order as the one @f, even when the ratio of
examples to free parameters is large (here up to 20). Thus, in difficult situations,
whereA(D) varies according to the realization bf neglecting the effect @b and
~ can be expected to introduce a bias of the order of the true variance.

It is also interesting to see how these quantities are affected by the number of
folds K. The decomposition of in o2, w and~ (7) does not imply thaf should
be set either ta or to 2 (according to the sign @b — ) in order to minimize the
variance ofii. Modifying K affectso?, w and~ through the size and overlaps of
the training setd)4, . .., Dk, asillustrated in Figure 5. For a fixed sample size, the
variance ofi and the contribution of?, w and- effects varies smoothly wit . ©
The experiments with and without outliers illustrate that there is no general trend
neither in variance or decomposition of the variance inftsv andy components.
The minimum variance can be reached for= n or for an intermediate value of
K.

0.25 25

m
0.2 l:l ® 2
0.15 - y 15
D D
0.1 1
0.05 0.5
0 0
2 3 45 6 8 1012152024304060120 2 3 45 6 8 1012152024304060120
no outliers outliers

Figure 5: Bar plots of contributions of, w and~ to § vs. K for n = 120.

8 Special cases

8.1 Hold-out estimate ofEPE

When havingK independent training and test sgtise structure of hold-out errors
resemble the one of cross-validation errors, except that we know (from the inde-
pendence of training and test sets) that 0. This knowledge allows to build the

80f course, the mean ¢fis also affected in the process.
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unbiased variance estimaf@ described in 2.2. This can be seen directly in the
proof of Theorem 1: knowing that = 0 removes the third equation in the linear
system (14). In practice, one is often restrictedste= 1 (ordinary hold-out test),
which allows to estimate the variance due to the finite test set but not due to the
particular choice of training set.

8.2 Two-fold cross validation

Two-fold cross-validation has been advocated to perform hypothesis testing [6,
1]. It is a special case of K-fold cross-validation since the training blocks are
mutually independent since they do not overlap. However, this independence does
not modify the structure oé in the sense that is not null. The between-block
correlation stems from the fact that the training bldek is the test blocki, and
vice-versa.

8.3 Leave-one-out cross validation

Leave-one-out cross validation is a particular case of K-fold cross-validation,
whereK = n. The structure of the covariance matrix is simplified, without diago-
nal blocks:X = (02 — )X +nvyX3. The estimation difficulties however remain:
even in this particular case, there is no unbiased estimate of variance. From the
definition ofb (Lemma 3), we havé = 0, and withm = 1 the linear system (14)

reads
a =

33|

c
a+c =

which still admits no solution.

)

9 Conclusions

It is known that K-fold cross-validation may suffer from high variability, which
can be responsible for bad choices in model selection and erratic behavior in the
estimated expected prediction error.

In this paper, we show that estimating the variance of K-fold cross-validation
is difficult. This problem is due to the dependencies between test errors, which
induce the absence of redundant pieces of information regarding the average test
error, i.e. the K-fold cross-validation estimate. As a result, there is no unbiased
estimator of the variance of K-fold cross-validation.

Our experimental section shows that in very simple cases, the bias incurred by
ignoring the dependencies between test errors will be of the order of the variance
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itself. These experiments illustrate thus that the assessment of the significance of
observed differences in cross-validation scores should be treated with much cau-
tion. The problem being unveiled, the next step of this study consists in building
and comparing variance estimators dedicated to the very specific structure of the
test error dependencies.
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