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Abstract

Most machine learning researchers perform quantitative experiments to
estimate generalization error and compare the performance of different al-
gorithms (in particular, their proposed algorithm). In order to be able to
draw statistically convincing conclusions, it is important for them to also es-
timate the uncertainty around the error (or error difference) estimate. This
paper studies the very commonly used K-fold cross-validation estimator of
generalization performance. The main theorem shows that there exists no
universal (valid under all distributions) unbiased estimator of the variance of
K-fold cross-validation. The analysis that accompanies this result is based
on the eigen-decomposition of the covariance matrix of errors, which has
only three different eigenvalues corresponding to three degrees of freedom
of the matrix and three components of the total variance. This analysis helps
to better understand the nature of the problem and how it can make naive
estimators (that don’t take into account the error correlations due to the over-
lap between training and test sets) grossly underestimate variance. This is
confirmed by numerical experiments in which the three components of the
variance are compared when the difficulty of the learning problem and the
number of folds are varied.

Keywords: cross-validation, variance estimators, k-fold cross-validation, sta-
tistical comparisons of algorithms, error covariance, estimating generalization
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1 Introduction

In machine learning, the standard measure of accuracy for trained models is the pre-
diction error (PE), i.e. the expected loss on future examples. Learning algorithms
themselves are often compared on their average performance, which estimates ex-
pected value of prediction error (EPE) over training sets.

When the data distribution is unknown,PE andEPE cannot be computed. If
the amount of data is large enough,PE can be estimated by the mean error over a
hold-out test set. The usual variance estimates for means of independent samples
can then be computed to derive error bars on the estimated prediction error, and to
assess the statistical significance of differences between models.

The hold-out technique does not account for the variance with respect to the
training set, and may thus be considered inappropriate for the purpose of algorithm
comparison [6]. Moreover, it makes an inefficient use of data which forbids its ap-
plication to small sample sizes. In this situation, one resorts to computer intensive
resampling methods such as cross-validation or bootstrap to estimatePE or EPE.

We focus here on K-fold cross-validation. While it is known that cross-
validation provides an unbiased estimate ofEPE, it is also known that its vari-
ance may be very large [4]. This variance should be estimated to provide faithful
confidence intervals onPE or EPE, and to test the significance of observed differ-
ences between algorithms. This paper provides theoretical arguments showing the
difficulty of this estimation.

The difficulties of the variance estimation have already been addressed [6, 10,
11]. This paper builds upon the work of Nadeau and Bengio [11], which inves-
tigated in detail the theoretical and practical merits of several estimators of the
variance of cross-validation. Our analysis departs from this work in the sampling
procedure defining the cross-validation estimate. While [11] considers K inde-
pendent training and test splits, we focus on the standard K-fold cross-validation
procedure, where there is no overlap between test sets: each example of the original
data set is used once and only once as a test example.

This paper is organized as follows. Section 2 defines the measures of per-
formance for algorithms, their estimation by K-fold cross-validation and similar
procedures such as delete-m jackknife. Our theoretical findings are summarized
in Sections 3–6. They are followed in Section 7 by experiments illustrating the ef-
fect of experimental conditions on the total variance and its decomposition in three
components, and confirming the underestimation of variance obtained by the naive
estimator commonly used by researchers.
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2 General Framework

2.1 Measures of performance

In machine learning, the performance measure differs according to the experi-
menter’s viewpoint. In applications, we are interested in finding the best algorithm
for solving the particular task at hand, specified by one particular training set and
some information about the data generating process. In algorithm evaluation, we
want to compare several learning algorithms for different learning tasks, and we
care about the sensitivity of the learning algorithm to the choice of training exam-
ples.

Formally, we have a training setD = {z1, . . . , zn}, with zi ∈ Z, indepen-
dently sampled from an unknown distributionP . We also have a learning algorithm
A, which maps a data set of (almost) arbitrary size to a functionA : Z∗ → F .
Throughout this paper, we consider symmetric algorithms, i.e.A is insensitive to
the ordering of examples in the training setD. The discrepancy between the pre-
diction and the observationz is measured by a loss functionalL : F × Z → R.
Typically, L is the quadratic loss in regression (L(f, (x, y)) = (f(x) − y)2) and
the misclassification{0, 1}-loss in classification ((L(f, (x, y)) = 1f(x) 6=y).

Let f = A(D) be the function returned by algorithmA on the training set
D. In application based evaluation, the goal of learning is usually stated as the
minimization of the prediction error, i.e. the expected loss on future test examples

PE(D) = E[L(f, z)] , (1)

where the expectation is taken with respect toz sampled fromP . 1

In algorithm based evaluation, we are not really interested in performances on
a specific training set; we would like comparisons on a more general basis. In
this context, the lowest level of generality can be stated as “training sets of sizen
sampled fromP ”, and the performance of learning algorithmA can be measured
by the expected performance of the functions returned in this situation

EPE(n) = E[L(A(D), z)] , (2)

where the expectation is taken with respect toD sampled fromPn andz indepen-
dently sampled fromP .

Note that other types of performances measure can be proposed, based for
example on parameters, or defined by the predictability in other frameworks, such
as the prequential analysis [5].

1Note that we are using the same notation for random variables and their realization. The intended
meaning will be specified when not clear from the context.
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When the data distribution is unknown,PE and EPE cannot be computed.
They have to be estimated, and it is often crucial to assess the uncertainty attached
to this estimation:

• in application-oriented experiments, to give a confidence interval onPE;

• in algorithm-oriented experiments, to take into account the stability of a
given algorithm. For comparisons between algorithms, it is essential to as-
sess the statistical significance of observed differences in the estimateÊPE.

Although this point is often overlooked, estimating the variance of the estimates
P̂E andÊPE requires caution.

2.2 Hold-out estimates of performance

If the amount of data is large enough,PE can be estimated by the mean error
over a hold-out test set, and the usual variance estimate for means of independent
variables can then be computed. However, even in the ideal situation where several
independent training and test sets would be available, this estimate should not be
applied to compute the variance of̂EPE: even though training and test examples
are independent, the test errors are correlated, since many test errors are computed
for each training set, now considered as a random variable.

Figure 1 illustrates how crucial it is to take these correlations into account.
The mean of two variance estimators is reportedvs. the empirical variance of
the hold-out estimate, in an ideal situation where 10 independent training and test
sets are available. The variance of̂EPE(n) (estimated on 100 000 independent
experiments) is displayed for reference by the dotted line. The average ofθ̂1, the
variance estimator ignoring correlations, shows that this estimate is highly biased,
even for large sample sizes, whereas the variance estimatorθ̂2, taking into account
correlations, is unbiased. The details of this experiment are given below.

Experiment 1 Ideal hold-out estimate ofEPE.
We haveK = 10 independent training setsD1, . . . , DK of n independent

exampleszi = (xi, yi), wherexi = (xi1, . . . , xid)′ is a d-dimensional centered,
unit covariance Gaussian variable (d = 30), yi =

√
3/d

∑d
k=1 xik + εi with εi

being independent, centered, unit variance Gaussian variables.2 We also haveK
independent test setsT1, . . . , TK of sizen sampled from the same distribution.

The learning algorithm consists in fitting a line by ordinary least squares, and
the estimate ofEPE is the average quadratic loss on test exampleŝEPE = L̄ =
1
K

∑K
k=1

1
n

∑
zi∈Tk

Lki, whereLki = L(A(Dk), zi).

2The
√

3/d factor provides anR2 of approximately3/4.
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Figure 1: Estimates of the variance of̂EPE(n) vs. empirical variance of̂EPE(n)
(shown by bold curve) on 100 000 experiments. The average of the variance esti-
matorsθ̂1 (ignoring correlations, dashed curve) andθ̂2 (taking into account corre-
lations, dotted curve) are displayed for different training sample sizen.

The first estimate of variance of̂EPE is θ̂1 = 1
Kn(Kn−1)

∑K
k=1

∑
i(Lki −

L̄)2, which is unbiased provided there is no correlation between test errors. The
second estimate iŝθ2 = 1

K(K−1)n2

∑K
k=1

∑
i,j(Lki − L̄)(Lkj − L̄), which takes

into account correlations between test errors.

Looking at Figure 1 suggests that asymptotically the naive estimator of vari-
ance converges to the true variance. This can be shown formally by taking advan-
tage of the results in this paper, as long as the learning algorithm converges as the
amount of training data goes to infinity (i.e. asn →∞ the functionA(D) obtained
does not depend on the particular training setD). In that limit, the correlations be-
tween test errors converge to 0. The rate of convergence will depend on the stability
of the learning algorithm as well as on the nature of the data distribution (e.g., the
presence of thick tails and outliers will slow down convergence).

The hold-out technique makes an inefficient use of data which forbids its ap-
plication in most real-life applications with small samples. Then, one can resort to
K-fold cross-validation to estimatePE or EPE.

2.3 K-fold cross-validation estimates of performance

Cross-validation is a computer intensive technique, using all available examples as
training and test examples. It mimics the use of training and test sets by repeatedly
training the algorithmK times with a fraction1/K of training examples left out
for testing purposes. This kind of hold-out estimate of performance lacks compu-
tational efficiency due to the repeated training, but the latter are meant to lower the
variance of the estimate [12].

5



In practice, the data setD is first chunked intoK disjoint subsets (orblocks)

of the same size3 m
∆= n/K. Let us writeTk for thek-th such block, andDk the

training set obtained by removing the elements inTk from D. The cross-validation
estimator is defined as the average of the errors on test blockTk obtained when the
training set is deprived fromTk:

CV(D) =
1
K

K∑
k=1

1
m

∑
zi∈Tk

L(A(Dk), zi) . (3)

DoesCV estimatePE or EPE? Such a question may seem pointless consider-
ing thatPE(D) is an estimate ofEPE(n), but it becomes relevant when consider-
ing the variance ofCV: does it inform us of the uncertainty aboutPE or EPE?

On the one hand, only one training set,D, enters the definition ofCV, which
can be, up to an approximation, an unbiased estimate ofPE(D) [8]. 4 In a more
general context, it has also been proved that, under suitable stability assumptions
on the algorithmA, CV(D) estimatesPE(D) at least as accurately as the training
error [9, 2]. A more appealing result states thatCV is a more accurate estimate of
PE than hold-out testing [3]. However, this statement does not apply toPE(D),
but to the prediction error of a randomized algorithm picking solutions uniformly
within {A(Dk)}K

k=1.
On the other hand,CV is explicitly defined from the learning algorithmA, and

not from the functionf = A(D). The inner average in the definition ofCV (3)
is an average test loss forA(Dk) which thus estimates unbiasedlyPE(Dk). The
training setsD1, . . . , DK are clearly not independent, but they are sampled from
Pn−m. Hence, the outer average of (3) estimates unbiasedlyEPE(n−m). 5 Here,
following [6, 11], we will adopt this latter point of view.

The variance estimate of̂EPE provided by the hold-out estimate has to ac-
count for test error dependencies due to the choice of training set, which cannot be
estimated using a single training/test experiment. Here, the situation is more com-
plex, since there are additional dependencies due to the overlapping training sets
D1, . . . , DK . Before describing this situation in detail and summarizing the results
of our theoretical analysis in Sections 3–6, we detail some procedures similar to
K-fold cross-validation, for which the forthcoming analysis will also hold.

3To simplify the analysis below we assume thatn is a multiple ofK
4More precisely, following [8], whenL is the quadratic loss, and writingf = A(D), f−k =

A(Dk), assuming that for(xi, yi) = zi ∈ Tk, 1
K

∑K
k=1 f−k(xi) ≈ f(xi) (which is weaker than

f−k ≈ f ) yieldsE[CV] ≈ E[ 1
n

∑n
i=1(f(xi) − yi)

2], where the expectation is taken with respect
to y1, . . . , yn.

5Note that leave-one-out cross-validation is known to fail to estimateEPE for unsmooth statistics
(e.g. [4, 7]). This failure is due to the similarity of the training setsD1, . . . , DK which are far from
being representative samples drawn fromP n−m.
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2.4 Other estimates of the K-fold cross-validation type

One of the main use of variance estimates of̂EPE is to compare learning algo-
rithms. The analysis presented in this paper also applies to the version of cross-
validation dedicated to this purpose: if we want to compare the performances of
algorithmsA1 andA2, cross-validation with matched pairs should be the method
of choice

∆CV(D) =
1
K

K∑
k=1

1
m

∑
zi∈Tk

L(A1(Dk), zi)− L(A2(Dk), zi) . (4)

Compared to the difference of two independent cross-validation estimates,∆CV
avoids the additional variability due to train/test splits.

In application oriented experiments, we would like to estimatePE(D), the
expected error when training with the givenD. We have seen in Section 2.3 that
under stability assumptions,CV can be used to estimatePE. Alternatively, we
may resort to the jackknife or the delete-m jackknife (see e.g. [7]) to estimate the
optimism (i.e. the bias of the mean error on training examples, when the latter is
used to estimatePE(D)). Ideally, the estimate of optimism should be an average
over all subsets of sizen−m, but a less computationally intensive alternative is

(K − 1)

 1
K(n−m)

K∑
k=1

∑
zi∈Dk

L(A(Dk), zi)−
1
n

n∑
i=1

L(A(D), zi)

 . (5)

The link with cross-validation is exhibited more clearly by the following ex-
pression of the (debiased) jackknife estimate ofPE

JK = CV +
1
n

K∑
k=1

n∑
i=1

(L(A(D), zi)− L(A(Dk), zi)) . (6)

For additional information about jackknife estimates and clues on the derivation of
(5) and (6), the reader is referred to [7].

2.5 Generic notations

This paper studies the variance of statistics such asCV, ∆CV or JK. In what
follows, these statistics will be denoted byµ̂, a generic notation for means of ob-
servationsei split in K groups.
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µ̂ =
1
n

n∑
i=1

ei

=
1
K

K∑
k=1

1
m

∑
i∈Tk

ei ,

where, slightly abusing notation,i ∈ Tk meanszi ∈ Tk and

∀i ∈ Tk, ei =


L(A(Dk), zi) for µ̂ = CV ,
L(A1(Dk), zi)− L(A2(Dk), zi) for µ̂ = ∆CV ,
KL(A(D), zi)−

∑
`6=k L(A(D`), zi) for µ̂ = JK .

Note that µ̂ is the average of identically distributed (dependent) variables.
Thus, it asymptotically converges to a normally distributed variable, which is com-
pletely characterized by its expectationE[µ̂] and its varianceVar[µ̂].

3 Structure of the Covariance Matrix

The variance of̂µ is defined as follows

θ =
1
n2

∑
i,j

Cov(ei, ej) .

By using symmetry arguments over permutations of the examples inD, we show
that many distributions onei and pairwise joint distributions on(ei, ej) are identi-
cal. As a result, the covariance matrixΣ has a very particular block structure, with
only three possible values forΣij = Cov(ei, ej), and the expression ofθ is thus a
linear combination of these three values.

Lemma 1 Using the notation introduced in section 2.5,

1. all ei are identically distributed:

∀i, P (ei = u) = f(u).

2. all pairs (ei, ej) belonging to the same test block are jointly identically dis-
tributed:

∀(i, j) ∈ T 2
k : j 6= i, P (ei = u, ej = v) = g(u, v).

3. all pairs (ei, ej) belonging to different test blocks are jointly identically dis-
tributed:

∀i ∈ Tk, ∀j ∈ T` : ` 6= k, P (ei = u, ej = v) = h(u, v).
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Proof
These results are derived immediately from the permutation-invariance ofP (D)
and the symmetry ofA.

• invariance with respect to permutations within test blocks:

1. ∀(i, i′) ∈ T 2
k , P (ei = u) = P (ei′ = u) = fk(u);

∀(i, i′) ∈ T 2
k , ∀j ∈ T`:

P (ei = u, ej = v) = P (ei′ = u, ej = v)
hence:

2. ∀(i, j) ∈ T 2
k : j 6= i, P (ei = u, ej = v) = gk(u, v).

3. ∀i ∈ Tk, ∀j ∈ T` : ` 6= k, P (ei = u, ej = v) = hk`(u, v).

• invariance with respect to permutations between test blocks.

1. ∀(k, k′), fk(u) = fk′(u) = f(u);

2. ∀(k, k′), gk(u, v) = gk′(u, v) = g(u, v);

3. ∀(k, k′), ∀(`, `′) : ` 6= k, ` 6= k′, `′ 6= k, `′ 6= k′, hk`(u, v) =
hk`′(u, v) = hk′`′(u, v) = hk′`(u, v) = h(u, v).

Q.E.D.

Corollary 1 The covariance matrixΣ of cross-validation errorse = (e1, . . . , en)′

has the simple block structure depicted in Figure 2:

1. all diagonal elements are identical

∀i, Cov(ei, ei) = Var[ei] = σ2;

2. all the off-diagonal entries of theK m×m diagonal blocks are identical

∀(i, j) ∈ T 2
k : j 6= i, T (j) = T (i), Cov(ei, ej) = ω;

3. all the remaining entries are identical

∀i ∈ Tk, ∀j ∈ T` : ` 6= k, Cov(ei, ej) = γ.

Corollary 2 The variance of the cross-validation estimator is a linear combina-
tion of three moments:

θ =
1
n2

∑
i,j

Cov(ei, ej)

=
1
n

σ2 +
m− 1

n
ω +

n−m

n
γ (7)
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Figure 2: Structure of the covariance matrix.

Hence, the problem of estimatingθ does not involve estimatingn(n + 1)/2
covariances, but it cannot be reduced to that of estimating a single variance param-
eter. Three components intervene, which may be interpreted as follows whenµ̂ is
the K-fold cross-validation estimate ofEPE:

1. the varianceσ2 is the average (taken over training sets) variance of errors
for “true” test examples when algorithmA is fed with training sets of size
m(K − 1);

2. the within-block covarianceω would also apply to “true” test examples; it
arises from the dependence of test errors stemming from the common train-
ing set.

3. the between-blocks covarianceγ is due to the dependence of training sets
(which sharen(K − 2)/(K − 1) examples) and the fact that test blockTk

appears in all the training setsD` for ` 6= k.

The forthcoming section makes use of this structure to show that there is no uni-
versal unbiased estimator ofθ.

4 No Unbiased Estimator ofVar[µ̂] Exists

Consider a generic estimatorθ̂ that depends on the sequence of cross-validation
errorse = (e1, e2, . . . , en)′. Let us assume that̂θ is an analytic function of the
errors, so that we can write its Taylor expansion:

θ̂ = α0 +
∑

i

α1(i)ei +
∑
i,j

α2(i, j)eiej +
∑
i,j,k

α3(i, j, k)eiejek + . . . (8)
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We first show that for unbiased variance estimates (i.e.E[θ̂] = Var[µ̂]), all theαi

coefficients must vanish except for the second order coefficientsα2,i,j .

Lemma 2 There is no universal unbiased estimator ofVar[µ̂] that involves theei

in a non-quadratic way.
Proof
Take the expected value ofθ̂ expressed as in (8), and equate it withVar[µ̂] (7): E[θ̂] =α0 +

∑
i

α1(i)E[ei] +
∑
i,j

α2(i, j)E[eiej ] +
∑
i,j,k

α3(i, j, k)E[eiejek] + . . .

θ = 1
nσ2 + m−1

n ω + n−m
n γ .

For havingE[θ̂] = θ for all possible values of the moments ofe, one must have
α0 = 0 becauseθ has no such constant term, not depending on any of the moments
of e. Similarly,α1(·) must be zero becauseθ has no term inE[ei] = µ. Finally,
the third and higher order coefficientsα`(. . .), ` > 2 must also be zero becauseθ
has only quantities depending on the second order momentsσ2, ω andγ.

Q.E.D.

Since estimators that include moments other than the second moments in their
expectation are biased, we now focus on the class of estimators which are quadratic
forms of the errors, i.e.

θ̂ = e′We =
∑
i,j

Wijeiej . (9)

Lemma 3 The expectation of quadratic estimatorsθ̂ defined as in (9) is a linear
combination of only three terms

E[θ̂] = a(σ2 + µ2) + b(ω + µ2) + c(γ + µ2) , (10)

where(a, b, c) are defined as follows:
a

∆=
∑n

i=1 Wii ,

b
∆=

∑K
k=1

∑
i∈Tk

∑
j∈Tk:j 6=i Wij ,

c
∆=

∑K
k=1

∑
` 6=k

∑
i∈Tk

∑
j∈T`

Wij .

A “trivial” representer of estimators with this expected value is

θ̂ = as1 + bs2 + cs3 , (11)

11



where(s1, s2, s3) are the only quadratic statistics ofe that are invariants to the
within blocks and between blocks permutations described in Lemma 1:

s1
∆=

1
n

n∑
i=1

e2
i ,

s2
∆=

1
n(m− 1)

K∑
k=1

∑
i∈Tk

∑
j∈Tk:j 6=i

eiej ,

s3
∆=

1
n(n−m)

K∑
k=1

∑
` 6=k

∑
i∈Tk

∑
j∈T`

eiej .

(12)

Proof
This result is obtained exploiting Corollary 1 and grouping the terms ofθ̂ in Equa-
tion (9) that have the same expected values.

E[θ̂] =
K∑

k=1

∑
i∈Tk

WiiE[e2
i ] +

∑
j∈Tk:j 6=i

WijE[eiej ] +
∑
` 6=k

∑
j∈T`

WijE[eiej ]


= (σ2 + µ2)

n∑
i=1

Wii + (ω + µ2)
K∑

k=1

∑
i∈Tk

∑
j∈Tk:j 6=i

Wij +

(γ + µ2)
K∑

k=1

∑
` 6=k

∑
i∈Tk

∑
j∈T`

Wij

= a(σ2 + µ2) + b(ω + µ2) + c(γ + µ2)
= aE[s1] + bE[s2] + cE[s3] ,

which is recognized as the expectation of the estimator defined in Equation (11).

Q.E.D.

We now use Lemma 3 to prove that there is nouniversallyunbiased estimator
of Var[µ̂], i.e. there is no estimator̂θ such thatE[θ̂] = Var[µ̂] for all possible
distributions ofe.

Theorem 1 There exists no universally unbiased estimator ofVar[µ̂].
Proof
Because of Lemma 2 and 3, it is enough to prove the result for estimators that
are quadratic forms expressed as in Equation (11). To obtain unbiasedness, the
expected value of that estimator must be equated withVar[µ̂] (7):

a(σ2 + µ2) + b(ω + µ2) + c(γ + µ2) =
1
n

σ2 +
m− 1

n
ω +

n−m

n
γ . (13)
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For this equality to be satisfied for all distributions of cross-validation errors, it
must be satisfied for all admissible values ofµ, σ2, ω, andγ. This imposes the
following unsatisfiable constraints on(a, b, c):

a = 1
n ,

b = m−1
n ,

c = n−m
n ,

a + b + c = 0 .

(14)

Q.E.D.

5 Eigenanalysis of the covariance matrix

One way to gain insight on the origin of the negative statement of Theorem 1 is via
the eigenanalysis ofΣ, the covariance ofe. This decomposition can be performed
analytically thanks to the very particular block structure displayed in Figure 2.

Lemma 4 Letvk be the binary vector indicating the membership of each example
to test blockk. The eigensystem ofΣ is as follows:

• λ1 = σ2 − ω with multiplicityn−K and eigenspace defined by the orthog-
onal of basis{vk}K

k=1;

• λ2 = σ2 + (m− 1)ω −mγ with multiplicityK − 1 and eigenspace defined
in the orthogonal of1 by the basis{vk}K

k=1;

• λ3 = σ2 + (m− 1)ω + (n−m)γ with eigenvector1.

Proof
From Corollary 1, the covariance matrixΣ = E[ee′]− E[e]E[e]′ can be decom-
posed as

Σ = (σ2 − ω)Σ1 + m(ω − γ)Σ2 + nγΣ3 ,

whereΣ1 = I, Σ2 = 1
m (v1 . . .vK) (v1 . . .vK)′ andΣ3 = 1

n11′.
Σ1, Σ2 and Σ3 share the same eigenvectors, with eigenvalues being equal

either to zero or one:

• the eigenvector1 has eigenvalue1 for Σ1, Σ2 andΣ3;

• the eigenspace defined in the orthogonal of1 by the basis{vk}K
k=1 defines

K − 1 eigenvectors with eigenvalues1 for Σ1 andΣ2 and0 for Σ3;

• all remaining eigenvectors have eigenvalues1 for Σ1 and0 for Σ2 andΣ3.
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Q.E.D.

Lemma 4 states that the vectore can be decomposed into three uncorrelated
parts:n−K projections to the subspace orthogonal to{vk}K

k=1, K−1 projections
to the subspace spanned by{vk}K

k=1 in the orthogonal of1, and one projection on
1. A single vector example withn independent elements can be seen asn indepen-
dent examples. Similarly, these projections ofe can be equivalently represented
by respectivelyn − K, K − 1 and one uncorrelated one-dimensional examples,
corresponding to the coordinates ofe in these subspaces.

In particular, for the projection on1, with only a single one-dimensional point,
the sample variance is null, resulting in the absence of unbiased variance estimator
of λ3. The projection ofe on the eigenvector1n1 is preciselyµ̂. Hence there
is no unbiased estimate ofV ar[µ̂] = λ3

n when we have only one realization of
the vectore. For the same reason, even with simple parametric assumptions one
(such ase Gaussian), the maximum likelihood estimate ofθ is not defined. Only
λ1 andλ2 can be estimated unbiasedly. Note that this problem cannot be addressed
by performing multiple K-fold splits of the data set. Such a procedure would not
provide independent realizations ofe.

6 Possible values forω and γ

Theorem 1 states that no estimator is unbiased, and in its demonstration, it is shown
that the bias of any quadratic estimator is a linear combination ofµ2, σ2, ω andγ.
Regarding estimation, it is thus interesting to see what constraints restrict the pos-
sible range of these quantities. There are no such constraint linkingµ to σ2 which
are the mean and variance ofei, but only a restricted set of values are possible for
σ2, ω andγ.

Lemma 5 For µ̂ = CV andµ̂ = ∆CV, the following inequalities hold:{
0 ≤ ω ≤ σ2

− 1
n−m(σ2 + (m− 1)ω) ≤ γ ≤ 1

m(σ2 + (m− 1)ω)

⇒
{

0 ≤ ω ≤ σ2

− m
n−mσ2 ≤ γ ≤ σ2 .

The shape of the admissible(ω, γ) region corresponding to the first set of (tighter)
inequalities is displayed in Figure 3.
Proof
The constraints onω result from the Cauchy-Schwartz inequality which provides
Cov(u, v)2 ≤ Var[u]Var[v], hence

−σ2 ≤ ω ≤ σ2 .

14



K = 2

−σ2 0 σ2

ω

−σ2

0

σ2

γ

K = 5

−σ2 0 σ2

ω

−σ2

0

σ2

γ

K = 10

−σ2 0 σ2

ω

−σ2

0

σ2

γ

K = 100

−σ2 0 σ2

ω

−σ2

0

σ2

γ

Figure 3: Possible values of(ω, γ) according toσ2 for n = 200 and K =
{2, 5, 10, 100}.

Moreover, the following reasoning shows that, forµ̂ = CV and µ̂ = ∆CV, ω is
non-negative:ω is the covariance of (differences in) test errors for training sets
of sizen −m and test sets of sizè= m. The variance of the average test error
is given by the mean of covariances1

` (σ
2 + (` − 1)ω). The varianceσ2 and

covarianceω of test errors are not affected bỳ, and the variance of the average
test error should be non-negative for any test set size`. Henceω is bound to be
non-negative. When this type of reasoning cannot be used, as forµ̂ = JK, ω can
only be proved to be greater than−σ2/(m− 1).

The constraints onγ simply rephrase that the eigenvaluesλ2 and λ3 of the
covariance matrixΣ should be non-negative. The simpler (and looser) form is
obtained by usingω ≤ σ2.

Q.E.D.
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7 Experiments

We already mentioned that the bias of any quadratic estimator is a linear combina-
tion of µ2, σ2, ω andγ. The admissible values provided in the preceding section
suggest thatω andγ cannot be proved to be negligible compared toσ2. This sec-
tion illustrates that in practice, the contribution to the variance ofµ̂ due toω andγ
(see Equation (7)) can be of same order than the one dueσ2. It therefore suggests
that the estimators ofθ should indeed take into account the correlations ofei.

Experiment 2 True variance of K-fold cross-validation.
We repeat the experimental setup of Experiment 1, except that now, we are

in the more realistic situation where only one sample of sizen is available. Since
cross-validation is known to be sensitive to the instability of algorithms, in addition
to this standard setup, we also consider another one with outliers:

The inputxi = (xi1, . . . , xid)′ is still 30-dimensional, but it is now a mixture
of two centered Gaussian variables: letti be a binary variable, withP (ti = 1) =
p = 0.95; when ti = 1, xi ∼ N (0, I); when ti = 0, xi ∼ N (0, 100I); yi =√

3/(d(p + 100(1− p)))
∑d

k=1 xik + εi with εi ∼ N (0, 1/(p + 100(1 − p)))
whenti = 1 andεi ∼ N (0, 100/(p + 100(1− p))) whenti = 0.

We now look at the variance of K-fold cross-validation (K = 10), and decom-
pose in the three orthogonal componentsσ2, ω andγ. The results are shown in
Figure 4.
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Figure 4: Bar plots of the contributions to total varianceV ar[CV ] due toσ2, ω
andγ vs. the number of training examplesn−m.

When there are no outliers, the contribution ofγ is very important for small
sample sizes. For large sample sizes, the overall variance is considerably reduced
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and is mainly caused byσ2. In these situations, the learning algorithm returns very
similar answers for all training sets. When there are outliers,ω has little effect,
but the contribution ofγ is of same order as the one ofσ2, even when the ratio of
examples to free parameters is large (here up to 20). Thus, in difficult situations,
whereA(D) varies according to the realization ofD, neglecting the effect ofω and
γ can be expected to introduce a bias of the order of the true variance.

It is also interesting to see how these quantities are affected by the number of
foldsK. The decomposition ofθ in σ2, ω andγ (7) does not imply thatK should
be set either ton or to 2 (according to the sign ofω − γ) in order to minimize the
variance ofµ̂. Modifying K affectsσ2, ω andγ through the size and overlaps of
the training setsD1, . . . , DK , as illustrated in Figure 5. For a fixed sample size, the
variance of̂µ and the contribution ofσ2, ω andγ effects varies smoothly withK. 6

The experiments with and without outliers illustrate that there is no general trend
neither in variance or decomposition of the variance in itsσ2, ω andγ components.
The minimum variance can be reached forK = n or for an intermediate value of
K.
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Figure 5: Bar plots of contributions ofσ2, ω andγ to θ vs.K for n = 120.

8 Special cases

8.1 Hold-out estimate ofEPE

When havingK independent training and test sets, the structure of hold-out errors
resemble the one of cross-validation errors, except that we know (from the inde-
pendence of training and test sets) thatγ = 0. This knowledge allows to build the

6Of course, the mean of̂µ is also affected in the process.
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unbiased variance estimatêθ2 described in 2.2. This can be seen directly in the
proof of Theorem 1: knowing thatγ = 0 removes the third equation in the linear
system (14). In practice, one is often restricted toK = 1 (ordinary hold-out test),
which allows to estimate the variance due to the finite test set but not due to the
particular choice of training set.

8.2 Two-fold cross validation

Two-fold cross-validation has been advocated to perform hypothesis testing [6,
1]. It is a special case of K-fold cross-validation since the training blocks are
mutually independent since they do not overlap. However, this independence does
not modify the structure ofe in the sense thatγ is not null. The between-block
correlation stems from the fact that the training blockD1 is the test blockT2 and
vice-versa.

8.3 Leave-one-out cross validation

Leave-one-out cross validation is a particular case of K-fold cross-validation,
whereK = n. The structure of the covariance matrix is simplified, without diago-
nal blocks:Σ = (σ2−γ)Σ1 +nγΣ3. The estimation difficulties however remain:
even in this particular case, there is no unbiased estimate of variance. From the
definition ofb (Lemma 3), we haveb = 0, and withm = 1 the linear system (14)
reads 

a = 1
n ,

c = n−1
n ,

a + c = 0 .

which still admits no solution.

9 Conclusions

It is known that K-fold cross-validation may suffer from high variability, which
can be responsible for bad choices in model selection and erratic behavior in the
estimated expected prediction error.

In this paper, we show that estimating the variance of K-fold cross-validation
is difficult. This problem is due to the dependencies between test errors, which
induce the absence of redundant pieces of information regarding the average test
error, i.e. the K-fold cross-validation estimate. As a result, there is no unbiased
estimator of the variance of K-fold cross-validation.

Our experimental section shows that in very simple cases, the bias incurred by
ignoring the dependencies between test errors will be of the order of the variance
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itself. These experiments illustrate thus that the assessment of the significance of
observed differences in cross-validation scores should be treated with much cau-
tion. The problem being unveiled, the next step of this study consists in building
and comparing variance estimators dedicated to the very specific structure of the
test error dependencies.
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