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Abstract

Markov Random Fields (MRFs) have proven very powerful both as density esti-
mators and feature extractors for classification. However, their use is often limited
by an inability to estimate the partition function Z. In this paper, we exploit the
gradient descent training procedure of restricted Boltzmann machines (a type of
MRF) to track the log partition function during learning. Our method relies on
two distinct sources of information: (1) estimating the change ∆Z incurred by
each gradient update, (2) estimating the difference in Z over a small set of tem-
pered distributions using bridge sampling. The two sources of information are
then combined using an inference procedure similar to Kalman filtering. Learn-
ing MRFs through Tempered Stochastic Maximum Likelihood, we can estimate
Z using no more temperatures than are required for learning. Comparing to both
exact values and estimates using annealed importance sampling (AIS), we show
on several datasets that our method is able to accurately track the log partition
function. In contrast to AIS, our method provides this estimate at each time-step,
at a computational cost similar to that required for training alone.

1 Introduction
In many areas of application, problems are naturally expressed as a Gibbs measure, where the dis-
tribution over the domain X is given by, for x ∈ X :

q(x) =
q̃(x)
Z(β)

=
exp{−βE(x)}

Z(β)
, with Z(β) =

∑
x

q̃(x). (1)

E(x) is refered to as the “energy” of configuration x, β is a free parameter known as the inverse
temperature and Z(β) is the normalization factor commonly refered to as the partition function. Un-
der certain general conditions on the form of E, these models are known as Markov Random Fields
(MRF), and have been very popular within the vision and natural language processing communi-
ties. MRFs with latent variables – in particular restricted Boltzmann machines (RBMs) [9] – are
among the most popular building block for deep architectures [1], being used in the unsupervised
initialization of both Deep Belief Networks [9] and Deep Boltzmann Machines [22].

As illustrated in Eq. 1, the partition function is computed by summing over all variable configura-
tions. Since the number of configurations scales exponentially with the number of variables, exact
calculation of the partition function is generally computationally intractable. Without the parti-
tion function, probabilities under the model can only be determined up to a multiplicative constant,
which seriously limits the model’s utility. One method recently proposed for estimating Z(β) is
annealed importance sampling (AIS) [18, 23]. In AIS, Z(β) is approximated by the sum of a set of
importance-weighted samples drawn from the model distribution. With a large number of variables,
drawing a set of importance-weighted samples is generally subject to extreme variance in the im-
portance weights. AIS alleviates this issue by annealing the model distribution through a series of
slowly changing distributions that link the target model distribution to one where the log partition
function is tractable. While AIS is quite successful, it generally requires the use of tens of thou-
sands of annealing distributions in order to achieve accurate results. This computationally intensive
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requirement renders AIS inappropriate as a means of maintaining a running estimate of the log par-
tition function throughout training. Yet, having ready access to this quantity throughout learning
opens the door to a range of possibilities. Likelihood could be used as a basis for model comparison
throughout training; early-stopping could be accomplished by monitoring an estimate of the likeli-
hood of a validation set. Another important application is in Bayesian inference in MRFs [17] where
we require the partition function for each value of the parameters in the region of support. Track-
ing the log partition function would also enable simultaneous estimation of all the parameters of a
heterogeneous model, for example an extended directed graphical model with Gibbs distributions
forming some of the model components.

In this work, we consider a method of tracking the log partition function during training, which
builds upon the parallel tempering (PT) framework [7, 10, 15]. Our method relies on two basic ob-
servations. First, when using stochastic gradient descent 1, parameters tend to change slowly during
training; consequently, the partition function Z(β) also tends to evolve slowly. We exploit this prop-
erty of the learning process by using importance sampling to estimate changes in the log partition
function from one learning iteration the next. If the changes in the distribution from time-step t to
t + 1 are small, the importance sampling estimate can be very accurate, even with relatively few
samples. This is the same basic strategy employed in AIS, but while with AIS one constructs a path
of close distributions through an annealing schedule, in our procedure we simply rely on the path
of distributions that emerges from the learning process. Second, parallel tempering (PT) relies on
simulating an extended system, consisting of multiple models each running at their own tempera-
ture. These temperatures are chosen such that neighboring models overlap sufficiently as to allow
for frequent cross-temperature state swaps. This is an ideal operating regime for bridge sampling
[2, 19], which can thus serve to estimate the difference in log partition functions between neighbor-
ing models. While with relatively few samples, each method on its own tends not to provide reliable
estimates, we propose to combine these measurements using a variation of the well-known Kalman
filter (KF), allowing us to accurately track the evolution of the log partition function throughout
learning. The efficiency of our method stems from the fact that our estimator makes use of the
samples generated in the course of training, thus incurring relatively little additional computational
cost.

This paper is structured as follows. In Section 2, we provide a brief overview of RBMs and the
SML-PT training algorithm, which serves as the basis of our tracking algorithm. Sections (3.1-3.3)
cover the details of the importance and bridge sampling estimates, while Section 3.4 provides a
comprehensive look at our filtering procedure and the tracking algorithm as a whole. Experimental
results are presented in Section 4.

2 Stochastic Maximum Likelihood with Parallel Tempering

Our proposed log partition function tracking strategy is applicable to any Gibbs distribution model
that is undergoing relatively smooth changes in the partition function. However, we concentrate on
its application to the RBM since it has become a model of choice for learning unsupervised features
for use in deep feed-forward architectures [9, 1] as well as for modeling complex, high-dimensional
distributions [27, 24, 12].

RBMs are bipartite graphical models where visible units v ∈ {0, 1}nv interact with hidden units
h ∈ {0, 1}nh through the energy function E(v,h) = −hTWv − cTh − bTv. The model parameters
θ = [W, c, b] consist of the weight matrix W ∈ Rnh×nv , whose entries Wij connect units (vi, hj),
and offset vectors b and c. RBMs can be trained through a stochastic approximation to the nega-
tive log-likelihood gradient ∂F (v)

∂θ − Ep[∂F (v)
∂θ ], where F (v) is the free-energy function defined as

F (v) = − log
P
h exp(−E(v,h)). In Stochastic Maximum Likelihood (SML) [25], we replace the

expectation by a sample average, where approximate samples are drawn from a persistent Markov
chain, updated through k-steps of Gibbs sampling between parameter updates. Other algorithms
improve upon this default formulation by replacing Gibbs sampling with more powerful sampling
algorithms [26, 7, 21, 20]. By increasing the mixing rate of the underlying Markov chain, these
methods can lead to lower variance estimates of the maximum likelihood gradient and faster conver-

1Stochastic gradient descent is one of the most popular methods for training MRFs precisely because second
order optimization methods typically require a deterministic gradient, whereas sampling-based estimators are
the only practical option for models with an intractable partition function.
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gence. However, from the perspective of tracking the log partition function, we will see in Section 3
that the SML-PT scheme [7] presents a rather unique advantage.

Throughout training, parallel tempering draws samples from an extended systemMt = {qi,t; i ∈
[1,M ]}, where qi,t denotes the model with inverse temperature βi ∈ [0, 1] obtained after t steps
of gradient descent. Each model qi,t (associated with a unique partition function Zi,t) represents
a smoothed version of the target distribution: q1,t (with β1 = 1). The inverse temperature βi =
1/Ti ∈ [0, 1] controls the degree of smoothing, with smaller values of βi leading to distributions
which are easier to sample from. To leverage these fast-mixing chains, PT alternates k steps of Gibbs
sampling (performed independently at each temperature) with cross-temperature state swaps. These
are proposed between neighboring chains using a Metropolis-Hastings-based acceptance criterion.
If we denote the particle obtained by each model qi,t after k steps of Gibbs sampling as xi,t, then
the swap acceptance ratio ri,t for chains (i, i+ 1) is given by:

ri,t = min
(

1,
q̃i,t(xi+1,t)q̃i+1,t(xi,t)
q̃i,t(xi,t)q̃i+1,t(xi+1,t)

)
(2)

These swaps ensure that samples from highly ergodic chains are gradually swapped into lower tem-
perature chains. Our swapping schedule is the deterministic even-odd algorithm [14] which proposes
swaps between all pairs (qi,t, qi+1,t) with even i’s, followed by those with odd i’s. The gradient is
then estimated by using the sample which was last swapped into temperature β1. To reduce the
variance on our estimate, we run multiple Markov chains per temperature, yielding a mini-batch of
model samples Xi,t = {x(n)

i,t ∼ qi,t(x); 1 ≤ n ≤ N} at each time-step and temperature.

SML with Adaptive parallel tempering (SML-APT) [6], further improves upon SML-PT by automat-
ing the choice of temperatures. It does so by maximizing the flow of particles between extremal
temperatures, yielding better ergodicity and more robust sampling in the negative phase of training.

3 Tracking the Partition Function

Unrolling in time (learning iterations) the M models being simulated by PT, we can envision a two-
dimensional lattice of RBMs indexed by (i, t). As previously mentioned, gradient descent learning
causes qi,t, the model with inverse temperature βi obtained at time-step t, to be close to qi,t−1. We
can thus apply importance sampling between adjacent temporal models 2 to obtain an estimate of
ζi,t− ζi,t−1, denoted as O∆t

i,t . Inspired by the annealing distributions used in AIS, one could think to
iterate this process from a known quantity ζi,1, in order to estimate ζi,t. Unfortunately, the variance
of such an estimate would grow quickly with t.

PT provides an interesting solution to this problem, by simulating an extended systemMt where the
βi’s are selected such that qi,t and qi+1,t have enough overlap to allow for frequent cross-temperature
state swaps. This motivates using bridge sampling [2] to provide an estimate of ζi+1,t − ζi,t, the
difference in log partitions between temperatures βi+1 and βi. We denote this estimate as O∆β

i,t . Ad-
ditionally, we can treat ζM,t as a known quantity during training, by setting βM = 0 3. Beginning
with ζM,t (see definition in Fig. 1), repeated application of bridge sampling alone could in principle
arrive at an accurate estimate of {ζi,t; i ∈ [1,M ], t ∈ [1, T ]}. However, reducing the variance suffi-
ciently to provide useful estimates of the log partition function would require using a relatively large
number of samples at each temperature. Within the context of RBM training, the required number
of samples at each of the parallel chains would have an excessive computational cost. Nonetheless
even with relatively few samples, the bridge sampling estimate provides an additional source of
information regarding the log partition function.

Our strategy is to combine these two high variance estimates O∆t
i,t and O∆β

i,t by treating the unknown
log partition functions as a latent state to be tracked by a Kalman filter. In this framework, we
consider O∆t

i,t and O∆β
i,t as observed quantities, used to iteratively refine the joint distribution over the

latent state at each learning iteration. Formally, we define this latent state to be ζt = [ζ1,t, . . . , ζM,t, bt]
, where bt is an extra term to account for a systematic bias in O∆β

1,t (see Sec. 3.2 for details). The
corresponding graphical model is shown in Figure 1.

2 This same technique was recently used in [5], in the context of learning rate adaptation.
3 The visible units of an RBM with zero weights are marginally independent. Its log partition function is

thus given as
P
i log(1 + exp(bi)) + nh · log(2).
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O∆t
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O∆β
M−1,t−1 O∆β

M−1,t

ζM,t−1 ζM,t

ζ2,t

ζ1,tζ1,t−1

ζ2,t−1

btbt−1

System Equations:

p(ζ0) = N (µ0,Σ0)

p(ζt | ζt−1) = N (ζt−1,Σζ)

p(O(∆t)
t | ζt, ζt−1) = N (C[ζt, ζt−1]T , Σ∆t)

p(O(∆β)
t | ζt) = N (Hζt,Σ∆β)

C =

2664 IM

1
0
...
0

−IM

0
0
...
0

3775

H =

2664
−1 +1 0 0 0

0 −1 +1 0
... 0

. . . 0
0 0 0 −1 +1 0

3775

Figure 1: A directed graphical model for log partition function tracking. The shaded nodes represent observed
variables, and the double-walled nodes represent the tractable ζM,: with βM = 0. For clarity of presentation,
we show the bias term as distinct from the other ζi,t (recall bt = ζM+1,t.)

3.1 Model Dynamics

The first step is to specify how we expect the log partition function to change over training iterations,
i.e. our prior over the model dynamics. SML training of the RBM model parameters is a stochastic
gradient descent algorithm (typically over a mini-batch ofN examples) where the parameters change
by small increments specified by an approximation to the likelihood gradient. This implies that both
the model distribution and the partition function change relatively slowly over learning increments
with a rate of change being a function of the SML learning rate; i.e. we expect qi,t and ζi,t to be
close to qi,t−1 and ζi,t−1 respectively.

Our model dynamics are thus simple and capture the fact that the log partition function is slowly
changing. Characterizing the evolution of the log partition functions as independent Gaussian pro-
cesses, we model the probability of ζt conditioned on ζt−1 as p(ζt|ζt−1) = N (ζt−1,Σζ), a normal
distribution with mean ζt−1 and fixed diagonal covariance Σζ = Diag[σ2

Z , . . . , σ
2
Z , σ

2
b ]. σ2

Z and σ2
b

are hyper-parameters controlling how quickly the latent states ζi,t and bt are expected to change
between learning iterations.

3.2 Importance Sampling Between Learning Iterations

The observation distribution p(O
(∆t)
t | ζt, ζt−1) = N (C[ζt, ζt−1]T ,Σ∆t) models the relation-

ship between the evolution of the latent log partitions and the statistical measurements O(∆t)
t =

[O
(∆t)
1,t , . . . , O

(∆t)
M,t ] given by importance sampling, with O∆t

i,t defined as:

O∆t
i,t = log

{
1
N

N∑
n=1

w
(n)
i,t

}
with w(n)

i,t =
q̃i,t(x

(n)
i,t−1)

q̃i,t−1(x(n)
i,t−1)

. (3)

In the above distribution, the matrix C encodes the fact that the average importance weights esti-
mate ζi,t − ζi,t−1 + bt · Ii=1, where I is the indicator function. It is formally defined in Fig. 1.
Σ∆t is a diagonal covariance matrix, whose elements are updated online from the estimated vari-
ances of the log-importance weights. At time-step t, the i-th entry of its diagonal is thus given by
Var[wi,t]/

[∑
n w

(n)
]2

.

The term bt accounts for a systematic bias in O(∆t)
1,t . It stems from the reuse of samples X1,t−1: first,

for estimating the negative phase gradient at time-step t−1 (i.e. the gradient applied between qi,t−1
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and qi,t) and second, to compute the importance weights of Eq. 3. Since the SML gradient acts to
lower the probability of negative particles, w(n)

i,t is biased.

3.3 Bridging the Parallel Tempering Temperature Gaps

Consider now the other dimension of our parallel tempered lattice of RBMs: temperature. As pre-
viously mentioned, neighboring distributions in PT are designed to have significant overlap in their
densities in order to permit particle swaps. However, the intermediate distributions qi,t(v,h) are not
so close to one another that we can use them as the intermediate distributions of AIS. AIS typically
requires thousands of intermediate chains, and maintaining that number of parallel chains would
carry a prohibitive computational burden. On the other hand, the parallel tempering strategy of
spacing the temperature to ensure moderately frequent swapping nicely matches the ideal operating
regime of bridge sampling [2].

We thus consider a second observation model as p(O(∆β)
t | ζt) = N (Hζt,Σ∆β), with H defined in

Fig.1. The quantities O(∆β)
t = [O∆β

1,t , . . . , O
∆β
M−1,t] are obtained via bridge sampling as estimates of

ζi+1,t − ζi,t. Entries O∆β
i,t are given by:

O∆β
i,t = log

N∑
n=1

u
(n)
i,t − log

N∑
n=1

v
(n)
i,t , where u(n)

i,t =
q∗i,t
(
x

(n)
i,t

)
q̃i,t

(
x

(n)
i,t

) , v(n)
i,t =

q∗i,t
(
x

(n)
i+1,t

)
q̃i+1,t

(
x

(n)
i+1,t

) . (4)

The bridging distribution [2, 19] q∗i,t is chosen such that it has large support with both qi and

qi+1. For all i ∈ [1,M − 1], we choose the approximately optimal distribution q
(opt)
i,t (x) =

q̃i,t(x)q̃i+1,t(x)
si,tq̃i,t(x)+q̃i+1,t(x) where si,t ≈ Zi+1,t/Zi,t. Since the Zi,t’s are the very quantities we are trying to
estimate, this definition may seem problematic. However it is possible to start with a coarse estimate
of si,1 and refine it in subsequent iterations by using the output of our tracking algorithm. Σ∆β is
once again a diagonal covariance matrix, updated online from the variance of the log-importance
weights u and v [19]. The i-th entry is given by Var[ui,t]hP

n u
(n)
i,t

i2 + Var[vi,t]hP
n v

(n)
i,t

i2 .

3.4 Kalman Filtering of the Log-Partition Function

In the above we have described two sources of information regarding the log partition function for
each of the RBMs in the lattice. In this section we describe a method to fuse all available information
to improve the overall accuracy of the estimate of every log partition function. We now consider the
steps involved in the inference process in moving from an estimate of the posterior over the latent
state at time t − 1 to an estimate of the posterior at time t. We begin by assuming we know the
posterior p(ζt−1 | O(∆t)

t−1:0, O
(∆β)
t−1:0), where O(·)

t−1:0 = [O
(·)
1 , . . . , O

(·)
t−1].

We follow the treatment of Neal [18] in characterizing our uncertainty regarding ζi,t as a Gaussian
distribution and define p(ζt−1 | O(∆t)

t−1:0, O
(∆β)
t−1:0) ∼ N (µt−1,t−1, Pt−1,t−1), a multivariate Gaussian

with mean µt−1,t−1 and covariance Pt−1,t−1. The double index notation is used to indicate which
is the latest observation being conditioned on for each of the two types of observations: e.g. µt,t−1

represents the posterior mean given O(∆t)
t:0 and O(∆β)

t−1:0.

Departing from the typical Kalman filter setting, O(∆t)
t depends on both ζt and ζt−1. In order to

incorporate this observation into our estimate of the latent state, we first need to specify the prior
joint distribution p(ζt−1, ζt | O(∆t)

t−1:0, O
(∆β)
t−1:0) = p(ζt | ζt−1)p(ζt−1 | O(∆t)

t−1:0, O
(∆β)
t−1:0), with p(ζt |

ζt−1) as defined in Sec. 3.1. Observation O
(∆t)
t is then incorporated through Bayes rule, yielding

p(ζt−1, ζt | O(∆t)
t:0 , O

(∆β)
t−1:0) . Having incorporated the importance sampling estimate into the model,

we can then marginalize over ζt−1 (which is no longer required), to yield p(ζt | O(∆t)
t:0 , O

(∆β)
t−1:0).

Finally, it remains only to incorporate the bridge sampler estimate O(∆β)
t by a second application

of Bayes rule, which gives us p(ζt | O(∆t)
t:0 , O

(∆β)
t:0 ), the updated posterior over the latent state at

time-step t. The detailed inference equations are provided in Fig. 2 and can be derived easily from
standard textbook equations on products and marginals of normal distributions [4].
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Inference Equations:

(i) p
“
ζt−1, ζt | O(∆t)

t−1:0, O
(∆β)
t−1:0

”
= N (ηt−1,t−1, Vt−1,t−1)

with ηt−1,t−1 =

»
µt−1,t−1

µt−1,t−1

–
and Vt−1,t−1 =

»
Pt−1,t−1 Pt−1,t−1

Pt−1,t−1 Σζ + Pt−1,t−1

–
(ii) p(ζt−1, ζt | O(∆t)

t:0 , O
(∆β)
t−1:0) = N (ηt,t−1 , Vt,t−1)

with Vt,t−1 = (V −1
t−1,t−1 + CTΣ−1

∆tC)−1 and ηt,t−1 = Vt,t−1(CTΣ∆tO
(∆t)
t + V −1

t−1,t−1ηt−1,t−1)

(iii) p
“
ζt | O(∆t)

t:0 , O
(∆β)
t−1:0

”
= N (µt,t−1 , Pt,t−1) with µt,t−1 = [ηt,t−1]2 and Pt,t−1 = [Vt,t−1]2,2

(iv) p(ζt | O(∆t)
t:0 , O

(∆β)
t:0 ) = N (µt,t, Pt,t)

with Pt,t = (P−1
t,t−1 +HTΣ−1

∆βH)−1 and µt,t = Pt,t(H
TΣ∆βO

(∆β)
t + P−1

t,t−1µt,t−1)

Figure 2: Inference equations for our log partition tracking algorithm, a variant on the Kalman filter. For any
vector v and matrix V , we use the notation [v]2 to denote the vector obtained by preserving the bottom half
elements of v and [V ]2,2 to indicate the lower right-hand quadrant of V .

4 Experimental Results

For the following experiments, SML was performed using either constant or decreasing learning
rates. We used the decreasing schedule εt = min(εinit

α
t+1 , εinit), where εt is the learning rate at

time-step t, εinit is the initial or base learning rate and α is the decrease constant. Entries of Σζ
(see Section 3.1) were set as follows. We set σ2

Z = +∞, which is to say that we did not exploit the
smoothness prior when estimating the prior distribution over the joint p(ζt−1, ζt | O(∆t)

t−1:0, O
(∆β)
t−1:0). σ2

b

was set to 10−3 · εt, allowing the estimated bias on O(∆t)
1,t to change faster for large learning rates.

When initializing the RBM visible offsets4 as proposed in [8], the intermediate distributions of Eq. 1
lead to sub-optimal swap rates between adjacent chains early in training, with a direct impact on the
quality of tracking. In our experiments, we avoid this issue by using the intermediate distributions
qi,t(x) ∝ exp[βi · (−hTWv − cTh)− bTv]. We tested mini-batch sizes N ∈ [10, 20].

Comparing to Exact Likelihood We start by comparing the performance of our tracking algo-
rithm to the exact likelihood, obtained by marginalizing over both visible and hidden units. We
chose 25 hidden units and trained on the ubiquitous MNIST [13] dataset for 300k updates, using
both fixed and adaptive learning rates. The main results are shown in Figure 3.

In Figure 3(a), we can see that our tracker provides a very good fit to the likelihood with εinit = 0.001
and decrease constants α in {103, 104, 105}. Increasing the base learning rate to εinit = 0.01 in
Figure 3(b), we maintain a good fit up to α = 104, with a small dip in performance at 50k updates.
Our tracker fails however to capture the oscillatory behavior engendered by too high of a learning
rate (εinit = 0.01, α = 105). It is interesting to note that the failure mode of our algorithm seems to
coincide with an unstable optimization process.

Comparing to AIS for Large-Scale Models In evaluating the performance of our tracking algo-
rithm on larger models, exact computation of the likelihood is no longer possible, so we use AIS
as our baseline.5 Our models consisted of RBMs with 500 hidden units, trained using SML-APT
[6] on the MNIST and Caltech Silhouettes [16] datasets. We performed 200k updates, with learning
rate parameters εinit ∈ {.01, .001} and α ∈ {103, 104, 105}.
On MNIST, AIS estimated the test-likelihood of our best model at −94.34 ± 3.08 (where ± indi-
cates the 3σ confidence interval), while our tracking algorithm reported a value −89.96. On Cal-
tech Silhouettes, our model reached −134.23± 21.14 according to AIS, while our tracker reported

4Each bk is initialized to log x̄k
1−x̄k

, where x̄k is the mean of the k-th dimension on the training set.
5Our base AIS config. was 103 intermediate distributions spaced linearly between β = [0, 0.5], 104 dis-

tributions for the interval [0.5, 0.9] and 104 for [0.9, 1.0]. Estimates of logZ are averaged over 100 annealed
importance weights.
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Figure 3: Comparison of exact test-set likelihood and estimated likelihood as given by AIS and our tracking
algorithm. We trained a 25-hidden unit RBM for 300k updates using SML, with a learning rate schedule
εt = min(α·εinit/(t+1), εinit), with (left) εinit = 0.001 and (right) εinit = 0.01 varyingα ∈ {103, 104, 105}.
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with the estimated bias bt. Note how bt becomes progressively less-pronounced as εt decreases and the model
converges. Also of interest, the variance on O(∆β)

t increases with t but is compensated by a decreasing variance
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t , yielding a relatively smooth estimate ζ1,t. (not shown) The ±3σ confidence interval of the AIS

estimate at 200k updates was measured to be 3.08. (right) Example of early-stopping on dna dataset.

−114.31. To put these numbers in perspective, Salakhutdinov and Murray [23] reports values of
−125.53, −105.50 and −86.34 for 500 hidden unit RBMs trained with CD{1,3,25} respectively.
Marlin et al. [16] report around −120 for Caltech Silhouettes, again using 500 hidden units.

Figure 4(left) shows a detailed view of the Kalman filter measurements and its output, for the best
performing MNIST model. We can see that the variance on O(∆β)

t (plotted on the left y-axis) grows
slowly over time, which is mitigated by a decreasing variance on O

(∆t)
t (plotted on the right y-

axis). As the model converges and the learning rate decreases, qi,t−1 and qi,t become progressively
closer and the importance sampling estimates become more robust. The estimated bias term bt also
converges to zero.

An important point to note is that a naive linear-spacing of temperatures yielded low exchange
rates between neighboring temperatures, with adverse effects on the quality of our bridge sampling
estimates. As a result, we observed a drop in performance, both in likelihood as well as tracking
performance. Adaptive tempering [6] (with a fixed number of chains M ) proved crucial in getting
good tracking for these experiments.

Early-Stopping Experiments Our final set of experiments highlights the performance of our
method on a wide-variety of datasets [11]. In these experiments, we use our estimate of the log
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Dataset RBM RBM-25 NADE
Kalman AIS

adult -15.24 -15.70 (± 0.50) -16.29 -13.19
connect4 -15.77 -16.81 (± 0.67) -22.66 -11.99
dna -87.97 -88.51 (± 0.97) -96.90 -84.81
mushrooms -10.49 -14.68 (± 30.75) -15.15 -9.81
nips -270.10 -271.23 (± 0.58) -277.37 -273.08
ocr letters -33.87 -31.45 (± 2.70) -43.05 -27.22
rcv1 -46.89 -48.61 (± 0.69) -48.88 -46.66
web -28.95 -29.91 (± 0.74) -29.38 -28.39

Table 1: Test set likelihood on various datasets. Models were trained using SML-PT. Early-stopping was
performed by monitoring likelihood on a hold-out validation set, using our KF estimate of the log partition
function. Best models (i.e. the choice of hyper-parameters) were then chosen according to the AIS likelihood
estimate. Results for 25-hidden unit RBMs and NADE are taken from [11]. ± indicates a confidence interval
of three standard deviations.

partition to monitor model performance on a held-out validation set. When the onset of over-fitting
is detected, we store the model parameters and report the associated test-set likelihood, as estimated
by both AIS and our tracking algorithm. The advantages of such an early-stopping procedure is
shown in Figure 4(b), where training log-likelihood increases throughout training while validation
performance starts to decrease around 250 epochs. Detecting over-fitting without tracking the log
partition would require a dense grid of AIS runs which would prove computationally prohibitive.

We tested parameters in the following range: number of hidden units in {100, 200, 500, 1000} (de-
pending on dataset size), learning rates in {10−2, 10−3, 10−4} either held constant during training
or annealed with constants α ∈ {103, 104, 105}. For tempering, we used 10 fixed temperatures,
spaced linearly between β = [0, 1]. SGD was performed using mini-batches of size {10, 100} when
estimating the gradient, and mini-batches of size {10, 20} for our set of tempered-chains (we thus
simulate 10 × {10, 20} tempered chains in total). As can be seen in Table 4, our tracker performs
very well compared to the AIS estimates and across all datasets. Efforts to lower the variance of the
AIS estimate proved unsuccessful, even going as far as 105 intermediate distributions.

5 Discussion

In this paper, we have shown that while exact calculation of the partition function of RBMs may be
intractable, one can exploit the smoothness of gradient descent learning in order to approximately
track the evolution of the log partition function during learning. Treating the ζi,t’s as latent vari-
ables, the graphical model of Figure 1 allowed us to combine multiple sources of information to
achieve good tracking of the log partition function throughout training, on a variety of datasets. We
note however that good tracking performance is contingent on the ergodicity of the negative phase
sampler. Unsurprisingly, this is the same condition required by SML for accurate estimation of the
negative phase gradient.

The method presented in the paper is also computationally attractive, with only a small computaiton
overhead relative to SML-PT training. The added computational cost lies in the computation of
the importance weights for importance sampling and bridge sampling. However, this boils down to
computing free-energies which are mostly pre-computed in the course of gradient updates with the
sole exception being the computation of q̃i,t(xi,t−1) in the importance sampling step. In comparison
to AIS, our method allows us to fairly accurately track the log partition function, and at a per-point
estimate cost well below that of AIS. Having a reliable and accurate online estimate of the log
partition function opens the door to a wide range of new research directions.

Acknowledgments

The authors acknowledge the financial support of NSERC and CIFAR; and Calcul Québec for com-
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