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”Boosting” is a general method for improving the performance of any
learning algorithm that consistently generates classifiers which need to
perform only slightly better than random guessing. A recently proposed
and very promising boosting algorithm is AdaBoost [5]. It has been ap-
plied with great success to several benchmark machine learning problems
using rather simple learning algorithms [4], in particular decision trees
[1, 2, 6]. In this paper we use AdaBoost to improve the performances
of neural networks applied to character recognition tasks. We compare
training methods based on sampling the training set and weighting the
cost function. Our system achieves about 1.4% error on a data base of
online handwritten digits from more than 200 writers. Adaptive boost-
ing of a multi-layer network achieved 2% error on the UCI Letters offline
characters data set.

1 Introduction
AdaBoost [4, 5] (for Adaptive Boosting) constructs a composite classifier by sequentially
training classifiers, while putting more and more emphasis on certain patterns. AdaBoost
has been applied to rather weak learning algorithms (with low capacity) [4] and to deci-
sion trees [1, 2, 6], and not yet, until now, to the best of our knowledge, to artificial neural
networks. These experiments displayed rather intriguing generalization properties, such as
continued decrease in generalization error after training error reaches zero. Previous work-
ers also disagree on the reasons for the impressive generalization performance displayed by
AdaBoost on a large array of tasks. One issue raised by Breiman [1] and the authors of Ad-
aBoost [4] is whether some of this effect is due to a reduction in variance similar to the one
obtained from the Bagging algorithm.

In this paper we explore the application of AdaBoost to Diabolo (auto-associative) networks
and multi-layer neural networks (MLPs) on two character recognition tasks. In doing so,



we also compare three different versions of AdaBoost: (R) training each hypothesis with a
fixed training set obtained by resampling with replacement (with probabilitiesDt) from the
original training set (as in [1]), (E) training by resampling after each epoch a new training
set from the original training set, and (W) training by directly weighting the cost function
(here the squared error) of the neural network. Note that the second version is a better ap-
proximation of the weighted cost function. If the variance reduction induced by averaging
the hypotheses from very different models explains some of the generalization performance
of AdaBoost, then the weighted training version (W) should perform worse then the resam-
pling versions, and the fixed sample version (R) should perform better then the continuously
resampled version (E).

2 AdaBoost
AdaBoost combines the hypotheses generated by a set of classifiers trained one after the
other. The tth classifier is trained with more emphasis on certain patterns, using a cost func-
tion weighted by a probability distribution Dt over the training data (Dt�i� is positive andP

iDt�i� � �). Some learning algorithms don’t permit training with respect to a weighted
cost function, e.g. decision trees. In this case resampling with replacement (using the prob-
ability distributionDt) can be used to approximate a weighted cost function. Examples with
high probability would then occur more often than those with low probability, while some
examples may not occur in the sample at all although their probability is not zero. This
is particularly true in the simple resampling version (labeled “R” earlier), and probably un-
likely when a new training set is resampled after each epoch (“E” version). Neural networks
can be trained directly with respect to a distribution over the learning data by weighting the
cost function (this is the “W” version): the squared error on the i-th pattern is weighted by
the probability Dt�i�. The result of training the tth classifier is a hypothesis ht � X � Y
where Y � f�� ���� kg is the space of labels, and X is the space of input features. After the
tth round the weighted error �t of the resulting classifier is calculated and the distribution
Dt�� is computed from Dt, by increasing the probability of incorrectly labeled examples.
The global decision f is obtained by weighted voting. Figure 1 (left) summarizes the basic
AdaBoost algorithm. It converges (learns the training set) if each classifier yields a weighted
error that is less than 50%, i.e., better than chance in the 2-class case. There is also a multi-
class version, called pseudoloss-AdaBoost, that can be used when the classifier computes
confidence scores for each class. Due to lack of space, we give only the algorithm (see figure
1, right) and we refer the reader to the references for more details [4, 5].

AdaBoost has very interesting theoretical properties, in particular it can be shown that the
error of the composite classifier on the training data decreases exponentially fast to zero [5].
More importantly, however, bounds on the generalization error of such a system have been
formulated [7]. These are based on a notion of margin of classification, defined as the differ-
ence between the score of the correct class and the strongest score of a wrong class. In the
case in which there are just two possible labels f�����g, this is yf�x�, where f is the com-
posite classifier and y the correct label. Obviously, the classification is correct if the margin
is positive. We now state the theorem bounding the generalization error of Adaboost [7]
(and other classifiers obtained by convex combinations of other classifiers). Let H be a set
of hypotheses (from which the ht are chosen), with VC-dimenstion d. Let f be any convex
combination of hypotheses fromH . LetS be a sample ofN examples chosen independently
at random according to a distributionD. Then with probability at least ��� over the random
choice of the training set S from D, the following bound is satisfied for all � � �:
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Note that this bound is independent of the number of combined hypotheses and how they
are chosen fromH . The distribution of the margins however plays an important role. It can
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Figure 1: AdaBoost algorithm (left), multi-class extension using confidence scores (right)

be shown that the AdaBoost algorithm is especially well suited to the task of maximizing
the number of training examples with large margin [7].

3 The Diabolo Classifier
Normally, neural networks used for classification are trained to map an input vector to an
output vector that encodes directly the classes, usually by the so called ”1-out-of-N encod-
ing”. An alternative approach with interesting properties is to use auto-associative neural
networks, also called autoencoders or Diabolo networks, to learn a model of each class.
In the simplest case, each autoencoder network is trained only with examples of the cor-
responding class, i.e., it learns to reconstruct all examples of one class at its output. The
distance between the input vector and the reconstructed output vector expresses the likeli-
hood that a particular example is part of the corresponding class. Therefore classification
is done by choosing the best fitting model, i.e. the class of the network with the smallest
reconstruction error. Figure 2 summarizes the basic architecture. It shows also typical clas-
sification behavior. The input and output vectors are �x� y�-coordinate sequences of a char-
acter. The visual representation in the figure is obtained by connecting these points. In this
example the ”1” is correctly classified since the network for this class has the smallest re-
construction error. It is also interesting to see how the other networks find a stroke sequence
of their class that is relatively close to the net input (2 and 7 in this example).

The Diabolo classifier uses a distributed representation of the models which is much more
compact than the enumeration of references often used by distance-based classifiers like
nearest-neighbor or RBF networks. Furthermore, one has to calculate only one distance
measure for each class to recognize. This allows to incorporate knowledge by a domain
specific distance measure at a very low computational cost. In previous work [8], we have
shown that the well-known tangent-distance [11] can be used in the objective function of
the autoencoders. Furthermore, we used a discriminant learning algorithm [9]: the network
weights are updated so that the reconstruction distance is minimized for the network of the
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Figure 2: Architecture of a Diabolo classifier

desired class and maximized for the closest incorrect one, like in LVQ2. Interestingly, this
intuitive algorithm has gained a theoretical justification by the recent theorem of equation 1,
since this discriminant learning algorithm decreases the number of examples with low mar-
gin. This Diabolo classifier has achieved state-of-the-art results in handwritten OCR [8, 9].

Recently, we have also extended the idea of a transformation invariant distance measure
to on-line character recognition [10]. One autoencoder alone, however, can not learn effi-
ciently the model of a character if it is written in many different stroke orders and directions.
The architecture can be extended by using several autoencoders per class, each one special-
izing on a particular writing style (subclass). For the class ”0”, for instance, we would have
one Diabolo network that learns a model for zeros written clockwise and another one for
zeros written counterclockwise. The assignment of the training examples to the different
subclass models should ideally be done in an unsupervised way. However, this can be quite
difficult since the number of writing styles is not known in advance and usually the num-
ber of examples in each subclass varies a lot. Our training data base contains for instance
100 zeros written counterclockwise, but only 3 written clockwise (there are also some more
examples written in other strange styles). Classical clustering algorithms would probably
tend to ignore subclasses with very few examples since they aren’t responsible for much of
the error, but this may result in poor generalization behavior. Therefore, in previous work
we have manually assigned the subclass labels [10]. Of course, this is not a generally sat-
isfactory approach, and certainly infeasible when the training set is large. In the following,
we will show that the emphasizing algorithm of AdaBoost can be used to train multiple Di-
abolo classifiers per class, performing a soft assignment of examples of the training set to
each network.

4 Results with Diabolo and MLP Classifiers
Experiments have been performed on two data sets for character recognition. The first one
is a data base of online handwritten digits (10 classes) and the second one is the UCI Letters
database of offline machine-printed alphabetical characters (26 classes). Both data sets have
a pre-defined training and test set. The Diabolo classifier was only applied to the online data
set (since it takes advantage of the structure of the input features).

The online data set was collected at Paris 6 University [10]. It is writer-independent (differ-
ent writers in training and test sets) and there are 203 writers, 1200 training examples and
830 test examples. Each writer gave only one example per class. Therefore, there are many
different writing styles, with very different frequencies. In particular, the writers of the train-
ing and test sets are completely distinct. We only applied a simple preprocessing: the char-
acters were resampled to 11 points, centered and size normalized to a (x,y)-coordinate se-
quence in ���� ����. Since the Diabolo classifier is invariant to small transformations we
don’t need to extract further features. We also made some minor changes to the resampling



procedure used in the AdaBoost algorithm applied to the online data set, to take advantage
of the geometrical structure of the input variables. When resampling patterns from the train-
ing set, we applied random local affine transformations to the original characters (for which
we know that the classification is invariant),

Table 1: Online digits data set error rates for different unboosted classifiers

Diabolo classifier fully connected MLP
no subclasses hand-selected 22-10-10 22-30-10 22-80-10

train: 2.2% 0.6% 6.5% 1.3% 0.1%
test: 3.3% 1.2% 9.5% 4.1% 2.1%

Table 1 summarizes the results on the test set of different approaches before using AdaBoost.
The Diabolo classifier with hand-selected sub-classes in the training set performs best since
it is invariant to transformations and since it can deal with the different writing styles. The
experiments suggest that fully connected neural networks are not well suited for this task:
small nets do poorly on both training and test sets, while large nets overfit.

Table 2: Online digits test error rates for boosted MLPs

architecture: 22-10-10 22-30-10
version: R E W R E W

1000 iter., best 1.9% 1.9% 3.0%
final not tried 2.1% 2.1% 4.3%

5000 iter, best 2.4% 2.4% 2.4% 1.9% 1.9% 2.0%
final 2.6% 2.6% 2.5% 2.4% 2.8% 2.9%

Table 2 shows the results of boosted multi-layer perceptrons with 10 or 30 hidden units,
trained for either 1000 or 5000 iterations, and using either the ordinary resampling scheme
(R), resampling with different random selections at each epoch (E), or training with weights
Dt on the squared error criterion for each pattern (W). The final performance is with at most
100 machines. The multi-class version of the AdaBoost algorithm was used in all the exper-
iments with MLPs: it yielded considerably better results than the basic version. Pseudoloss-
Adaboost was however not usefull for the Diabolo classifier since it uses a powerfull dis-
criminant learning algorithm. Note that AdaBoost with weighted training of MLPs doesn’t
work if the learning of each individual MLP is stopped too early (1000 iterations): the
networks didn’t learn well enough the weighted examples and �t approached rapidely 0.5.
When training each MLP for 5000 iterations, however, the weighted training (W) version
achieved the same low test error, and we need about half (or less) machines than with the
fixed resampling version (R). Finally, AdaBoost was not very useful if the VC-dimension
of the basic classifier is very large: the test error decreased only from 2.1% to 1.8% for the
22-80-10 MLP. The results of the unboosted MLP was however obtained when training was
stopped at the lowest test error and it’s unlikely to achieve this using early stopping on a val-
idation set. On the other hand, we have never observed that early stopping was necessary
when using AdaBoost with MLPs or Diabolo classifiers.

Figure 3 shows the error rate of some of the boosted classifiers as the number of machines is
increased, as well as examples of the margin distributions obtained after training. AdaBoost
brings training error to zero after only a few steps, even with a MLP with only 10 hidden
units. The generalization error is also considerably improved and it continues to decrease
asymptotically after zero training error has been reached. The Diabolo classifier performs
best when combining 16 classifiers (1.4% error = 12 errors) which is almost as good as
the Diabolo classifier using hand-selected subclasses (1.2% = 10 errors). Since we know
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Figure 3: top: error rates of the boosted classifiers for increasing number of networks
bottom: margin distributions using 2, 5, 10 and 100 machines respectively

that one autoencoder can’t learn a model of the different writing style within one class, this
seems to be evidence that the example emphasizing of AdaBoost was able to assign them
automatically to different machines.

The surprising effect of continuously decreasing generalisation error even after training er-
ror reaches zero has already been observed by others [1, 2, 4, 6]. This seems to contradict
Occam’s razor, but it may be explained by the recently proven theorem of Schapire et al. [7]:
the bound on the generalization error (equation 1) depends only on the margin distribution
and on the VC-dimension of the basic learning machine (one Diabolo classifier or MLP re-
spectively), not on the number of machines combined by AdaBoost. Figure 3 shows the
margins distributions, i.e. the fraction of examples whose margin is at most x as a func-
tion of x � ���� ��. It is clearly visible that AdaBoost increases the number of examples
with high margin: with 100 machines all examples have a margin higher than 0.5. Although
AdaBoost improves spectacularly the generalization error of the MLPs, for instance from
9.5 % to 2.6 % for the 22-10-10 architecture, we were not able to get results as good as for
the unboosted Diabolo classifier (1.4%). Note that the margin distribution using hundred
22-30-10 MLPs is at least as good as the one from 100 Diabolo classifiers, but not the error
rate. We hypothesize that the difference in performance may be due in part to a lower ef-
fective VC-dimension of the Diabolo classifier. It may also be that the generalization error
bounds of Freund et al. are too far away from the actual generalization error.

Table 3: Error rates on the UCI Letters data set

nearest fully connected MLP C4.5 (results from [4])
neighbor alone adaboostedy alone adaboostedz

train: - 3.4% 0.0% unknown 0.0%
test: 4.8% 6.2% 2.0% 13.8% 3.3%
y using 20 machines, z using � ��� machines

Similar experiments were performed with MLPs on the “Letters” data set from the UCI Ma-
chine Learning database. It has 16000 training and 4000 test patterns, 16 input features,
and 26 classes (A-Z) of machine-printed characters from 20 different fonts. The experi-



ments were performed with a 16-70-50-26 MLP with 500 online back-propagation epochs
on the training set. Each input feature was normalized according to its mean and variance
on the training set. The plain and boosted networks are compared to the 1-nearest neigb-
hbor classifier as well as to plain and boosted C4.5 decision trees (results from [4]). The
results obtained with the boosted network are extremely good (2% error) and are the best
that the authors know to be published for this data set. The best performance reported in
STATLOG [3] is 6.4%. Adaboosted decision trees are reported to achieve 3.3% [4, 7], but
it seems that many trees are necessary (more than 100) while we need only 20 MLPs.

5 Conclusion
As demonstrated in two character recognition applications, AdaBoost can significantly im-
prove neural classifiers such as multi-layer networks and Diabolo networks. The behavior
of AdaBoost for neural networks confirms previous observations on other learning algo-
rithms [1, 2, 4, 6, 7], such as the continued generalization improvement after zero training
error has been reached, and the associated improvement in the margin distribution. In gen-
eral, AdaBoost appears to “help” most the “weaker” models (such as the 10-hidden units
networks in our experiments).

Another interesting finding of this paper is that the “weighted training” version of AdaBoost
works well for MLPs but requires many more training epochs (because of the weights the
conditioning of the Hessian matrix is probably worse). However, less machines are required
to achieve the best test set error, which makes the total training time similar to the resam-
pling version, and shorter recognition time. Furthermore these results add credence to the
view of Freund and Schapire that the improvement in generalization error brought by Ada-
Boost is mainly due to the emphasizing (that increases the margin), rather than to a variance
reduction due to the randomization of the resampling process (as was suggested in [1]).
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