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Abstract

The curse of dimensionality is severe when modeling high-dimensional
discrete data: the number of possible combinations of the variables ex-
plodes exponentialy. In this paper we propose a hew architecture for
modeling high-dimensional data that requires resources (parameters and
computations) that grow only at most as the square of the number of vari-
ables, using a multi-layer neural network to represent the joint distribu-
tion of the variables as the product of conditional distributions. The neu-
ral network can be interpreted as a graphical model without hidden ran-
dom variables, but in which the conditional distributions are tied through
the hidden units. The connectivity of the neural network can be pruned by
using dependency tests between the variables. Experiments on modeling
the distribution of several discrete data sets show statistically significant
improvements over other methods such as naive Bayes and comparable
Bayesian networks, and show that significant improvements can be ob-
tained by pruning the network.

1 Introduction

The curse of dimensionality hits particularly hard on models of high-dimensional discrete
data because there are many more possible combinations of the values of the variables than
can possibly be observed in any data set, even the large data sets now common in data-
mining applications. In this paper we are dealing in particular with multivariate discrete
data, where onetries to build amodel of the distribution of the data. This can be used for
exampl e to detect anomalous cases in data-mining applications, or it can be used to model
the class-conditional distribution of some observed variables in order to build a classifier.
A simple multinomial maximum likelihood model would give zero probability to all of
the combinations not encountered in the training set, i.e., it would most likely give zero
probability to most out-of-sample test cases. Smoothing the model by assigning the same
non-zero probability for all the unobserved cases would not be satisfactory either because
it would not provide much generalization from the training set. This could be obtained by
using amultivariate multinomia model whose parametersé are estimated by the maximum
a-posteriori (MAP) principle, i.e., thosethat have the greatest probability, given thetraining
data D, and using adiffuse prior P(#) (e.g. Dirichlet) on the parameters.

A graphical model or Bayesian network [6, 5] represents the joint distribution of random
variables Z; . .. Z,, with

n
P(Zy ... 7Zy) = || P(%i|Parents;)
i=1
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where Parents; is the set of random variables which are called the parents of variable i
in the graphical model because they directly condition Z;, and an arrow is drawn, in the
graphical model, to Z;, from each of its parents. A fully connected “left-to-right” graphical
model isillustrated in Figure 1 (left), which correspondsto the model

P(Zy...Z,) = [ P(Zi| 2y ... Ziv). 1)

i=1
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Figure 1: Left: afully connected “left-to-right” graphical model.

Right: the architecture of a neural network that simulates a fully connected “left-to-right”
graphical model. The observed values 7Z; = z; are encoded in the corresponding input
unit group. h; is a group of hidden units. ¢; is a group of output units, which depend
on zi...z;—1, representing the parameters of a distribution over Z;. These conditional
probabilities P(Z;|Z, ... Z;_1) are multiplied to obtain the joint distribution.

Note that this representation depends on the ordering of the variables (in that al previous
variables in this order are taken as parents). We call each combination of the values of
Parents; acontext. Inthe“exact” model (with the full table of all possible contexts) all the
orders are equivalent, but if approximations are used, different predictions could be made
by different models assuming different orders.

In graphical models, the curse of dimensionality shows up in the representation of condi-
tional distributions P(Z;|Parents;) where Z; has many parents. If Z; € Parents; cantake
n; values, there are [ ], n; different contexts which can occur in which one would like to
estimate the distribution of Z;. This serious problem has been addressed in the past by two
types of approaches, which are sometimes combined:

1. Not modeling all the dependencies between all the variables: thisisthe approach mainly
taken with most graphical models or Bayes networks [6, 5]. The set of independencies
can be assumed using a-priori or human expert knowledge or can be learned from data.
See aso [2] in which the set Parents; is restricted to at most one element, which is
chosen to maximize the correlation with Z;.

2. Approximating the mathematical form of the joint distribution with aform that takesonly
into account dependencies of lower order, or only takes into account some of the possi-
ble dependencies, e.g., with the Rademacher-Wal sh expansion or multi-binomial [1, 3],
which isalow-order polynomial approximation of afull joint binomial distribution (and
is used in the experiments reported in this paper).

The approach we are putting forward in this paper is mostly of the second category, al-
though we are using simple non-parametric statistics of the dependency between pairs of
variablesto further reduce the number of required parameters.

In the multi-binomial model [3], thejoint distribution of a set of binary variablesis approx-
imated by a polynomial. Whereas the “exact” representation of P(Z; = z1,...Z, = z,)
asafunctionof z; ...z, isapolynomial of degreen, it can be approximated with alower



degree polynomial, and this approximation can be easily computed using the Rademacher-
Walsh expansion [1] (or other similar expansions, such as the Bahadur-Lazarsfeld ex-
pansion [1]). Therefore, instead of having 2™ parameters, the approximated model for
P(Zy,...Z,) only requires O(n*) parameters. Typically, order k = 2 is used. The model
proposed here also requires O(n?) parameters, but it allows to model dependencies be-
tween tuples of variables, with more than 2 variables at atime.

In previous related work by Frey [4], afully-connected graphical model is used (see Fig-
ure 1, left) but each of the conditional distributionsis represented by alogistic, which take
into account only first-order dependency between the variables:

1

P(Zz ]-|Z1Z7, 1) 1+eXp(—w0—ZJ<lw]Zj)

In this paper, we basically extend Frey's idea to using a neural network with a hidden
layer, with a particular architecture, allowing multinomial or continuous variables, and we
propose to prune down the network weights. Frey has named his model a Logistic Au-
toregressive Bayesian Network or LARC. He argues that the prior variances on the logistic
weights (which correspond to inverse weight decays) should be chosen inversely propor-
tional to the number of conditioning variables (i.e. the number of inputs to the particular
output neuron). The model was tested on atask of learning to classify digits from 8x8 bi-
nary pixel images. Modelswith different orderings of the variables were compared and did
not yield significant differences in performance. When averaging the predictive probabili-
ties from 10 different models obtained by considering 10 different random orderings, Frey
obtained small improvementsin likelihood but not in classification. The model performed
better or equivalently to other modelstested: CART, naive Bayes, K-nearest neighbors, and
various Bayesian models with hidden variables (Helmholtz machines). These results are
impressive, taking into account the simplicity of the LARC model.

2 Proposed Architecture

The proposed architecture is a “neural network” implementation of a graphical model
where all the variables are observed in the training set, with the hidden units playing asig-
nificant role to share parameters across different conditional distributions. Figure 1 (right)
illustrates the model in the simpler case of afully connected (left-to-right) graphical model
(Figure 1, left). The neural network represents the parametrized function

fo(z1,- -y zn) =log(Po(Z1 = 21, -+ -, Zn = 2p)) 2
approximating thejoint distribution of the variables, with parameters§ being the weights of
the neural network. The architecture has three layers, with each layer organized in groups
associated to each of the variables. The above log-probability is computed as the sum of
conditional log-probabilities

folz1,.. 20) = ZZOQ(P(Zz’ = zilgi(z1,. .., 2i-1)))
i=1

where g;(z1,-..,2;—1) is the vector-valued output of the i-th group of output units, and
it gives the value of the parameters of the distribution of Z; when Z;, = 2,72, =
22,...,2Z; 1 = z;_1. For example, in the ordinary discrete case, g; may be the vector

of probabilities associated with each of the possible values of the multinomial random
variable Z;. In this case, we have

P(Z; =i'|g:) = gir
In this example, a softmax output for the i-th group may be used to force these parameters
to be positiveand sumto 1, i.e.,



where g; ,, are linear combinations of the hidden units outputs, with " ranging over the
number of elements of the parameter vector associated with the distribution of Z; (for a
fixed value of Z; ... Z;_1). To guarantee that the functions g;(z1, - . -, z;—1) only depend
onz...z;_1 andnotonany of z;... z,, the connectivity struture of the hidden units must
be constrained as follows:

m;
i =i + Y Y wir iyl
J<i j'=1
where the b's are biases and the w’s are weights of the output layer, and the h; ;- is the
output of the j'-th unit (out of m ; such units) in the j-th group of hidden layer nodes. It
may be computed as follows:

Nk
hj,j/ = tanh(cjﬂ-r + Z Z 'Uj,j’7k7k’2k,k’)
k<jk'=1
where the ¢’s are biases and the v's are the weights of the hidden layer, and z, ;- is &'-th
element of the vectorial input representation of the value Z;, = z;. For example, in the
binary case (z; = 0 or 1) we have used only oneinput node, i.e.,

Z; binomial — z;0 = 2;
and in the multinomial case we use the one-hot encoding,
Zi S {0, ]., LNy — ].} — Ziil = 62’1‘72"

where d; » = 1 if i = i’ and O otherwise. The input layer has n — 1 groups because
the value Z,, = z, is not used as an input. The hidden layer also has n — 1 groups
corresponding to the variables j = 2 ton (since P(Z,) is represented unconditionally in
thefirst output group, its corresponding group does not need any hidden units or inputs, but
just has biases).

2.1 Discussion

The number of free parameters of the model is O(n? H) where H = max; m; is the maxi-
mum number of hidden units per hidden group (i.e., associated with one of the variables).
Thisis basically quadratic in the number of variables, like the multi-binomial approxima:
tion that uses a polynomial expansion of the joint distribution. However, as H isincreased,
representation theorems for neural networks suggest that we should be able to approximate
with arbitrary precision the true joint distribution. Of course the true limiting factor is the
amount of data, and H should be tuned according to the amount of data. In our experiments
we have used cross-validation to choose a value of m; = H for al the hidden groups. In
this sense, this neural network representation of P(Z; ... Z,,) isto the polynomial expan-
sions (such as the multi-binomial) what ordinary multilayer neural networks for function
approximation are to polynomial function approximators. It allows to capture high-order
dependencies, but not al of them. It is the number of hidden units that controls “how
many” such dependencies will be captured, and it is the data that “chooses” which of the
actual dependencies are most useful in maximizing the likelihood.

Unlike Bayesian networks with hidden random variables, learning with the proposed archi-
tectureis very simple, even when there are no conditional independencies. To optimize the
parameters we have ssimply used gradient-based optimization methods, either using con-
jugate or stochastic (on-line) gradient, to maximize the total log-likelihood which is the
sum of values of f (eg. 2) for the training examples. A prior on the parameters can be
incorporated in the cost function and the MAP estimator can be obtained as easily, by max-
imizing the total log-likelihood plus the log-prior on the parameters. In our experiments
we have used a “weight decay” penalty inspired by the analysis of Frey [4], with a penalty
proportional to the number of weights incoming into a neuron.



However, it is not so clear how the distribution could be generally marginalized, except
by summing over possibly many combinations of the values of variablesto be integrated.
Another related question is whether one could deal with missing values: if thetotal number
of values that the missing variables can take is reasonably small, then one can sum over
these values in order to obtain a margina probability and maximize this probability. If
some variables have more systematically missing values, they can be put at the end of the
variable ordering, and in this case it is very easy to compute the marginal distribution (by
taking only the product of the output probabilities up to the missing variables). Similarly,
one can easily compute the predictive distribution of the last variable given thefirst n — 1
variables.

The framework can be easily extended to hybrid models involving both continuous and
discrete variables. In the case of continuous variables, one has to choose a parametric form
for the distribution of the continuous variable when al its parents (i.e., the conditioning
context) arefixed. For example one could use anormal, log-normal, or mixture of normals.
Instead of having softmax outputs, the i-th output group would compute the parameters
of this continuous distribution (e.g., mean and log-variance). Another type of extension
alows to build a conditional distribution, e.g., to model P(Z ...Z,|X; ... X;). One
just adds extrainput units to represent the values of the conditioning variables X; ... X,,.
Finally, an architectural extension that we have implemented is to allow direct input-to-
output connections (still following the rules of ordering which allow g; to depend only on
21 ...2;_1). Thereforein the case where the number of hidden unitsisO (H = 0) weobtain
the LARC model proposed by Frey [4].

2.2 Choice of topology

Another type of extension of this model which we have found very useful in our experi-
mentsisto allow the user to choose atopology that is not fully connected (left-to-right). In
our experiments we have used non-parametric tests to heuristically eliminate some of the
connectionsin the network, but one could also use expert or prior knowledge, just as with
regular graphical models, in order to cut down on the number of free parameters.

In our experiments we have used for a pairwise test of statistical dependency the
Kolmogorov-Smirnov statistic (which works both for continuous and discrete variables).
The statistic for variables X and Y is

s = Visup |P(X < 2:,Y <y;) — P(X < 2)P(Y <)

where! isthe number of examplesand P isthe empirical distribution (obtained by counting
over the training data). We have ranked the pairs according to their value of the statistic s,
and we have chosen those pairs for which the value of statistic is above a threshold value
s*, which was chosen by cross-validation. When the pairs {(Z;, Z;)} are chosen to be part
of the model, and assuming without loss of generality that ¢ < j for those pairs, then the
only connections that are kept in the network (in addition to those from the k-th hidden
group to the k-th output group) are those from hidden group 4 to output group 7, and from
input group ¢ to hidden group j, for every such (Z;, Z;) pair.

3 Experiments
In the experiments we have compared the following models:

¢ Naive Bayes: the likelihood is obtained as a product of multinomials (one per variable).
Each multinomial is smoothed with a Dirichlet prior.

e Multi-Binomial (using Rademacher-Walsh expansion of order 2) [3]. Since this only
handles the case of binary data, it was only applied to the DNA data set.

e A simple graphical model with the same pairs of variables and variable ordering as se-
lected for the neural network, but inwhich each of the conditional distributionis modeled



by a separate multinomial for each of the conditioning context. This works only if the
number of conditioning variablesis small so in the Mushroom, Audiology, and Soybean
experiments we had to reduce the number of conditioning variables (following the order
given by the abovetests). The multinomials are also smoothed with a Dirichlet prior.

e Neura network: the architecture described above, with or without hidden units (i.e.,
LARC), with or without pruning.

5-fold cross-validation was used to select the number of hidden units per hidden group
and the weight decay for the neural network and LARC. Cross-validation was also used
to choose the amount of pruning in the neural network and LARC, and the amount of
smoothing in the Dirichlet priors for the multinomials of the naive Bayes model and the
simple graphical model.

3.1 Results

All four data sets were obtained on the web from the UCI Machine Learning and STATLOG
databases. Most of these are meant to befor classification tasks but we haveinstead ignored
the classification and used the data to learn a probabilistic model of all the input features.

e DNA (from STATLOG): there are 180 binary features. 2000 cases were used for training
and cross-validation, and 1186 for testing.

e Mushroom (from UCI): there are 22 discrete features (taking each between 2 and 12
values). 4062 cases were used for training and cross-validation, and 4062 for testing.

¢ Audiology (from UCI): there are 69 discrete features (taking each between 2 and 7 val-
ues). 113 cases are used for training and 113 for testing (the original train-test partition
was 200 + 26 and we concatenated and re-split the data to obtain more significant test
figures).

e Soybean (from UCI): there are 35 discrete features (taking each between 2 and 8 values).
307 cases are used for training and 376 for testing.

Table 1 clearly shows that the proposed model yields promising results since the pruned
neural network was superior to all the other modelsin all 4 cases, and the pairwise differ-
ences with the other models are statistically significant in all 4 cases (except Audiology,
where the difference with the network without hidden units, LARC, is not significant).

4 Conclusion

Inthis paper we have proposed a new application of multi-layer neural networksto the mod-
elization of high-dimensional distributions, in particular for discrete data (but the model
could also be applied to continuous or mixed discrete / continuous data). Like the polyno-
mial expansions[3] that have been previously proposed for handling such high-dimensional
distributions, the model approximatesthe joint distribution with areasonable (O (n?)) num-
ber of free parameters but unlike these it allows to capture high-order dependencies even
when the number of parametersis small. The model can also be seen as an extension of
the previously proposed auto-regressive logistic Bayesian network [4], using hidden units
to capture some high-order dependencies.

Experimental results on four data sets with many discrete variables are very encouraging.
The comparisons were made with a naive Bayes model, with a multi-binomial expansion,
with the LARC model and with a simple graphical model, showing that a neural network
did significantly better in terms of out-of-samplelog-likelihood in all cases.

The approach to pruning the neural network used in the experiments, based on pairwise
statistical dependency tests, is highly heuristic and better results might be obtained using
approaches that take into account the higher order dependencies when selecting the con-
ditioning variables. Methods based on pruning the fully connected network (e.g., with a
“weight elimination” penalty) should also be tried. Also, we have not tried to optimize



DNA Mushroom

mean (stdev) | p-vaue || mean (stdev) | p-vaue
naive Bayes 1004 (.118) | <1e9 47.00(.29) | <1e9
multi-Binomial order 2 117.8(.01) | <1e9
ordinary graph. model 108.1(.06) | <1le9 4468 (.26) | <1e9
LARC 83.2(.24) 7e-5 4251(.16) | <1e9
pruned LARC 91.2(.15) | <1le9 43.87(13) | <1e9
full-conn. neural net. 120.0(.02) | <1e9 3358(.01) | <le9
pruned neural network 82.9(.21) 31.25(.04)

Audiology Soybean

mean (stdev) | p-vaue || mean (stdev) | p-vaue
naive Bayes 36.40(29) | <1e9 34.74(1.0) | <1e9
multi-Binomial order 2
ordinary graph. model 16.56 (.48) | 6.8e-4 43.65(.07) | <1e9
LARC 1769(.65) | <le9 16.95(.35) | 5.5e4
pruned LARC 16.69 (.41) 0.20 19.06 (43) | <1le9
full-conn. neural net. 17.39(58) | <1e9 21.65(43) | <1le9
pruned neural network 16.37 (.45) 16.55 (.27)

Table 1. Average out-of-sample negative log-likelihood obtained with the various models
on four data sets (standard deviations of the average in parenthesis and p-value to test
the null hypotheses that a model has same true generalization error as the pruned neural
network). The pruned neural network was better than all the other models in in all cases,
and the pair-wise difference is always statistically significant (except with respect to the
pruned LARC on Audiology).

the order of the variables, or combine different networks obtained with different orders,
like [4].

References

[1] R.R. Bahadur. A representation of thejoint distribution of responsesto n dichotomous
items. In ed. H. Solomon, editor, Studies in Item Analysis and Predictdion, pages
158-168. Stanford University Press, California, 1961.

[2] C.K. Chow. A recognition method using neighbor dependence.
Comp., EC-11:683-690, October 1962.

[3] R.O.Dudaand PE. Hart. Pattern Classification and Scene Analysis. Wiley, New York,
1973.

[4] B. Frey. Graphical models for machine learning and digital communication. MIT
Press, 1998.

[5] Steffen L. Lauritzen. The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis, 19:191-201, 1995.

[6] Judea Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible
Inference. Morgan Kaufmann, 1988.

IRE Trans. Elec.



